Verlässliche Echtzeitsysteme

Abstrakte Interpretation

Peter Ulbrich

Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl Informatik 4 (Verteilte Systeme und Betriebssysteme) www4.informatik.uni-erlangen.de

30. Juni 2014

Gliederung

- 1 Überblick
- 2 Problemstellung
- 3 Sammelsemantiken
- 4 Präfixsemantiken
- 5 Mathematische Grundlagen
- 6 Zusammenfassung

Fragestellungen

- Warum ist es so schwierig Korrektheitsaussagen zu formulieren?
 - auch wenn nur eine bestimmten Programmeigenschaft relevant ist
 - → Wie hilft uns "Abstrakte Interpretation" bei diesem Problem?
- Was sind die mathematischen Grundlagen abstrakter Interpretation?
 - eine "informelle" Sichtweise auf die Zusammenhänge
- Ziel: grobes Verständnis abstrakter Interpretation entwickeln!

) fs, pu (FAU/INF4) Verlässliche Echtzeitsysteme (SS 2014) – Kapitel X Abstrakte Interpretation

2/34

Wiederholung: Was kann hier alles schief gehen?

Die Gretchenfrage der Softwareentwicklung ...

```
unsigned int average(unsigned int *array,
unsigned int size)

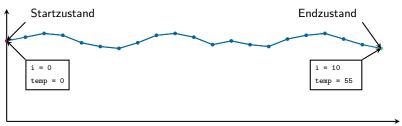
{
unsigned int temp = 0;

for(unsigned int i = 0;i < size;i++) {
   temp += array[i];
}

return temp/size;
}</pre>
```

- Wo könnte es hier klemmen?
 - Ist der Zugriff auf Feld array in Zeile 7 korrekt?
 - Kann die Addition in Zeile 7 überlaufen?
 - Kann in Zeile 10 eine Division durch 0 auftreten?
- Wie findet man das heraus?
- Schauen wir mal, wie sich das Programm verhält.

Das Verhalten zur Laufzeit ist entscheidend!



res = average([1,2,...,10],10);

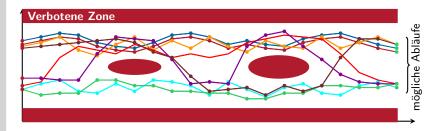
unsigned int average(uint *array, uint size)	i	temp
<pre> { uint temp = 0;</pre>	0	0
for(uint i = 0;i < size;i++) {	1	1
temp += array[i];	2	3
, , , ,	3	6
<pre>return temp/size; }</pre>		
	10	55

11

 \odot fs, pu (FAU/INF4) Verlässliche Echtzeitsysteme (SS 2014) – Kapitel X Abstrakte Interpretation 2 Problemstellung

5/34

Sicherheitseigenschaft

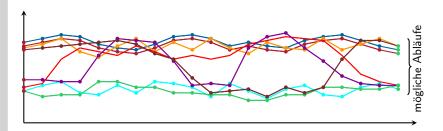


- Sicherheitseigenschaften (engl. safety properties) stellen sicher, dass keine fehlerhaften Zustände eingenommen werden
- ein Sicherheitsnachweis (engl. safety proof) garantiert, dass die konkrete Semantik nie eine verbotene Zone durchläuft
 das ist ein unentscheidbares Problem
 - die konkrete Programmsemantik ist nicht berechenbar

O

Konkrete Programmsemantik

Eine informelle Einführung in die Prinzipien abstrakter Interpretation [1]

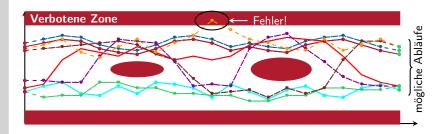


- die konkrete Semantik (engl. concrete semantics) beschreibt
 - alle möglichen Ausführungen eines Programms
 - unter allen möglichen Ausführungsbedingungen
 - Für unser Beispiel bedeutet dies:
 - 2³² verschieden große Felder, 2³² verschiedene Werte für jedes Element
- sie beschreibt ein "unendliches" mathematisches Objekt
 - im Allgemeinen nicht berechenbar durch einen Algorithmus
 - alle nicht-trivialen Fragestellungen sind nicht entscheidbar

) fs, pu (FAU/INF4) Verlässliche Echtzeitsysteme (SS 2014) – Kapitel X Abstrakte Interpretation 2 Problemstellung

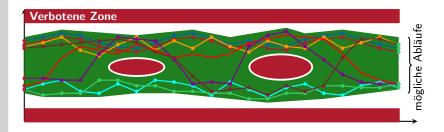
6/34

Testen: Das Problem der Möglichkeiten



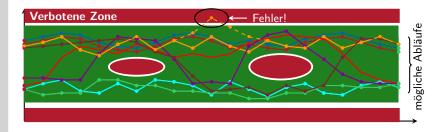
- Testen betrachtet nur eine Teilmenge aller möglichen Ausführungen
 - → gut geeignet, um die Existenz von Defekten zu zeigen
 - → ungeeignet, um ihre Abwesenheit zu zeigen
 - evtl. hat man die fehlerhafte Ausführung einfach nicht getestet
- Problem: unzureichende Abdeckung der konkreten Semantik

Abstrakte Interpretation



- Abstrakte Interpretation (engl. abstract interpretation)
 - betrachtet eine abstrakte Semantik (engl. abstract semantics)
 - sie umfasst alle Fälle der konkreten Programmsemantik
 - ist die abstrakte Semantik sicher ⇒ konkrete Semantik ist sicher

Eigenschaften abstrakter Semantiken



Vollständigkeit und Korrektheit

- keine potentieller Defekt darf übersehen werden
- → nur so kann die Abwesenheit von Defekten gezeigt werden
 - ansonsten wäre gegenüber reinem Testen nichts gewonnen

Formale Methoden sind abstrakte Interpretationen

Die abstrakte Semantik wird aber auf unterschiedliche Weise bestimmt

Model Checking

- abstrakte Semantik wird explizit vom Nutzer angegeben
- → endliche Beschreibung der konkreten Programmsemantik
 - z.B. endliche Automaten, Aussagen- oder Prädikatenlogik
- automatische Ableitung durch statische Analyse

Deduktive Methoden

- abstrakte Semantik wird durch Nachbedingungen beschrieben
- Nutzer gibt sie durch induktive Argumente an
 - z.B. Vorbedingungen und Invarianten
- automatische Ableitung durch statische Analyse

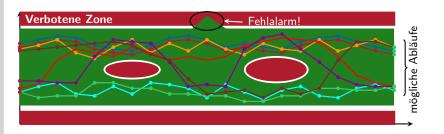
Statische Analyse

- abstrakte Semantik wird ausgehend vom Quelltext bestimmt
 - Abbildung auf vorab bestimmte, wohldefinierte Abstraktionen
- Anpassungen (automatisch/durch den Nutzer) sind möglich

Verlässliche Echtzeitsysteme (SS 2014) - Kapitel X Abstrakte Interpretation 2 Problemstellung

10/34

Eigenschaften abstrakter Semantiken



Präzision

- weitgehende Vermeidung von Fehlalarmen (engl. false alarms)
 - synonyme englische Bezeichnung: false positives
- ermöglicht erst eine vollkommen automatisierte Anwendung

Eigenschaften abstrakter Semantiken

geringe Komplexität

- Berechnung der abstrakten Semantik in akzeptabler Laufzeit
 - Vermeidung der kombinatorischen Explosion des Zustandsraums

© fs, pu (FAU/INF4)

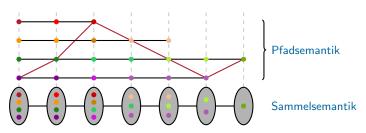
Gliederung

- 1 Überblick
- 2 Problemstellung
- 3 Sammelsemantiken
- 4 Präfixsemantiken
- 5 Mathematische Grundlagen
- 6 Zusammenfassung

Reduktion des Zustandsraums ist unumgänglich!

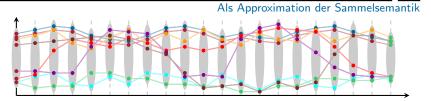
- Fasse verschiedene Zustände geeignet zusammen
 - → Sammelsemantiken (s. Folie X/14 ff.)
- Betrachte nur den Anfang der Zustandshistorie
 - → Präfixsemantiken (s. Folie X/22 ff.)

Sammelsemantik (engl. collecting semantics)



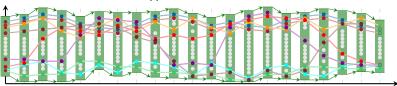
- sammelt die Zustände aller Pfade an einem bestimmten Punkt
 - d.h. an einer bestimmten Programmanweisung
 - aufgrund der Größe, wird sie i. d. R. approximiert
- das ist eine verlustbehaftete Abstraktion
 - Beispiel: Existiert der rote Pfad?
 - konkrete Semantik → Nein, Sammelsemantik → ???
- Der Laufzeitgewinn wird durch Unschärfe erkauft!
 - das Ergebnis "Weiß nicht …" ist typisch für solche Methoden
 - und die Ursache vieler Vorbehalte . . .

Intervallabstraktion



- die Sammelsemantik verwaltet Zustandsmengen die Intervallabstraktion nur ihre oberen und unteren Schranken
 - die zu verwaltenden Daten werden dadurch beträchtliche reduziert
 - allerdings wird auch die Präzision reduziert

→ bestimmte Zustände im appromixierten Zustandsraum werden nicht erreicht

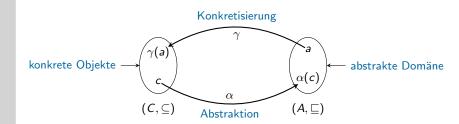


Verlässliche Echtzeitsysteme (SS 2014) - Kapitel X Abstrakte Interpretation

Theoretisches Fundament → Abstrakte Interpretation

- Approximation von f durch die abstrakte Funktion f'
- häufig verwendet man Galoiseinbettungen
 - diese sind Galoisverbindungen $(C,\subseteq) \stackrel{\gamma}{\longleftrightarrow} (A,\sqsubseteq)$
 - mit der Eigenschaft $\alpha(\gamma(a)) = a$
 - Konkretisierung gefolgt von Abstraktion impliziert keinen Präzisionsverlust
- Abstrakte Interpretation nutzt diese Eigenschaften
 - statt die konkrete Funktion f(c) zu berechnen
 - kann man sie annähern, indem
 - man die abstrakte Funktion f' auf die Abstraktion $\alpha(c)$ anwendet
 - und das Ergebnis $f'(\alpha(c))$ wieder konkretisiert

Theoretisches Fundament → Galoisverbindungen



- wähle eine abstrakte Domäne (engl. abstract domain)
 - ersetzt die Menge konkreter Objekte S durch ihre Abstraktion $\alpha(S)$
 - verschiedene Domänen unterscheiden sich hinsichtlich ihrer Präzision
 - Vorzeichen, Intervalle, Oktagon, Polyhedra, ...
- \blacksquare Abstraktionsfunktion α (engl. abstraction function)
 - bildet die Menge konkrete Objekte auf ihre abstrakte Interpretation ab
- Konkretisierungsfunktion γ (engl. concretization function)
 - bildet die Menge abstrakter Objekte auf konkrete Objekte ab

16/34

Beispiel: Intervallabstraktion für ein C-Programm

```
Die Intervallabstraktion liefert:
unsigned short x = 1;
                                 Zeile 1 x_1 = [1, 1]
while(x < 10000) {
                                 Zeile 3 x_3 = (x_1 \cup x_4) \cap [-\infty, 9999]
                                 Zeile 4 x_4 = x_3 \oplus [1, 1]
return x;
                                 Zeile 7 x_7 = (x_1 \cup x_5) \cap [10000, \infty]
```

- die Intervallabstraktion ist eine manuell vorgegebene, abstrakte Interpretation der Semantik der Programmiersprache C
 - C-Programme werden dann automatisiert darauf abgebildet
 - z. B. durch einen Übersetzer oder ein statisches Analysewerkzeug
 - nur Elemente, die den Wertebereich von x betreffen, sind relevant
- dies ist bereits eine starke Vereinfachung
 - angenommen x wäre eingangs nicht bekannt
 - → es gäbe 10000 verschiedene Pfade durch den Zustandsraum
 - nehme eine Schleifenobergrenze unsigned short y statt 10000 an \rightarrow es gäbe $\leq (2^{16})^2$ verschiedene Pfade durch den Zustandsraum

Beispiel: Intervallabstraktion für ein C-Programm (Forts.)

2	<pre>unsigned short x = 1; while(x < 10000) { x = x + 1; }</pre>	Die Intervallabstraktion liefert:
		Zeile 1 $x_1 = [1, 1]$
		Zeile 3 $x_3 = (x_1 \cup x_4) \cap [-\infty, 9999]$
	return x;	Zeile 4 $x_4 = x_3 \oplus [1, 1]$
		Zeile 7 $x_7 = (x_1 \cup x_4) \cap [10000, \infty]$

Approximation durch chaotische Iteration (engl. chaotic iteration)

Iteration 1:	Iteration 2:
Zeile 1 $x_1 = [1, 1]$	Zeile 1 $x_1 = [1, 1]$
Zeile 3 $x_4 = [1, 1]$	Zeile 3 $x_4 = [1, 2]$
Zeile 4 $x_4 = [2, 2]$	Zeile 4 $x_4 = [2, 3]$
Zeile 7 $x_7 = \emptyset$	Zeile 7 $x_7 = \emptyset$

© fs, pu (FAU/INF4) Verlässliche Echtzeitsysteme (SS 2014) – Kapitel X Abstrakte Interpretation

19/34

Gliederung

- 1 Überblick
- 2 Problemstellung
- 3 Sammelsemantiken
- 4 Präfixsemantiken
- 5 Mathematische Grundlagen
- 6 Zusammenfassung

O

```
Die Intervallabstraktion liefert:

| Variable | Variab
```

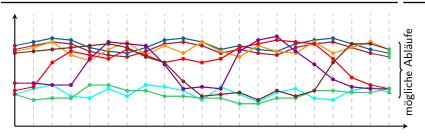
Approximation durch chaotische Iteration (engl. chaotic iteration)

Iteration 3:	viele, viele Iterationen später:
Zeile 1 $x_1 = [1, 1]$	Zeile 1 $x_1 = [1, 1]$
Zeile 3 $x_3 = [1, 3]$	Zeile 3 $x_3 = [1,9999]$
Zeile 4 $x_4 = [2, 4]$	Zeile 4 $x_4 = [2, 10000]$
Zeile 7 $x_7 = \emptyset$	Zeile 7 $x_7 = [10000, 10000]$

s, pu (FAU/INF4) Verlässliche Echtzeitsysteme (SS 2014) – Kapitel X Abstrakte Interpretation

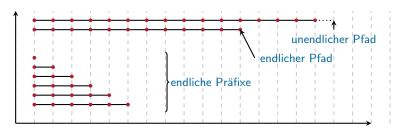
20/34

Pfadsemantik



- betrachte durch ein Transitionssystem beschriebene Programmpfade
 - Ausgehend von ausgezeichneten Startzuständen,
 - beschreiben sie eine (unendliche) Abfolge von Programmzuständen,
 - deren Reihenfolge durch die Übergangsrelation bestimmt wird.
 - → die Gesamtheit dieser Programmpfade heißt Pfadsemantik
 - Wie die konkrete Programmsemantik ist sie nicht berechenbar.
- Reduktion der Komplexität durch Abstraktion
 - lacktriangle unendliche Pfade \leadsto (endliche) Pfadpräfixe

Pfadpräfixe



- Pfadsemantiken enthalten alle endlichen und unendlichen Pfade
 - Pfadpräfixe enthalten nur die Anfänge dieser Pfade
- das ist eine verlustbehaftete Abstraktion
 - Beispiel: betrachte Worte der Sprache aⁿ b
 - Frage: Gibt es Worte mit unendlich vielen aufeinanderfolgenden 'a'?
 - Pfadsemantik: $\{a^n b | n > 0\} \mapsto \text{Nein}$
 - Pfadpräfixe: $\{a^n | n > 0\} \cup \{a^n b | n > 0\} \mapsto ???$

Verlässliche Echtzeitsysteme (SS 2014) - Kapitel X Abstrakte Interpretation

Gliederung

- 1 Überblick
- 2 Problemstellung
- 3 Sammelsemantiken
- 4 Präfixsemantiken
- 5 Mathematische Grundlagen
- 6 Zusammenfassung

Menge der Präfixe ist rekursiv:

$$\begin{aligned} \mathsf{Pr\ddot{a}fixe} &= \{x | x \text{ ist Startzustand}\} \, \cup \\ & \{x_1 \to^* x_2 \to x_3 | x_1 \to^* x_2 \in \mathsf{Pr\ddot{a}fixe} \, \land \, x_2 \to x_3 \in \to \} \end{aligned}$$

- **z**u lösen ist die Fixpunktiteration Präfixe = F(Präfixe)
 - üblicherweise besitzt diese Gleichung mehrere Lösungen
 - → ordne die Lösungen nach der Teilmengenbeziehung ⊆
 - → wähle die kleinste Teilmenge als Lösung
 - → least fixpoint prefix trace semantics
- Vereinfachungen ermöglichen effektive, iterative Analysealgorithmen
 - Vereinfachung im Sinne von Abstraktion bzw. Approximation
 - → man muss nur noch die Präfixe betrachten
 - nicht mehr die vollständigen (evtl. unendlichen) Pfade

Warum funktioniert das eigentlich ...?

- Wann ist eine Abstraktion korrekt?
 - \sim OK! → Wenn sie durch eine Galoisverbindung beschrieben wird!
- Fixpunkte ... wer sagt, dass die Iteration überhaupt konvergiert?
 - → Aufsteigende Kettenbedingung! ~ ???
- Das waren ziemlich viele Iterationen ... geht das auch schneller?
 - → Widening-/Narrowing-Operatoren helfen! ~ ???
- Jetzt: Grundlegende mathematische Zusammenhänge erfassen!
 - Was ist das und was hat es mit abstrakter Interpretation zu tun?
 - Nicht: Warum ist das korrekt?
 - keine Beweisführung ...

Partiell geordnete Mengen

Konkrete und abstrakte Domänen sind partiell geordnete Mengen!

Partiell geordnete Mengen (engl. partially ordered sets)

Eine partiell geordnete Menge ist ein Tupel (S, \sqsubseteq) :

- *S* ist eine Menge,
- $\sqsubseteq \subseteq S \times S$ ist eine Ordnungsrelation mit folgenden Eigenschaften:

reflexiv $\forall x \in S : x \sqsubseteq x$

antisymmetrisch $\forall x, y \in S : x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$ transitiv $\forall x, y, z \in S : x \sqsubseteq y \land y \sqsubseteq z \Rightarrow x \sqsubseteq z$

- Beispiele:
 - (\mathbb{N}, \leq) ist ein partiell geordnete Menge
 - $(\mathcal{P}(S),\subseteq)$ ist ein partiell geordnete Menge

© fs, pu (FAU/INF4) Verlässliche Echtzeitsysteme (SS 2014) – Kapitel X Abstrakte Interpretation
5 Mathematische Grundlagen

27/3

Verbände

Vollständiger Verband (engl. complete lattice)

Ein vollständiger Verband ist eine partiell geordnete Menge $(S,\sqsubseteq,\bot,\top,\sqcup,\sqcap)$ mit folgenden Eigenschaften:

- (S, \sqsubseteq) ist eine partiell geordnete Menge
- für jede Teilmenge $P \subseteq S$ existiert eine
 - eine kleinste obere Schranke $\Box P$ und
 - eine größte untere Schranke $\Box P$
- $\bot = \sqcap S$ heißt Infimum von S
- $\top = \sqcup S$ heißt Supremum von S
- Beispiele:
 - $(\mathcal{P}(S), \subseteq, \emptyset, S, \cup, \cap)$ ist ein vollständiger Verband
 - $\blacksquare \ (\mathbb{Z} \cup \{-\infty, +\infty\} \,, \leq, -\infty, +\infty, \max, \min) \text{ ist ein vollständiger Verband}$
 - die Menge der ganzen Zahlen erweitert um $-\infty$ und $+\infty$

Obere und untere Schranken

■ Sei (S, \sqsubseteq) eine partiell geordnete Menge

Obere Schranke (engl. upper bound)

 $x \in S$ eine obere Schranke von $P \subseteq S \Leftrightarrow y \in P : y \sqsubseteq x$

analog: untere Schranke (engl. lower bound)

Kleinste obere Schranke (engl. least upper bound)

 $x \in S$ ist eine kleinste obere Schranke von $P \subseteq S \Leftrightarrow$

- x ist eine obere Schranke von P und
- x ist kleiner als alle oberen Schranken von P:

$$\forall y \in S : (\forall z \in P : z \sqsubseteq y) \Rightarrow x \sqsubseteq y$$

analog: größte untere Schranke (engl. greatest lower bound)

(FAU/INF4) Verlässliche Echtzeitsysteme (SS 2014) – Kapitel X Abstrakte Interpretation 5 Mathematische Grundlagen

28/34

Terminierung der Fixpunktiteration

- Möglichkeit 1: aufsteigende Kettenbedingung ist erfüllt
 - ightsquigarrow aufsteigende Ketten sind endlich
 - → Fixpunktiteration terminiert
- Möglichkeit 2: aufsteigende Kettenbedingung ist nicht erfüllt
 - → Terminierung kann durch einen Widening-Operator erzwungen werden

Widening-Operator

Sei V ein Verband, ein Widening-Operator $\nabla: V \times V \mapsto V$ ist eine Abbildung für die gilt:

$$\forall x,y \in V : x \sqsubseteq x \nabla y \wedge y \sqsubseteq x \nabla y$$

- sicher Abschätzung der Elemente x und y nach oben durch $x \triangledown y$
- ermöglicht auch eine Beschleunigung der Fixpunktiteration
 - Widening-Operator $\triangledown \approx$ Bestimmung der kleinsten oberen Schranke
- in vollständigen Verbänden mit aufsteigender Kettenbedingung

Beispiel: Intervallabstraktion - nun mit Widening

Die Intervallabstraktion liefert: unsigned short x = 1; Zeile 1 $x_1 = [1, 1]$ while (x < 10000) { x = x + 1;Zeile 3 $x_3 = (x_1 \nabla x_4) \cap [-\infty, 9999]$ Zeile 4 $x_4 = x_3 \oplus [1, 1]$ return x; Zeile 7 $x_7 = (x_1 \nabla x_4) \cap [10000, \infty]$

Approximation mit Hilfe des Widening-Operators

Iteration 1:	Iteration 2:
Zeile 1 $x_1 = [1, 1]$	Zeile 1 $x_1 = [1, 1]$
Zeile 3 $x_3 = [1, 1]$	Zeile 3 $x_3 = [1,9999]$
Zeile 4 $x_4 = [2, 2]$	Zeile 4 $x_4 = [2, 10000]$
Zeile 7 $x_7 = \emptyset$	Zeile 7 $x_7 = [10000, 10000]$

Konvergenz in der 2. Iteration

Zusammenfassung

Konkrete Programmsemantik ist nicht berechenbar

- Approximation durch eine abstrakte Semantik
 - Korrektheit der Approximation ist entscheidend
 - nur so kann man einen Sicherheitsnachweis führen
 - die Approximation muss präzise sein
 - nur so kann man Fehlalarme vermeiden
 - die Approximation darf nicht zu komplex sein
 - nur so kann sie effizient berechnet werden

Transitionssystem beschreiben Programme

- Pfadsemantiken beschreiben die konkrete Programmsemantik
- Approximation durch Pfadpräfixe und Sammelsemantik
 - → abstrakte Interpretation approximiert die Sammelsemantik

Mathematische Grundlagen abstrakter Interpretation

- (vollständig) partiell geordnete Mengen, Verbände
- Galoiseinbettungen, lokale konsistente Funktionen, Widening
- Intervallabstraktion

Gliederung

- 1 Überblick
- 2 Problemstellung
- 3 Sammelsemantiken
- 4 Präfixsemantiken
- 5 Mathematische Grundlagen
- 6 Zusammenfassung

Literaturverzeichnis

[1] Cousot, P.: Abstract Interpretation. http://web.mit.edu/16.399/www/, 2005

