PURE LUXE Conclusion

Thread Abstraction Layer — TAL
In Memoriam of PURE (%1995 12002)

Wolfgang Schréder-Preikschat

Friedrich-Alexander University Erlangen-Nuremberg
Department of Computer Science 4
(Distributed Systems and Operating Systems)

wwwéd.cs.fau.de

O

wosch Thread Abstraction Layer — TAL

www4.cs.fau.de

PURE LUXE Conclusion Operating-Systems Engineering

Logical Unit Construction Set Experiment
LUCSE > LUXE

PURE de Luxe
> operating-system engineering in the small: carried to an extreme
» playing with capabilities of C/C++ programming systems
» “pluckiness for sacrilege”: an operating system is no end in itself
> a thread: that's no concern of an operating system —almost. . .

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Logical Unit Construction Set Experiment
LUCSE > LUXE

PURE de Luxe
> operating-system engineering in the small: carried to an extreme
» playing with capabilities of C/C++ programming systems
» “pluckiness for sacrilege”: an operating system is no end in itself
> a thread: that's no concern of an operating system —almost. ..
> to apply Occam'’s razor:

» “Entia non sunt multiplicanda praeter necessitatem.”
» “Entities should not be multiplied beyond necessity.”

> “All other things being equal, the simplest solution is the best.”

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Logical Unit Construction Set Experiment
LUCSE > LUXE

PURE de Luxe
> operating-system engineering in the small: carried to an extreme
» playing with capabilities of C/C++ programming systems
» “pluckiness for sacrilege”: an operating system is no end in itself
> a thread: that's no concern of an operating system —almost. ..
> to apply Occam'’s razor:

» “Entia non sunt multiplicanda praeter necessitatem.”
» “Entities should not be multiplied beyond necessity.”

> “All other things being equal, the simplest solution is the best.”
» smooth transition: programming-language < operating-system level

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Specialization without Abandonment of Reusability
Cornerstones of the PURE/CiAO Development Process

PURE
family-based design eases extension and contraction of software

» stepwise functional enrichment of system abstractions
feature-based conditioning ensures an application-aware finishing

» mapping of features to entities of the software generation process

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Specialization without Abandonment of Reusability
Cornerstones of the PURE/CIAO Development Process

PURE
family-based design eases extension and contraction of software

» stepwise functional enrichment of system abstractions
feature-based conditioning ensures an application-aware finishing

» mapping of features to entities of the software generation process

v

CiAO
feature modeling distinguishes common from variable system properties
» identifying commonalities, differences, constraints, and conflicts
aspect-oriented programming improves separation of concerns
» factorization of cross-cutting concerns by aspect classes

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion

Operating-Systems Engineering

Specialization without Abandonment of Reusability (o)
Principles of PURE/CIiAO Operating-System Engineering

minimal subset of system functions

!

functional enrichment

!

minimal system extensions

program family

wosch

<= superclass

!

inheritance

!

<= subclass

asset

!

conditioning

!

specialization

ooP

Thread Abstraction Layer — TAL

AOP

PURE LUXE Conclusion Operating-Systems Engineering

Family-Based Design

Minimal System Extensions to a Minimal Subset of System Functions

preemptive \ preemption \
non—preemptive\ scheduling \
coordinative £
cooperative \ dispatching \ \ propagation \ S‘
g
S
exclusive \objectification \ \synchronization\ \ interruption \

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Operating-Systems Engineering

Operating-System Product Line

Scalable Solution in Terms of Memory Footprint and Execution Time (IA-32)

, size (in bytes) latency

nucleus instance :

text | data | bss | total | (in cycles)
exclusive 434 0 0| 434 0
interruptive 812 64 | 392 | 1268 42
cooperative 1620 0| 28| 1648 49
non-preemptive | 1671 0| 28| 1699 57
coordinative 1882 8 | 416 | 2306 | [126, 242]
preemptive 3642 8 | 428 | 4062 300

specialized nuclei an ensemble of different operating modes
» configuration depends on user-required system properties
> in a functional and non-functional sense

» application programs get what they want—no more and no less

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. ..

Functional Hierarchy of Thread Abstractions
Layered According to Weight Classes

lightweight thread
l

featherweight thread

l

bantamweight thread

l

flyweight thread

l

strawweight thread

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. ..

Minimal Subset of System Functions

Strawweight Thread — Use Case

#include "luxe/Act.h"

#define STACKSIZE 64
#define LEEWAY 16

int main (int argc, char *argv[]) {
static Act *son, *dad;

char pool [STACKSIZE];
son = new(pool, STACKSIZE - LEEWAY) Act;

if ((dad = son->assume())) {
for (5;) {
something() ;
dad = dad->resume();

¥
son = son->resume();
anything();

//
//

thread pointers

spawner
spawner

spawner
spawnee
spawnee
spawnee

spawner
spawner

provides spawnee stack
makes spawnee instance

clones, spawnee erupts
shares state

does its job

yields spawner

yields spawnee
does some other job

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. ..

Minimal Subset of System Functions (con)
Strawweight Thread — Abstract Data Type

#include "luxe/type/size_t.h"
#include "luxe/machine/pc_t.h"

class Act {
protected:
pc_t tbc; // where to be continued upon resume
public:
void* operator new (size_t, char*, size_t);
// return aligned (stack) pointer as "this"

Act* assume (); // create thread: returns twice (0 spawner, else spawnee)
Act* resume (); // switch thread
Is

fundamental threading functions

» thread creation and activation “in passing”
» sharing of the entire processor state, except stack pointer
» supports control-flow switches of different thread weight classes

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. ..

Minimal Subset of System Functions (con)
Strawweight Thread — Implementation for |A-32

#include "luxe/Act.h"

Act* Act::assume () {

asm ("movl 4(%esp), %eax"); // read stack pointer of spawnee
asm ("movl (%esp), %edx"); // grab return address of spawner
asm ("movl %edx, (Yeax)"); // pass as start address to spawnee
return O; // indicate return from spawner

}

Act* Act::resume () {
register Act* aux;

asm ("movl %%esp, %0" : "=r" (aux)); // remember stack pointer
asm ("movl 4(%esp), %esp"); // switch stack
return aux; // resume thread, return forerunner

idea (use -fomit-frame-pointer, never inIine)

» hand return address down to some inactive flow of control
» provide a function whose sole task is to exchange the stack pointer

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion

Minimal System Extensions
Thread Weight Classes and Abstraction of Different Weightily Threads

Digging Deeper. ..

#include "luxe/machine/ActMode.h"

enum FluxVariety {

// Strawweight = Act,
Flyweight = GPR|OVR|OFP,
Bantamweight = GPR|OVR,
Featherweight = GPR|BMR,
Lightweight = GPR

};

#include "luxe/Act.h"

// save
// save
// save
// save

#include "luxe/machine/FluxVariety.h"

template<FluxVariety T>
class Flux : public Act {
public:

Act* induce (Flux<T>*&);

Act* unwind (Act&);

Act* resume (Act&);

78

all except volatile and FPU registers
all except volatile registers

all using block move, if applicable
all

// create thread and inherit processor state
// switch thread, performed inline
// switch thread: maps to unwind()

wosch

Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. ..

Minimal System Extensions (on)

Generic Thread Instantiation: “On the Fly” Inheritance of the Processor State

#include "luxe/Flux.h"
#include "luxe/machine/ActState.h"

template<FluxVariety T>
inline Act* Flux<T>::induce (Flux<T>*& scion) {

Act* clade; // spawner thread pointer
if ((clade = assume())) // spawner clones, spawnee erupts
return resume(*clade) ; // spawnee adopts state, yields spawner

scion = (Flux<T>*)Act::resume(); // spawner yields spawnee
return O; // spawner indicates its return

idea
> give new flow of control the chance to inherit some processor state
> save ones processor state before giving control back to creator

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. ..

Minimal System Extensions (on)

Generic Thread Switching: Self-Contained Save and Restore of the Processor State

#include "luxe/Flux.h"
#include "luxe/machine/ActState.h"

template<FluxVariety T>
inline Act* Flux<T>::unwind (Act& next) {
Act* peer;

if (T & S0S) { // save processor state onto runtime stack...
ActState<T|BMR> *apr; // pointer to saved processor state
apr = ActState<T|BMR>::stack(); // push processor state onto stack
peer = next.resume(); // switch thread
apr->clear() ; // pop processor state from stack

} else { // save processor state into buffer variable...
ActState<T|BMR> apr; // save buffer for processor state
apr.cache(); // write processor state into buffer
peer = next.resume(); // switch thread
apr.apply () ; // read processor state from buffer

return peer; // return forerunner

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Digging Deeper. ..

Minimal System Extensions (on)
Bantamweight Thread — Use Case

#include "luxe/Flux.h"

#define STACKSIZE 256
#define LEEWAY 16

typedef Flux<Bantamweight> Fibre;

int main (int argc, char *argv[]) {
char pool [STACKSIZE];

Fibre *son = new(pool, STACKSIZE - LEEWAY) Fibre;
Act *dad;

if ((dad = son->induce(son))) {
for (;;) {
something() ;
dad = son->resume(*dad) ;

¥
son = (Fibrex) ((Fibrex)dad)->unwind (*son);
anything();

spawnee

spawnee
spawner

spawner
spawnee
spawnee
spawnee

spawner
spawner

wosch Thread Abstraction Layer — TAL

stack space

thread
thread

clones
has own state
does its job
yields

yields
does its job

PURE LUXE Conclusion Digging Deeper. ..

Family of Thread Abstractions

Memory Footprints of Fundamental Thread Switching Functions (I1A-32)

weight class static dynamic subtotal total

straw 8+7 4+4 23

fly 11+11 8+12 42 65

bantam 11+13 8+16 48 71

feather 11+7 8+32 58 81

light 11+19 8+ 28 66 89
listed are. ..

» static (text, no data in this case) and dynamic (stack) requirements
» needs for function call (left term) and function body (right term)

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion

Final Remarks Resume

From now on it’s all plain sailing. . . o)
Functional Hierarchy of an Operating-System Family

layer function concept
10 program management text, data, overlay
9 mass-storage management partition, file, file system
8 process management activity, context, stack
7 memory management segment, page
6 information interchange packet, message, channel, portal
5 device control signal, character, block, stream
4 access protection segment, page, domain, capability
3 resource sharing lock, semaphore, monitor
2 job/task scheduling energy, event, priority, time slice
1 control-flow exchange coroutine, interrupt, continuation

wosch

Thread Abstraction Layer — TAL

PURE LUXE Conclusion Final Remarks Resume

A penny saved is a penny got. ..
Operating Systems for Embedded Systems

{BlueCat, HardHat} Linux, Embedix, Windows {CE, NT Embedded}, ...

» not {adaptable, customizable, scalable, small, sparingly} enough

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Final Remarks Resume

A penny saved is a penny got. ..
Operating Systems for Embedded Systems

{BlueCat, HardHat} Linux, Embedix, Windows {CE, NT Embedded}, ...

» not {adaptable, customizable, scalable, small, sparingly} enough

..., BOSS, C{51, 166, 251}, CMX RTOS, Contiki, C-Smart/Raven,
eCos, eRTQOS, Embos, Ercos, Euros Plus, Hi Ross, Hynet-OS, ITRON,
LynxOS, MicroX/OS-Il, Nucleus, OS-9, OSE, OSEK {Flex, Plus, Turbo,
time}, Precise/{MQX, RTCS}, proOSEK, pSOS, PURE, PXROS, QNX,
Realos, RTMOSxx, Real Time Architect, RTA, RTOS-UH, RTXC,
Softune, SOS, SSXS RTQOS, ThreadX, TinyOS, VRTX, VxWorks, ...

» over 50 % of OS for the embedded-systems market are proprietary

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Final Remarks Resume

Summary

PURE

» highly reusable and yet specialized operating-system assets must
not be a contradiction in terms
> key to success: (embedded) operating system as a program family

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Final Remarks Resume

Summary

PURE
» highly reusable and yet specialized operating-system assets must
not be a contradiction in terms
> key to success: (embedded) operating system as a program family

CiAO extends on PURE by an aspect-aware design
» focus is on increasing configurability by means of AOP
» especially wrt. architectural and non-functional properties
» application of AOP principles from the very beginning
» kernel developed in AspectC++

wosch Thread Abstraction Layer — TAL

PURE LUXE Conclusion Final Remarks Resume

wosch Thread Abstraction Layer — TAL

	PURE
	Operating-Systems Engineering

	LUXE
	Digging Deeper…

	Conclusion
	Final Remarks
	Resume

