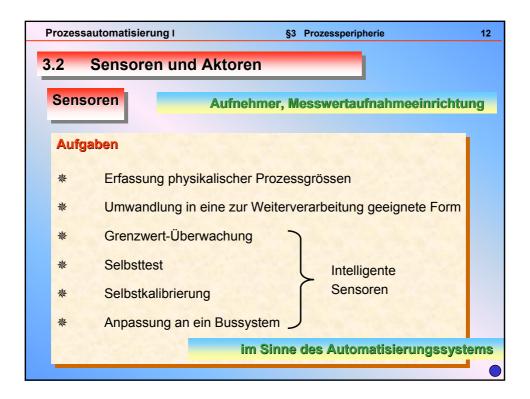
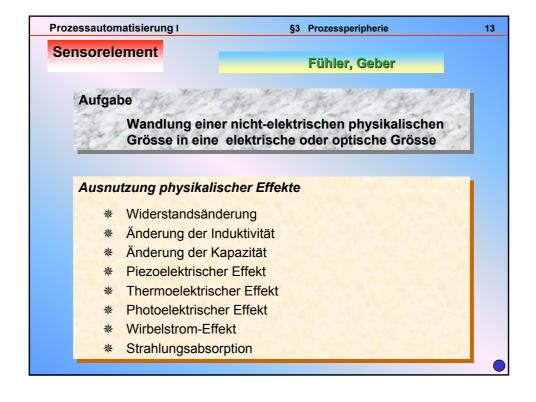
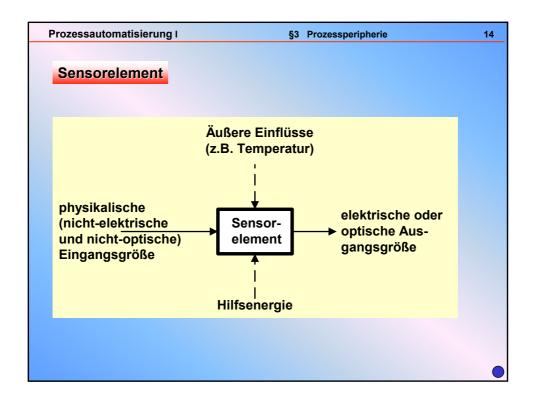
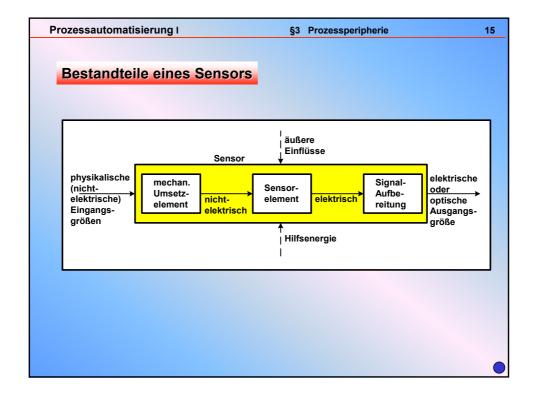
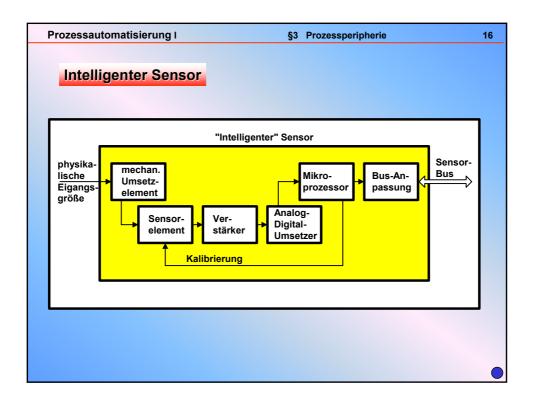

Pro	zessautomatisierung I §3 Prozessperipherie 4	
	Möglichkeiten für die Verbindung der Sensoren und Aktoren mit dem Automatisierungs-Computersystem	
	* Anschluss über Leitungsbündel	
	Konventionelle Art	
	* Anschluss über Bus-Ankoppel-Module (E/A-Knoten)	
	Verwendung von Feldbuskoppler	
	* Anschluss über Sensor/Aktor Bus-System	
	Modernste Form: Verwendung intelligenter Sensoren und Aktore	n

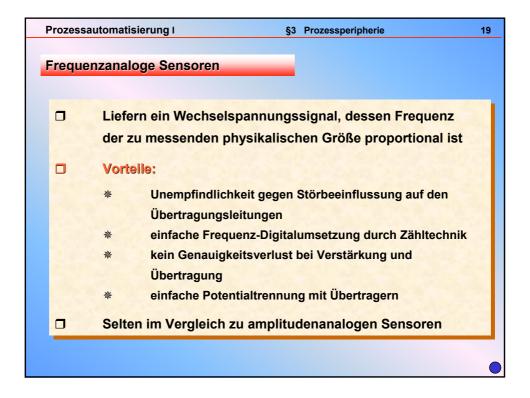


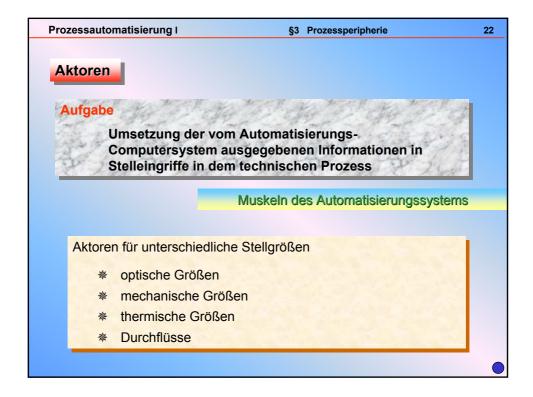


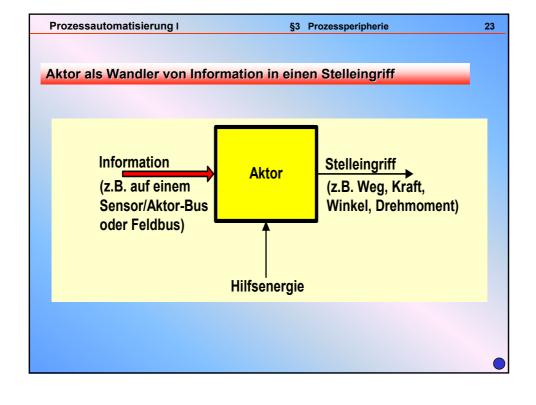


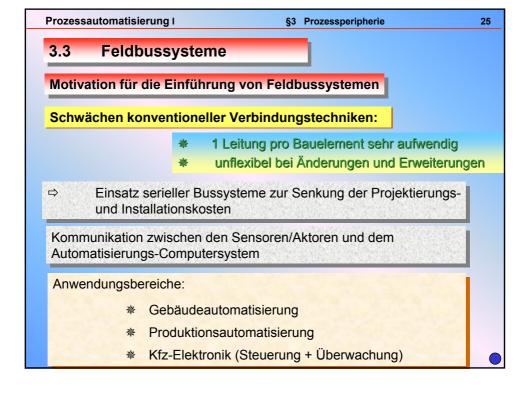

Prozessautor	natisierung I	§3 Prozessp	peripherie 1	0
	Eigenschaft	Spezifikation	Bemerkungen	
VME-	Architektur	Master/Slave		
Bus-	Übertragungsart	asynchron,non-	keine zentrale Synchronisa-	
Eigon		multiplexed,	tionsuhr	
Eigen-	Advance	opt. multiplexed	A december 1	
schaften	Adressraum	16-bit (short I/O) 24-bit (standard)	Adressraum kann dynamisch selektiert werden	
		32-bit (extended) 64-bit (long)		
	Datenbreite	8, 16, 24, 32 oder 64 bit	Datenbreite kann dynamisch selektiert werden	
	unaligned data trans- fers	ja	kompatibel mit den meisten Mikroprozessoren	
	Fehlererkennung	ja		
	Datentransferrate	0-40 Mbyte/sec 0-80 Mbyte/sec 0-160Mbyte/sec 0-320 Mbyte/sec (VME320)		
	Interrupts	7 Ebenen	Prioritäts-Interruptsystem	
	Multiprozessorfähig- keit	1-21 Prozessoren	flexible Busarbitrierung	
	Systemdiagnosefähig- keiten	ja		
	mechanischer Stan- dard	'Single Height', 3U 'Double Height', 6U	160x100mm Europakarte 160x233mm Europakarte DIN 603-2 Steckverbinder	
	Internationale Stan- dards	ja	IEC 821, IEEE 1101, IEEE 1014	



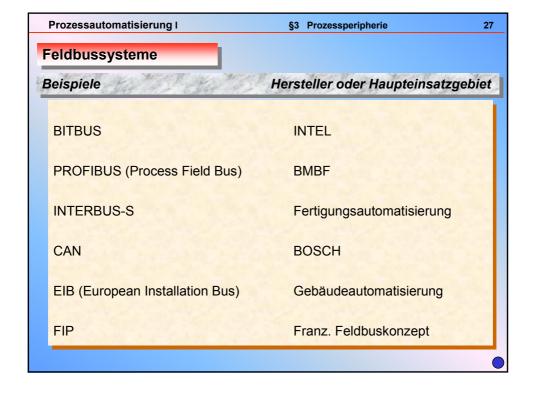


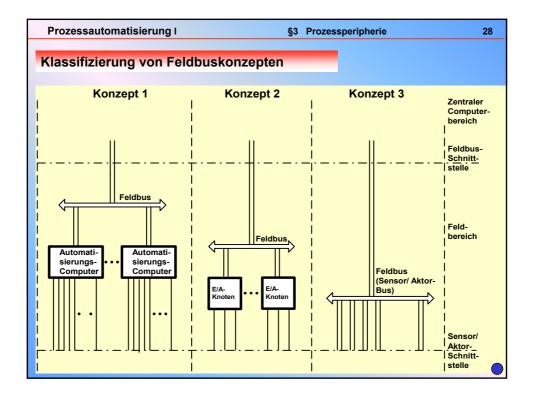


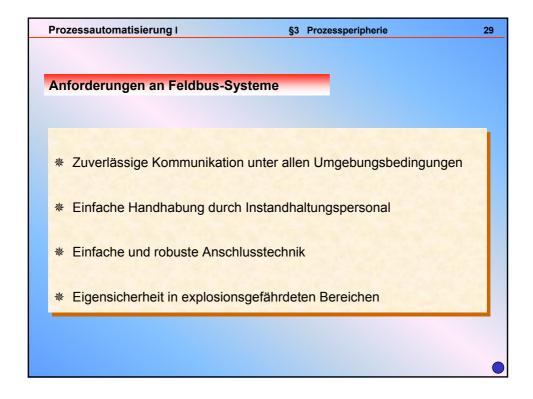

Ampi	itudenanaloge Sensoren
	Umformung einer nichtelektrischen Messgröße in ein amplituden-analoges Ausgangssignal, d.h. Amplitude des elektrischen Ausgangssignals ist proportional der zu messenden physikalischen Größe
	Oft mit Umformerstufe im selben Gehäuse
	* Verstärkung
	* Normierung
	* Linearisierung
	* Temperaturkompensation
П	Für alle wichtigen Messgrößen verfügbar

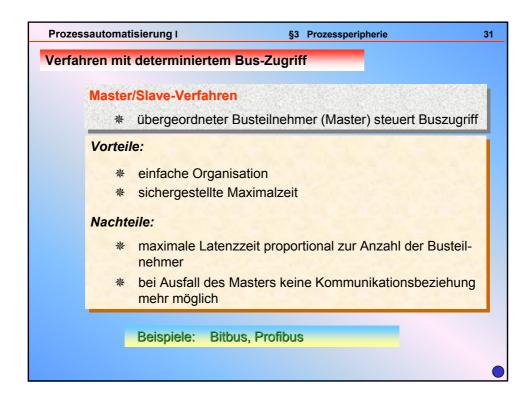

F	rozessa	utomatis	ierung I §3 Prozessperipherie	20
	Digitale	Senso	oren en e	
		Umwandlung der nichtelektrischen Messgröße in ein digitales Ausgangssignal		
		Umse	tzarten	
		盎	direkte Umsetzung	
			Umwandlung des nichtelektrischen Signals mittels Codeschei (Drehbewegung) oder Codelineal (Linearbewegung) in ein digitales Signal	be
		器	indirekte Umsetzung	
			Umwandlung des nichtelektrischen Signals in amplituden-	
			analoges Signal, dann Analog-Digital-Wandlung	
	Binäre	Senso	ren	
		JA/ N	Nein-Information	
		Gren	nzwertgeber/Schwellwertgeber	
		Beis	piel: Endschalter, berührungslos arbeitende Gabellichtschranke	

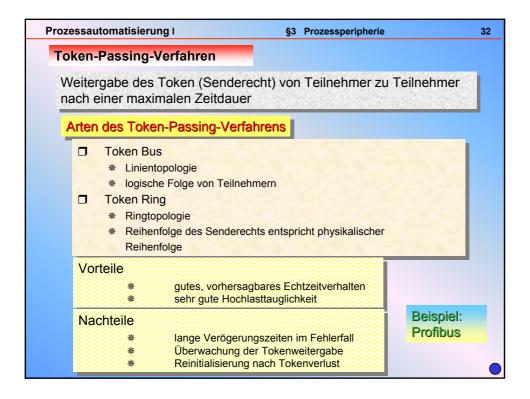
	Physikalische Prozessgröße	Sensorelement	Ausgangsgröße	
Arten von	Temperatur	Thermoelement Metallische Widerstände	mV	
Sensor-		Halbleiter-Widerstände	Widerstandsänderung Widerstandsänderung	
lementen		(Heißleiter)	Widerstandsanderding	
		Keramik-Widerstände (Kaltleiter)	Widerstandsänderung	
	Druck	Druckdose mit Membran und Dehnungsmessstreifen Druckdose mit Silizium- Membran (piezoresistiver Effekt)	Widerstandsänderung Widerstandsänderung	
	Kraft	Dehnungsmessstreifen Induktiver Kraftmessfühler Piezoelektr. Fühler	Widerstandsänderung Induktivitätsänderung Ladung	
	Drehzahl	Tachogenerator Impulszählung	V Impulsfolge	
	Beschleunigung	Silizium-Piezowiderstand Silizium-Kondensator	Widerstandsänderung Kapazitätsänderung	
	Durchfluss	Ringkolbenzähler Induktive Durchflussmesser	Impulsfolge mV	
	Annäherung	Hallelement aus Silizium	mV	
	Winkel	Winkelkodierer Impulsgeber	Digitalwert Impulsfolge	
	Feuchte	Lithiumchlorid- Feuchtefühler	mV	
	Lichtintensität	Photodiode Photowiderstand	μA Widerstandsänderung	

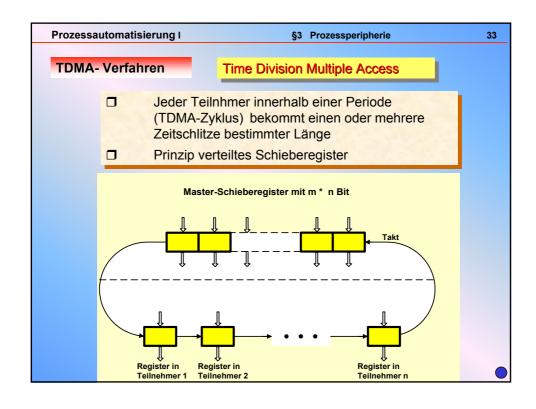


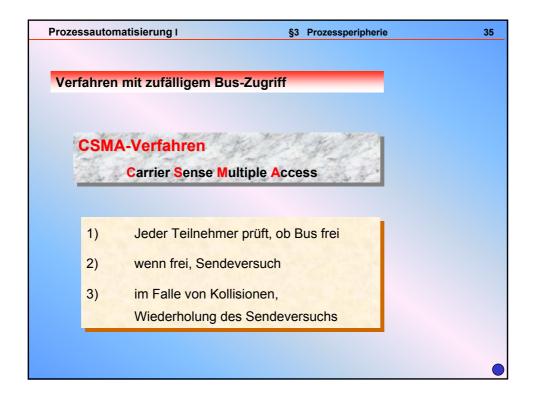


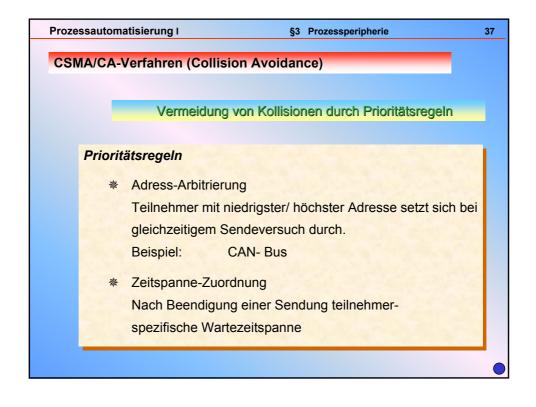

Prozessautomatis	ierung I §3	Prozessperipherie 2	24
Aktoren mit	Aktorprinzip	Aktoren	
mechanischer Ausgangsgröße	Elektromechanische Bewegung	Elektromotor, Schrittmotor, Elektromagnet, Linearmotor	
	Hydraulischer Stellzylinder	Hydraulische Aktoren	
	Pneumatischer Stellzylinder	Pneumatische Aktoren	
	Piezoelektrischer Effekt	Piezoelektrische Aktoren, Elektrostriktive Aktoren	
	Magnetostriktiver Effekt	Magnetostriktive Aktoren	
	Elektrorheologischer Effekt	Elektrorheologische Aktoren	
	Magnetorheologischer Effekt	Magnetorheologische Aktoren	
	elektrisch erzeugter Gasdruck	Chemische Aktoren	
	Bimetall-Effekt	Thermo-Bimetall-Aktoren	
	Memory-Metalle	Memory-Metall-Aktoren	
	Silizium-Mikrotechnik	Mikromechanische Aktoren	

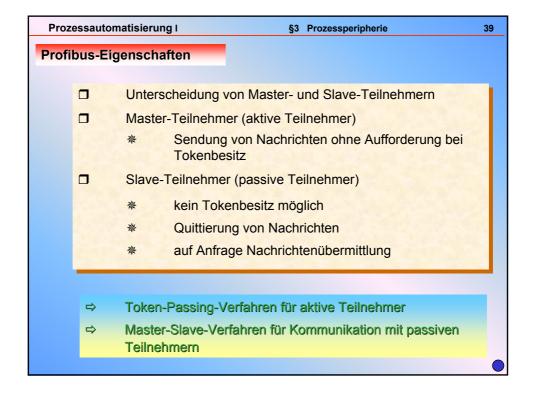

Prozessautomatisierung I	§3 Prozessperipherie 26
Terminologie	
Feldbereich:	Jener Teil des Automatisierungssystems welcher in räumlicher Nähe oder direkter Verbindung zum technischen Prozess steht
Feldgeräte:	Mess-, Schalt- und Stellgeräte, Regeleinrichtunger und Bediengeräte, die direkt mit dem technischen Prozess in Interaktion treten
Feldbussysteme:	Serielle Datenkommunikationssysteme für den Datenaustausch im Feldbereich. Hier besonders Anforderungen an die Sicherheit der Datenüber- tragung: Datenintegrität, EMV-Resistenz

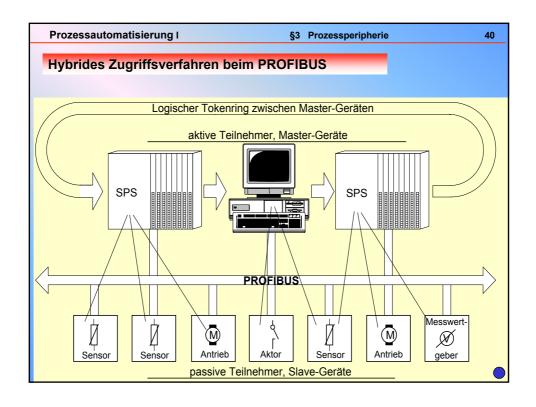


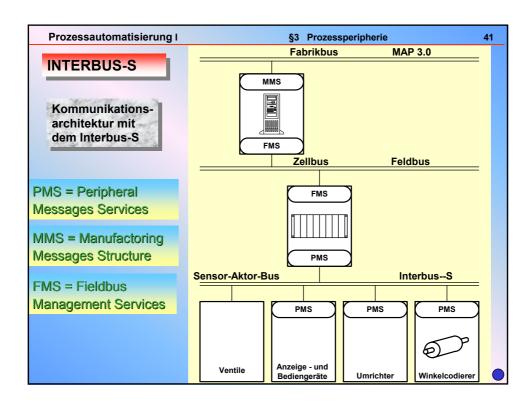


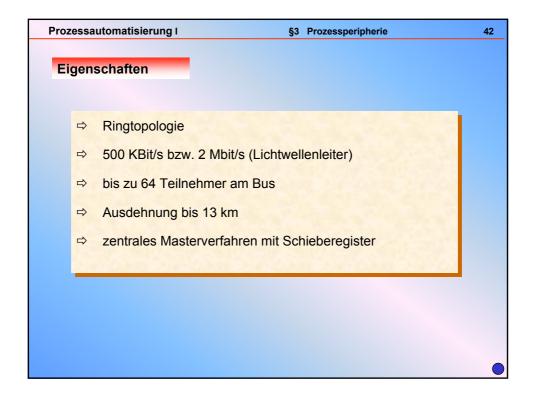

Prozess	sautomatisi	erung I §3 Prozessperipherie	
Bus-	Zugriffsv	verfahren	
D 1980	SERVICE LINES	Mark W. Mark Ward W. Mark Ward W. Mark W.	
Reg	eln für da	s Senden von Nachrichten	
Arter	ı von Zug	griffsverfahren	
	Determi	nistischer Buszugriff	
	器	festgelegtes Verfahren für Sendeberechtigung	
	*	Antwortzeitverhalten vorhersagbar	
0	Zufällig	er Buszugriff	
	杂	permanentes Mithören	
7.4	盎	ereignisgesteuerte Kommunikation	
2.5	盎	niedrige mittlere Busbelastung	
	米	Antwortzeitverhalten nicht vorhersagbar	

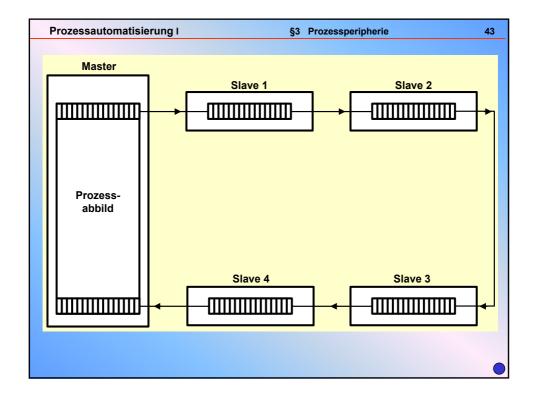


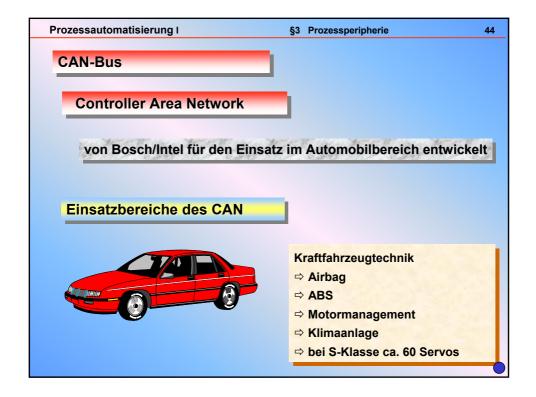

Pro	zessauto	matisierung I §3 Prozessperipherie	34
	Vortei	ile	
	盎	kurze, konstante Zykluszeit	
	盎	geringer Protokoll Overhead	
	Nacht	teile	
	*	zeitliche Synchronisierung der Teilnehmer notwendig	
	*	ungeeignet für autonome Teilnehmer	
	*	wenig flexibel, keine dynamische Anpassung	
	Beis	piel: INTERBUS-S	

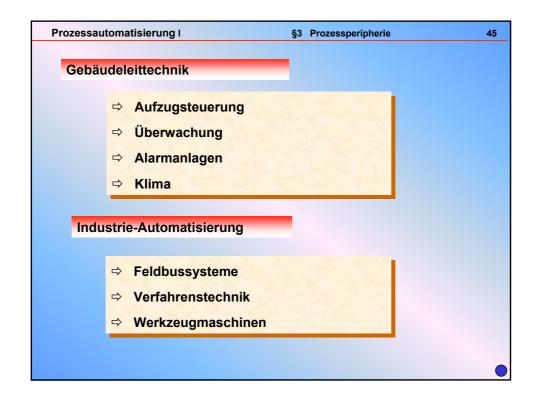



CSMA/ CD - Verfahren (Collision Detection) Erkennung von Kollisionen durch Datenabgleich Sendewiederholung nach teilnehmerspezifischer Wartezeit Vorteile	Prozessautoma	atisierung	I §3 Prozessperipherie	36
□ Sendewiederholung nach teilnehmerspezifischer Wartezeit Vorteile ** niedrige Busbelastung ** kurze Latenzzeit im Niederlastbereich Nachteile	CSMA/ CD	- Verfah	ren (Collision Detection)	
Sendewiederholung nach teilnehmerspezifischer Wartezeit Vorteile * niedrige Busbelastung * kurze Latenzzeit im Niederlastbereich Nachteile				
Vorteile * niedrige Busbelastung * kurze Latenzzeit im Niederlastbereich Nachteile		Erkenn	nung von Kollisionen durch Datenabgleich	
Vorteile * niedrige Busbelastung * kurze Latenzzeit im Niederlastbereich Nachteile				
 niedrige Busbelastung kurze Latenzzeit im Niederlastbereich Nachteile	1000	Wartez	zeit	
 niedrige Busbelastung kurze Latenzzeit im Niederlastbereich Nachteile				
 niedrige Busbelastung kurze Latenzzeit im Niederlastbereich Nachteile	Vorto	ilo		
* kurze Latenzzeit im Niederlastbereich Nachteile	vorte	ile		
Nachteile		盎	niedrige Busbelastung	
		盎	kurze Latenzzeit im Niederlastbereich	
* im Hochlastbereich lange Wartezeiten	Nach	teile		
		*	im Hochlastbereich lange Wartezeiten	

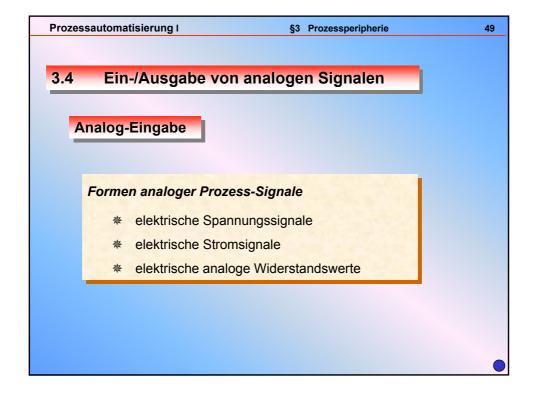


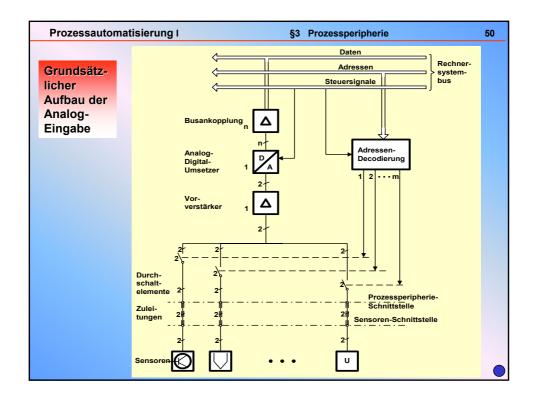

Proze	ssauton	natisierung I	§3 Prozessperipherie	38	
PRO	PROFIBUS				
	Feld	bus-Familie			
	梁	PROFIBUS - DP	(Dezentrale Peripherie)		
	*	PROFIBUS - FMS	(Field Message Specification)		
	*	PROFIBUS - PA	(Prozess-Automatisierung)		

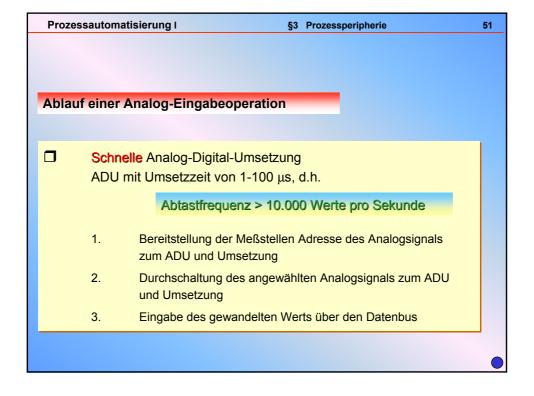


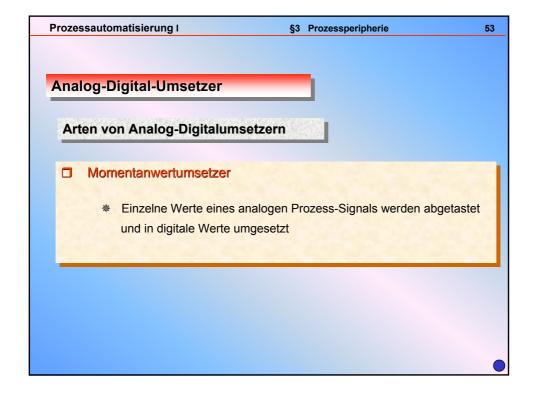




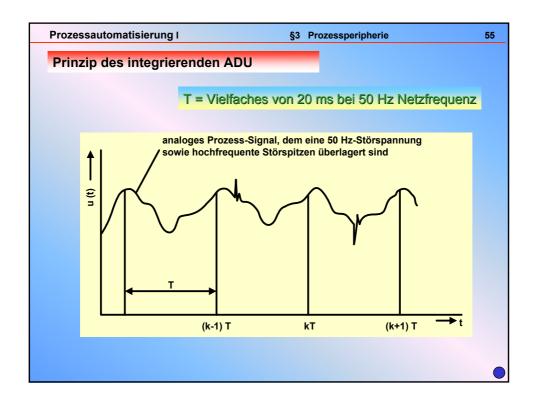




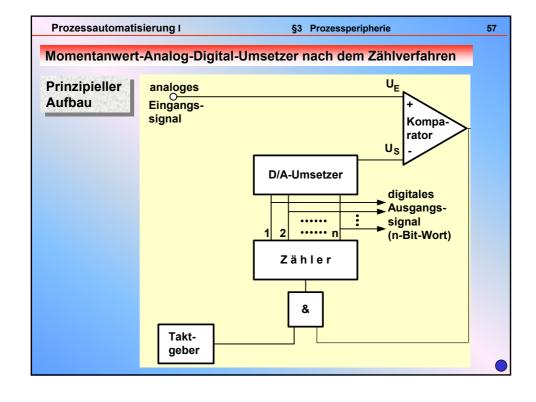

Prozes	sautomatisierung I §3 Prozessperipherie 46
Eigen	schaften des CAN
	Botschaftsorientierte Adressierung Auf einem Knoten können mehrere Objekte liegen, Objekt wird adressiert, nicht der Knoten.
	Multimaster-Buszugriffstechnik
	Busvergabe nach Prioritäten bei Zugriffskonflikt Durch nichtzerstörende, bitweise Arbitrierung nach dem CSMA/CA-Verfahren
	Kurze Botschaftslänge (08 Byte)
	Übertragungsraten bis 1Mbit∕s (bei max.40m Buslänge)
	Verschiedene Fehlererkennungsmechanismen
_	Selbsttest durch Fehlerzähler Verursacht ein Knoten zu viele Fehler, so koppelt er sich schrittweise vom Bus ab.

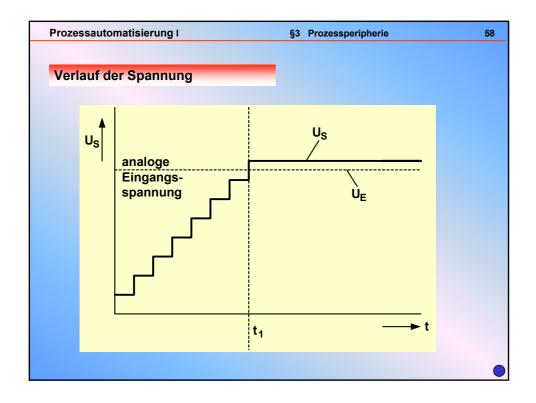


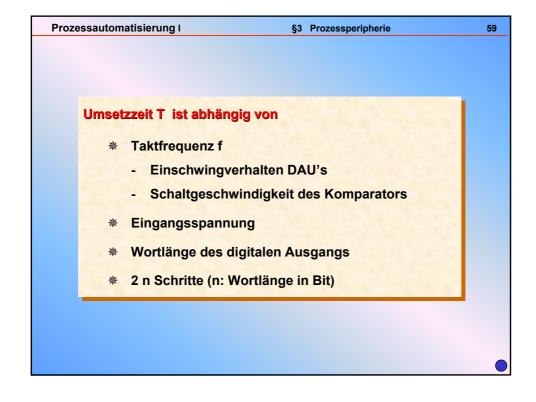
Prozes	ssautomatisierung I §3 Prozessperipherie	48
CAN	für elektromagnetisch stark gestörte Umgebungen	
Störe	ungserkennungsmechanismen	1
*	Bit stuffing und destuffing nach 5 Bits gleichen Logikzustands ein Bit des entgegengesetzten Logikzustands stuffing durch den Sender destuffing durch den Empfänger	
*	15 BIT CRC (Cyclic Redundancy Check) zyklischer Binärcode mit 64 Nachrichtenstellen 15 Kontrollstellen Hammingdistanz d = 6	
	⇒ Restfehlerwahrscheinlichkeit P = 4.7 x 10 ⁻¹⁶ Ethernet P _{RE} = 10 ⁻⁷	
	Duran and lith any wife up a	_
*	Buspegelüberprüfung simultanes Zurücklesen	
*	Botschaftsrahmensicherung Prüfung des Rahmens auf Richtigkeit	

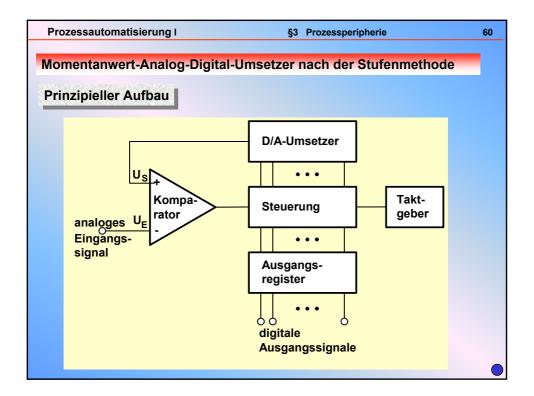


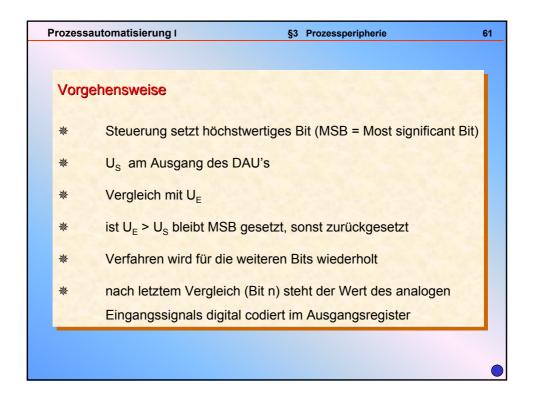
☐ Integrierende Umsetzer (Mittelwertumsetzer)

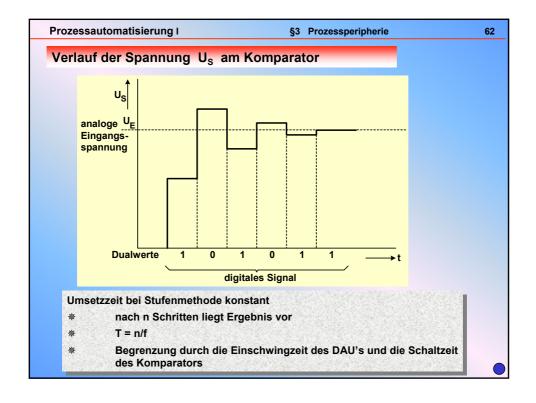

- * Analoges Prozess-Signal wird über eine Periode T der Netzfrequenz integriert und der Mittelwert gebildet
- * Mittelwert wird in digitalen Wert umgesetzt

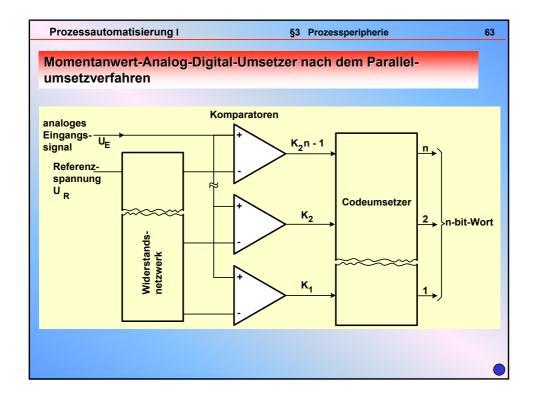

$$u(kT) = \frac{1}{T} \int_{(k-1)T}^{kT} u(t)dt$$

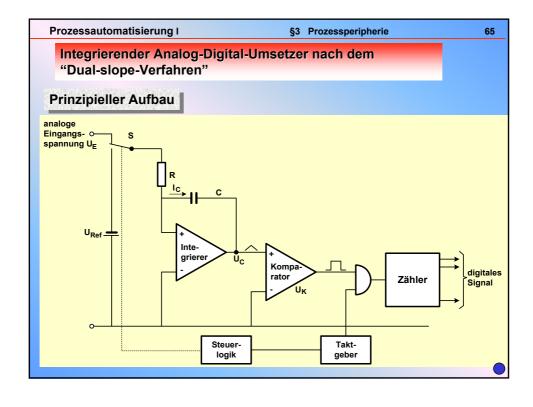

- * Vorteil: hohe Mess-Sicherheit
- * Vergleichsweise geringer Aufwand
- * Ausschaltung von hochfrequenten, aperiodischen Störspitzen
- * Unterdrückung von netzfrequenten Störspannungen
- Nur für relativ langsam veränderliche Prozess-Signale anwendbar

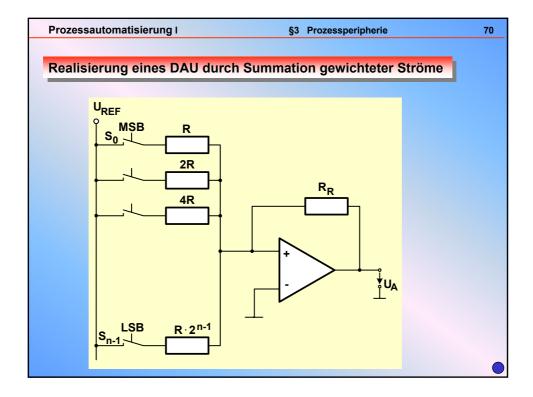


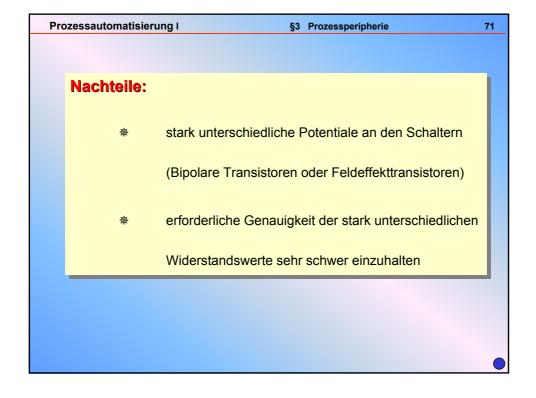

	Managetanicant	B#i44abasant
	Momentanwert- umsetzer	Mittelwert- umsetzer
Vorteil	Hohe Umsetzgeschwindig- keit 10 ⁴ 10 ⁸ Werte/s	hohe Störspannungsunter- drückung
Nachteil	Störimpulse bewirken Verfälschung der Digitalwerte	geringe Umsetzgeschwindigkeit
Umsetz- verfahren	Zählmethode, Stufenmethode, direkte Methode	Spannungszeit- oder Spannungsfrequenz- Umsetzer

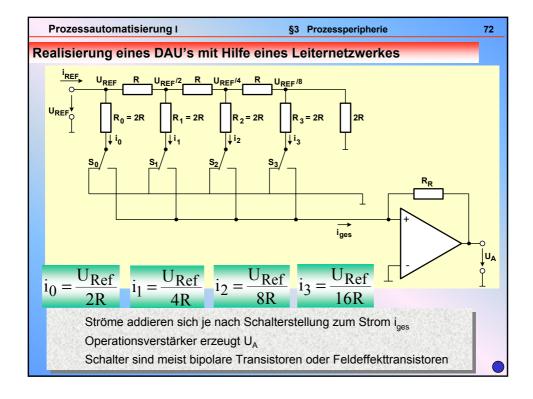


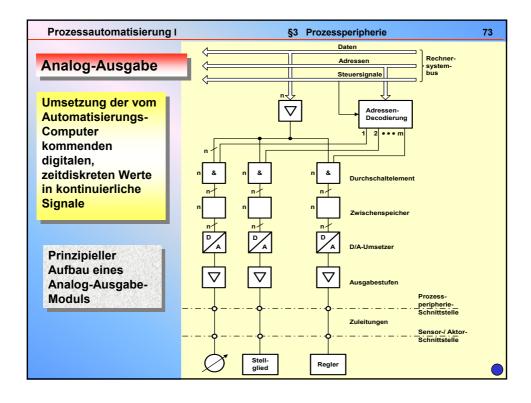




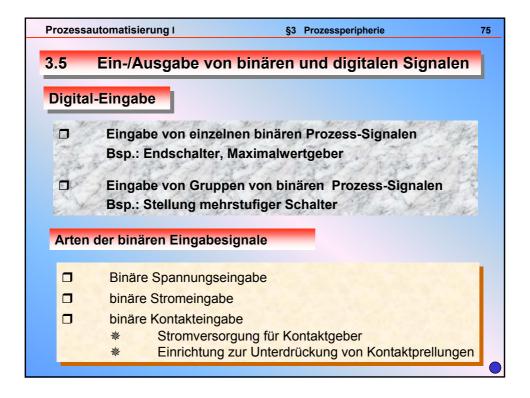

Vorgehensweise * Eingangssignal wird auf 2ⁿ - 1 Komparatoren gegeben * Über Widerstandsnetzwerk mit Referenzspannungsquellen werden Vergleichsspannungen erzeugt * Umwandlung durch Codeumsetzer in n-Bit-Wort Umsetzzeit * Abhängig von der Schaltgeschwindigkeit der Komparatoren und des Codeumsetzers * 10⁸ Werte/sec * Sehr aufwendig, 8-Bit ADU benötigt 2⁸ - 1 Komparatoren

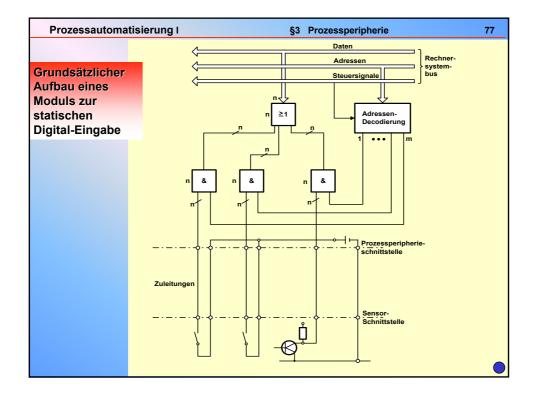


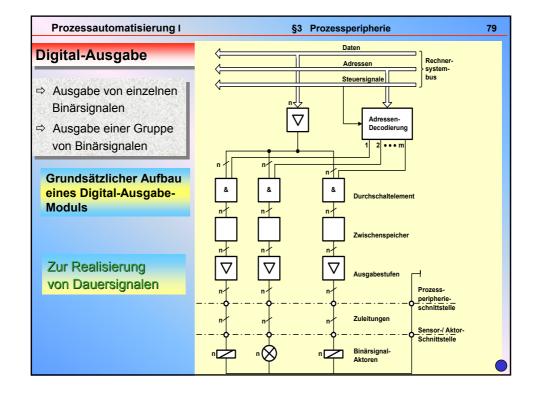

Vor	gehensweise
*	Kondensator C wird von t_0 bis t_1 mit dem Strom $I_C = U_E /R$ geladen
*	U _{Ref} wird am Eingang des Integrierers nach t ₁ angelegt
*	Kondensator C wird entladen, U _E bestimmt Zeitdauer der Entladung
*	Zeit bis U ₀ = 0V ist direkt proportional zu U _E
*	Zeitdauermessung durch Zähler, der Impulse eines Taktgebers zählt

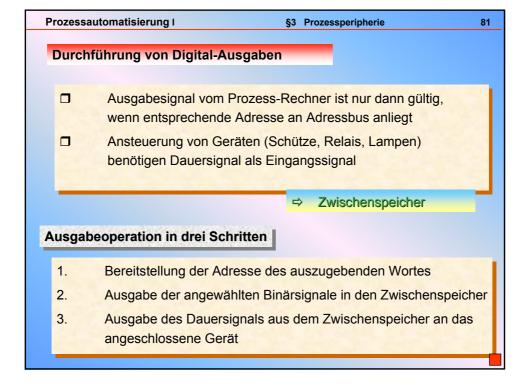


Arten von Digital-Analog-Umsetzern Arten der Realisierung eines DAU's mit einem Widerstandsnetzwerk * DA-Umsetzung durch die Summation gewichteter Ströme * DA-Umsetzung mit einem Leiternetzwerk

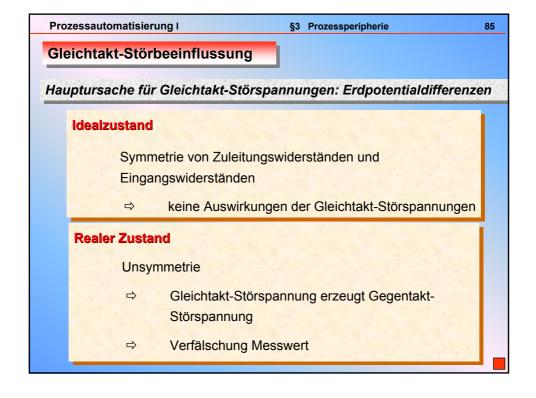





	eise zur Analog-Ausgabe
盎	Zwischenspeicher wird benötigt, um Informationen am
	Durchschaltelement zu speichern
*	Analoge Stelleingriffe sehr häufig über Stellmotoren,
	die mit Binärsignalen über die Digital-Ausgabe angesteuert
	werden
米	Analoger Ausgabewert entspricht der Zeitdauer der Binär-
	signalausgabe


Prozessautomatisierung I		tisierung I §3 Prozessperipherie	7
Unte	rscheidı	ung bezüglich Signalparameter	
	Statis	sche Digital-Eingabe	l
	*	High and Low für binäres Signal entsprechen den	ı
		zwei Zuständen	ı
	Dyna	mische Digital-Eingabe (Impulseingabe)	
	*	Flanken des Signals dienen als binäre Signalparameter	
	*	Übergang von High auf Low und umgekehrt setzt	ı
		zugeordnetes Speicherelement	
	*	Spontane Digital-Eingabe falls Interrupt ausgelöst wird	

Eingabeoperation in zwei Schritten 1. Bereitstellung der Adresse der Binärsignale, die zu einer Gruppe zusammengefasst sind, auf dem Adressbus 2. Durchschalten der adressierten Binärsignale zum Datenbus


Prozessautomatisierung I	§3 Prozessperipherie	80
Arten der binären Ausgabe	esignale	
□ Spannungsausg	abe	
□ Stromausgabe		
antial antique		
☐ Ausgabe potenti	alfreier Kontaktstellungen	

Messeinrichtung durch eine aufgeladene Person

Wege von Störspannungen in das Prozessrechensystem * über die Prozess-Signal-Eingabeleitungen * über die Prozess-Signal-Ausgabeleitungen * über die Netzversorgungsleitungen * über die Netzversorgungsleitungen * Über die Netzversorgungsleitungen * Gegentakt-Störspannungen auf Eingabeleitungen - Überlagerung zu dem erfassenden Prozess-Signal * Gleichtakt-Störspannungen ("common-mode-Störungen") - gleichsinnige Beeinflussung der beiden Eingangsleitungen in Bezug auf das Bezugspotential

Ents	tehung
	Störspannungen im Messkreis
	* Driftspannung im Messwertumformer
	* Thermospannung an Kontakten
	kapazitive und induktive Beeinflussung auf
	Signalleitungen
	Kapazitive und induktive Einstreuungen auf Signalleitungen

3.7 Maßnahmen gegen Störbeeinflussungen

Übersicht

- □ Verhindern, dass Störspannungen auftreten
- ☐ Eliminierung der überlagerten Störspannungen

Elektro-magnetische Verträglichkeit (EMV)

- * Maßnahmen, um elektronische Gerätesysteme störsicher zu machen
- * Aufbautechniken, die Störfeldstärken unter vorgegebene Grenzwerte halten ("Bestimmungen für die Funkentstörung von Hochfrequenzgeräten und -anlagen" VDE 0871) und ("Bestimmungen für die Funkentstörung von Geräten, Maschinen und Analgen" VDE 0875)

Völliger Ausschluss von elektromagnetischen Störern auf den Übertragungswegen

-

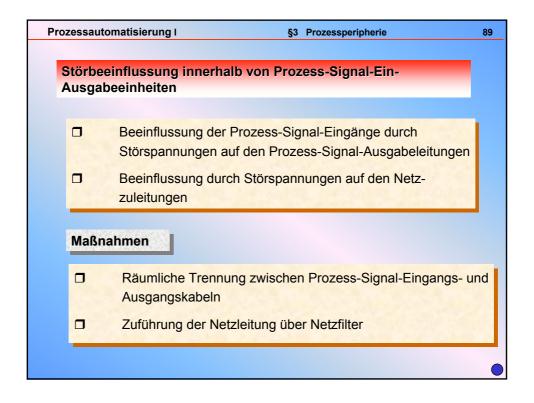
Lichtwellenleiter

Prozessautomatisierung I

§3 Prozessperipherie

87

Maßnahmen gegen elektromagnetische Beeinflussung elektrischer Prozess-Signale


* Räumliche Trennung von Signalleitungen und störenden Fremdleitungen

Richtwerte für Abstände zwischen Prozess-Signalleitungen und Energieleitungen

Energieleitungen (Nennspannung, Nennstrom)		Mindestabstand zu Signal- leitungen
220 V	50 A	50 cm
380 V	200 A	60 cm
5 kV	1000 A	120 cm

- Verdrillung der Energieleitungen und der Signalleitungen zum Schutz gegen induktive Störbeeinflussungen
 Richtwert 20-30 Umschlingungen/m
 - Abschirmung ist teuerste Sicherungsmaßnahme

Prozessaut	comatisierung I §3 Prozessperipherie 8
Grobe	Regeln
	Analoge Mess-Spannungen > 100 mV und bei Binärsignalen
	→ gemeinsame Abschirmung aller Aderpaare eines
	Signalkabels
0	analoge Mess-Spannungen < 100 mV
	→ jedes einzelne Aderpaar für sich abschirmen
	besonders starke Magnetfelder im Bereich der üblichen
	Netzfrequenzen
	doppelte Schirmung

