
PURE LUXE Conclusion

Thread Abstraction Layer — TAL

In Memoriam of PURE (∗1995 †2002)

Wolfgang Schröder-Preikschat

Friedrich-Alexander University Erlangen-Nuremberg
Department of Computer Science 4

(Distributed Systems and Operating Systems)

www4.cs.fau.de

wosch Thread Abstraction Layer — TAL

www4.cs.fau.de

PURE LUXE Conclusion Operating-Systems Engineering

Logical Unit Construction Set Experiment
LUCSE 7→ LUXE

PURE de Luxe

◮ operating-system engineering in the small: carried to an extreme
◮ playing with capabilities of C/C++ programming systems

◮ “pluckiness for sacrilege”: an operating system is no end in itself
◮ a thread: that’s no concern of an operating system — almost. . .

◮ to apply Occam’s razor:
◮ “Entia non sunt multiplicanda praeter necessitatem.”
◮ “Entities should not be multiplied beyond necessity.”
...
◮ “All other things being equal, the simplest solution is the best.”

◮ smooth transition: programming-language ↔ operating-system level

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Logical Unit Construction Set Experiment
LUCSE 7→ LUXE

PURE de Luxe

◮ operating-system engineering in the small: carried to an extreme
◮ playing with capabilities of C/C++ programming systems

◮ “pluckiness for sacrilege”: an operating system is no end in itself
◮ a thread: that’s no concern of an operating system — almost. . .

◮ to apply Occam’s razor:
◮ “Entia non sunt multiplicanda praeter necessitatem.”
◮ “Entities should not be multiplied beyond necessity.”
...
◮ “All other things being equal, the simplest solution is the best.”

◮ smooth transition: programming-language ↔ operating-system level

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Logical Unit Construction Set Experiment
LUCSE 7→ LUXE

PURE de Luxe

◮ operating-system engineering in the small: carried to an extreme
◮ playing with capabilities of C/C++ programming systems

◮ “pluckiness for sacrilege”: an operating system is no end in itself
◮ a thread: that’s no concern of an operating system — almost. . .

◮ to apply Occam’s razor:
◮ “Entia non sunt multiplicanda praeter necessitatem.”
◮ “Entities should not be multiplied beyond necessity.”
...
◮ “All other things being equal, the simplest solution is the best.”

◮ smooth transition: programming-language ↔ operating-system level

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Specialization without Abandonment of Reusability
Cornerstones of the PURE/CiAO Development Process

PURE

family-based design eases extension and contraction of software

◮ stepwise functional enrichment of system abstractions

feature-based conditioning ensures an application-aware finishing

◮ mapping of features to entities of the software generation process

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Specialization without Abandonment of Reusability
Cornerstones of the PURE/CiAO Development Process

PURE

family-based design eases extension and contraction of software

◮ stepwise functional enrichment of system abstractions

feature-based conditioning ensures an application-aware finishing

◮ mapping of features to entities of the software generation process

CiAO

feature modeling distinguishes common from variable system properties

◮ identifying commonalities, differences, constraints, and conflicts

aspect-oriented programming improves separation of concerns

◮ factorization of cross-cutting concerns by aspect classes

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Specialization without Abandonment of Reusability (cont.)

Principles of PURE/CiAO Operating-System Engineering

minimal subset of system functions ⇐⇒ superclass asset
↓ ↓ ↓

functional enrichment inheritance conditioning

↓ ↓ ↓
minimal system extensions ⇐⇒ subclass specialization

program family OOP AOP

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Family-Based Design
Minimal System Extensions to a Minimal Subset of System Functions

objectification

scheduling

synchronization

propagation

non−preemptive

cooperative

exclusive

coordinative

preemptionpreemptive

in
te

rr
up

tiv
e

interruption

dispatching

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Operating-System Product Line
Scalable Solution in Terms of Memory Footprint and Execution Time (IA-32)

size (in bytes) latency
nucleus instance

text data bss total (in cycles)

exclusive 434 0 0 434 0
interruptive 812 64 392 1268 42
cooperative 1620 0 28 1648 49
non-preemptive 1671 0 28 1699 57
coordinative 1882 8 416 2306 [126, 242]
preemptive 3642 8 428 4062 300

specialized nuclei an ensemble of different operating modes
◮ configuration depends on user-required system properties

◮ in a functional and non-functional sense

◮ application programs get what they want—no more and no less

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. . .

Functional Hierarchy of Thread Abstractions
Layered According to Weight Classes

lightweight thread

↓
featherweight thread

↓
bantamweight thread

↓
flyweight thread

↓
strawweight thread

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. . .

Minimal Subset of System Functions
Strawweight Thread — Use Case

#include "luxe/Act.h"

#define STACKSIZE 64

#define LEEWAY 16

int main (int argc, char *argv[]) {

static Act *son, *dad; // thread pointers

char pool[STACKSIZE]; // spawner provides spawnee stack

son = new(pool, STACKSIZE - LEEWAY) Act; // spawner makes spawnee instance

if ((dad = son->assume())) { // spawner clones, spawnee erupts

for (;;) { // spawnee shares state

something(); // spawnee does its job

dad = dad->resume(); // spawnee yields spawner

}

}

son = son->resume(); // spawner yields spawnee

anything(); // spawner does some other job

}

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. . .

Minimal Subset of System Functions (cont.)

Strawweight Thread — Abstract Data Type

#include "luxe/type/size_t.h"

#include "luxe/machine/pc_t.h"

class Act {

protected:

pc_t tbc; // where to be continued upon resume

public:

void* operator new (size_t, char*, size_t);

// return aligned (stack) pointer as "this"

Act* assume (); // create thread: returns twice (0 spawner, else spawnee)

Act* resume (); // switch thread

};

fundamental threading functions

◮ thread creation and activation “in passing”
◮ sharing of the entire processor state, except stack pointer
◮ supports control-flow switches of different thread weight classes

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. . .

Minimal Subset of System Functions (cont.)

Strawweight Thread — Implementation for IA-32

#include "luxe/Act.h"

Act* Act::assume () {

asm ("movl 4(%esp), %eax"); // read stack pointer of spawnee

asm ("movl (%esp), %edx"); // grab return address of spawner

asm ("movl %edx, (%eax)"); // pass as start address to spawnee

return 0; // indicate return from spawner

}

Act* Act::resume () {

register Act* aux;

asm ("movl %%esp, %0" : "=r" (aux)); // remember stack pointer

asm ("movl 4(%esp), %esp"); // switch stack

return aux; // resume thread, return forerunner

}

idea (use -fomit-frame-pointer, never inline)

◮ hand return address down to some inactive flow of control
◮ provide a function whose sole task is to exchange the stack pointer

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. . .

Minimal System Extensions
Thread Weight Classes and Abstraction of Different Weightily Threads

#include "luxe/machine/ActMode.h"

enum FluxVariety {

// Strawweight = Act,

Flyweight = GPR|OVR|OFP, // save all except volatile and FPU registers

Bantamweight = GPR|OVR, // save all except volatile registers

Featherweight = GPR|BMR, // save all using block move, if applicable

Lightweight = GPR // save all

};

#include "luxe/Act.h"

#include "luxe/machine/FluxVariety.h"

template<FluxVariety T>

class Flux : public Act {

public:

Act* induce (Flux<T>*&); // create thread and inherit processor state

Act* unwind (Act&); // switch thread, performed inline

Act* resume (Act&); // switch thread: maps to unwind()

};

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. . .

Minimal System Extensions (cont.)

Generic Thread Instantiation: “On the Fly” Inheritance of the Processor State

#include "luxe/Flux.h"

#include "luxe/machine/ActState.h"

template<FluxVariety T>

inline Act* Flux<T>::induce (Flux<T>*& scion) {

Act* clade; // spawner thread pointer

if ((clade = assume())) // spawner clones, spawnee erupts

return resume(*clade); // spawnee adopts state, yields spawner

scion = (Flux<T>*)Act::resume(); // spawner yields spawnee

return 0; // spawner indicates its return

}

idea

◮ give new flow of control the chance to inherit some processor state
◮ save ones processor state before giving control back to creator

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. . .

Minimal System Extensions (cont.)

Generic Thread Switching: Self-Contained Save and Restore of the Processor State

#include "luxe/Flux.h"

#include "luxe/machine/ActState.h"

template<FluxVariety T>

inline Act* Flux<T>::unwind (Act& next) {

Act* peer;

if (T & SOS) { // save processor state onto runtime stack...

ActState<T|BMR> *apr; // pointer to saved processor state

apr = ActState<T|BMR>::stack(); // push processor state onto stack

peer = next.resume(); // switch thread

apr->clear(); // pop processor state from stack

} else { // save processor state into buffer variable...

ActState<T|BMR> apr; // save buffer for processor state

apr.cache(); // write processor state into buffer

peer = next.resume(); // switch thread

apr.apply(); // read processor state from buffer

}

return peer; // return forerunner

}

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. . .

Minimal System Extensions (cont.)

Bantamweight Thread — Use Case

#include "luxe/Flux.h"

#define STACKSIZE 256

#define LEEWAY 16

typedef Flux<Bantamweight> Fibre;

int main (int argc, char *argv[]) {

char pool[STACKSIZE]; // spawnee stack space

Fibre *son = new(pool, STACKSIZE - LEEWAY) Fibre; // spawnee thread

Act *dad; // spawner thread

if ((dad = son->induce(son))) { // spawner clones

for (;;) { // spawnee has own state

something(); // spawnee does its job

dad = son->resume(*dad); // spawnee yields

}

}

son = (Fibre*)((Fibre*)dad)->unwind(*son); // spawner yields

anything(); // spawner does its job

}

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. . .

Family of Thread Abstractions
Memory Footprints of Fundamental Thread Switching Functions (IA-32)

weight class static dynamic subtotal total

straw 8+ 7 4+ 4 23

fly 11+ 11 8+ 12 42 65
bantam 11+ 13 8+ 16 48 71
feather 11+ 7 8+ 32 58 81
light 11+ 19 8+ 28 66 89

listed are. . .

◮ static (text, no data in this case) and dynamic (stack) requirements
◮ needs for function call (left term) and function body (right term)

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Final Remarks Resume

From now on it’s all plain sailing. . . ;-)
Functional Hierarchy of an Operating-System Family

layer function concept

10 program management text, data, overlay

9 mass-storage management partition, file, file system

8 process management activity, context, stack

7 memory management segment, page

6 information interchange packet, message, channel, portal

5 device control signal, character, block, stream

4 access protection segment, page, domain, capability

3 resource sharing lock, semaphore, monitor

2 job/task scheduling energy, event, priority, time slice

1 control-flow exchange coroutine, interrupt, continuation

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Final Remarks Resume

A penny saved is a penny got. . .
Operating Systems for Embedded Systems

{BlueCat, HardHat} Linux, Embedix, Windows {CE, NT Embedded}, . . .

◮ not {adaptable, customizable, scalable, small, sparingly} enough

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Final Remarks Resume

A penny saved is a penny got. . .
Operating Systems for Embedded Systems

{BlueCat, HardHat} Linux, Embedix, Windows {CE, NT Embedded}, . . .

◮ not {adaptable, customizable, scalable, small, sparingly} enough

. . . , BOSS, C{51, 166, 251}, CMX RTOS, Contiki, C-Smart/Raven,
eCos, eRTOS, Embos, Ercos, Euros Plus, Hi Ross, Hynet-OS, ITRON,
LynxOS, MicroX/OS-II, Nucleus, OS-9, OSE, OSEK {Flex, Plus, Turbo,
time}, Precise/{MQX, RTCS}, proOSEK, pSOS, PURE, PXROS, QNX,
Realos, RTMOSxx, Real Time Architect, RTA, RTOS-UH, RTXC,
Softune, SOS, SSXS RTOS, ThreadX, TinyOS, VRTX, VxWorks, . . .

◮ over 50 % of OS for the embedded-systems market are proprietary

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Final Remarks Resume

Summary

PURE

◮ highly reusable and yet specialized operating-system assets must
not be a contradiction in terms

◮ key to success: (embedded) operating system as a program family

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Final Remarks Resume

Summary

PURE

◮ highly reusable and yet specialized operating-system assets must
not be a contradiction in terms

◮ key to success: (embedded) operating system as a program family

CiAO extends on PURE by an aspect-aware design
◮ focus is on increasing configurability by means of AOP

◮ especially wrt. architectural and non-functional properties

◮ application of AOP principles from the very beginning
◮ kernel developed in AspectC++

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Final Remarks Resume

wosch Thread Abstraction Layer — TAL

	PURE
	Operating-Systems Engineering

	LUXE
	Digging Deeper…

	Conclusion
	Final Remarks
	Resume

