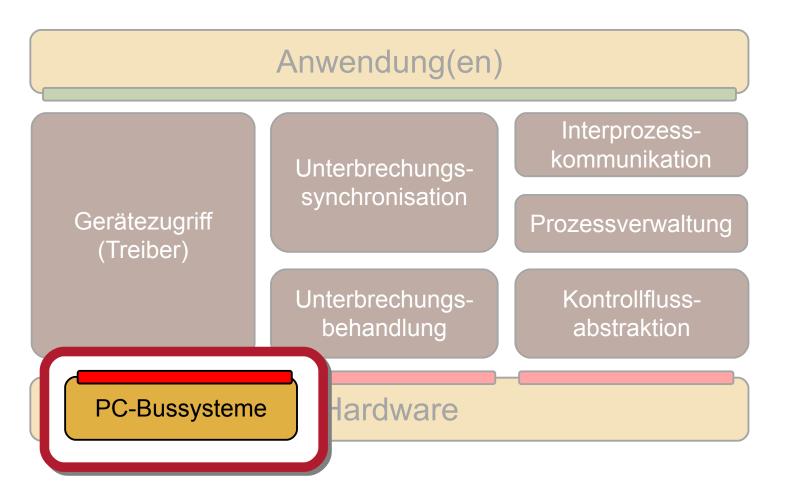
Betriebssysteme (BS)

VL 11 – PC Bussysteme

Daniel Lohmann


Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universität Erlangen Nürnberg

WS 11 - 18. Januar 2011

Überblick: Einordnung dieser VL

Agenda

- Rückblick
 - Bussysteme im PC
- PCI Bus
- PCI aus Sicht des Betriebssystems
 - Initialisierung, PCI BIOS, ...
- PCI Erweiterungen und Nachfolger
 - AGP
 - PCI-X
 - PCI Express
 - Hypertransport
- Zusammenfassung

Agenda

- Rückblick
 - Bussysteme im PC
- PCI Bus
- PCI aus Sicht des Betriebssystems
 - Initialisierung, PCI BIOS, ...
- PCI Erweiterungen und Nachfolger
 - AGP
 - PCI-X

dl

- PCI Express
- Hypertransport
- Zusammenfassung

Rückblick – Bussysteme im PC

seit es PCs gibt wurden die Anforderungen an den Systembus kontinuierlich größer:

Bussystem	PC	ISA	VLB	MCA	EISA	
CPUs	ab 8088	ab 286	ab 386	ab 386	ab 386	
typischer Tak	ct4,7 MHz	8 MHz	25-50 MHz	10-25 Mhz	8,33 MHz	
Multi-Master	nein	nein	ja (Version 2	?)ja	ja	
Busbreite	8 Bit	16 Bit	32/64 Bit	32 Bit	32 Bit	
Adressraum	1 MB	16 MB	4 GB	4 GB	4 GB	
Transferrate	1 MB/s	4-5 MB/s	40/64 MB/s (Burst)	40 MB/s (Burst)	33 MB/s (Burst)	

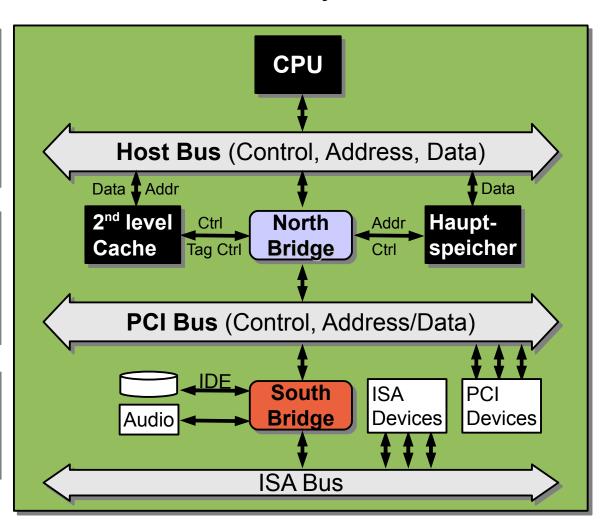
Rückblick – Bussysteme im PC

seit es PCs gibt wurden die Anforderungen an den Systembus kontinuierlich größer:

Bussystem	PCI	AGP	PCI-X	PCI Express	Hypertransport
CPUs	ab 486	ab 486	ab P6	ab PIV (Xeon)	ab Hammer (AMD)
typischer Takt	33/66 MHz	66 MHz	bis 133 MHz	(variabel)	(variabel)
Multi-Master	ja	nein (max 1 Gerät)	ja	Punkt zu Punkt	ja, verschiedene Topologien möglich
Busbreite	32/64 Bit	32 Bit	32/64	bis zu 32 lanes	bis zu 32 links
Adressraum	4 GB/16 EB	4 GB	4 GB/16 EB	4 GB/16 EB	4 GB/16 EB
Transferrate	132/528 MB/s (Burst)	n × 266 MB/s (1x, 2x,8x)		2,5 GBit/s (Burst, pro <i>lane</i>)	1,6 GBit/s (Burst, pro <i>link</i>)

Agenda

- Rückblick
 - Bussysteme im PC
- PCI Bus
- PCI aus Sicht des Betriebssystems
 - Initialisierung, PCI BIOS, ...
- PCI Erweiterungen und Nachfolger
 - AGP
 - PCI-X
 - PCI Express
 - Hypertransport
- Zusammenfassung

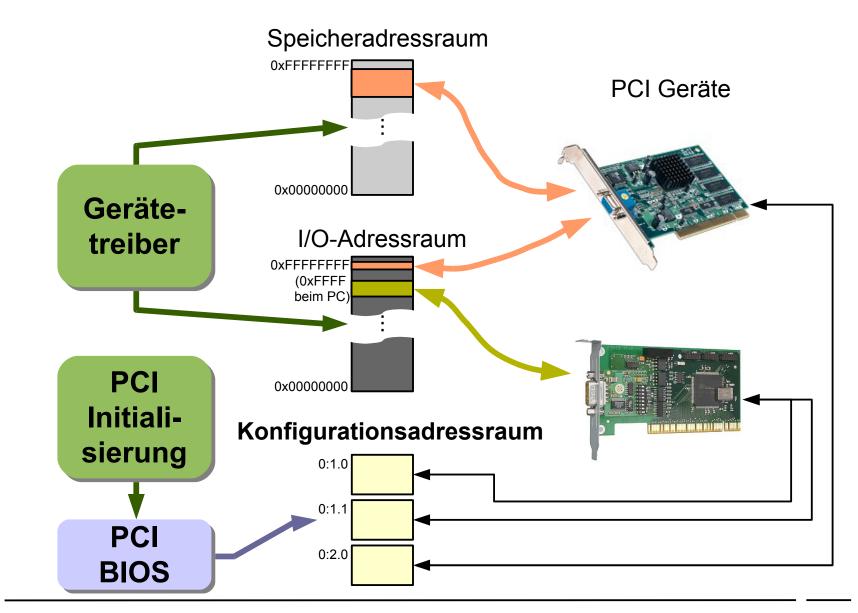

PCI-basierte PC Systeme

typische Architektur der ersten PCI Systeme:

Die North Bridge entkoppelt Host und PCI Bus. PCI Einheiten und CPU können so parallel arbeiten.

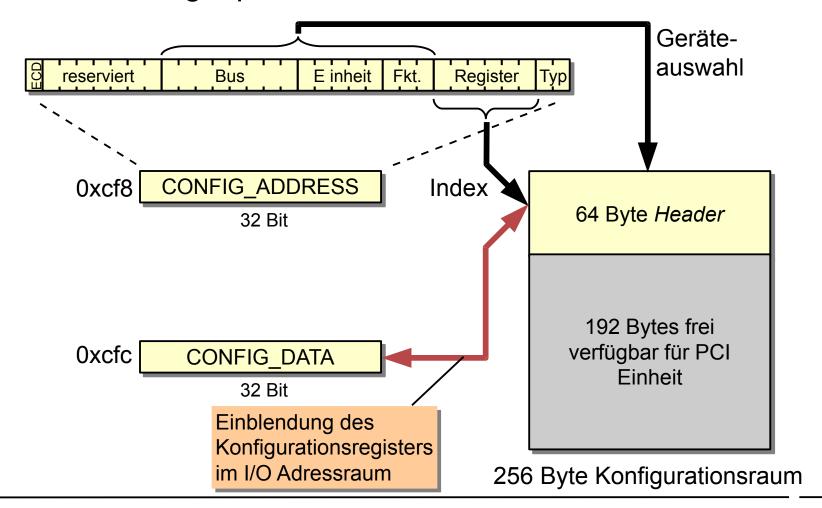
Die PCI Verbindung zwischen North und South Bridge wurde später durch etwas schnelleres ersetzt.

Durch die Bridges werden ISA und PCI transparent in einem System integriert.



PCI – die wichtigsten Daten

- Version 1.0 der Spezifikation von Intel (1991)
 - seit 1993 kommen die Spezifikationen von der PCI SIG
- 32/64 Bit, gemultiplexter Adress-/Datenbus
- im Burst Modus max. 132 MB/s bzw. 264 MB/s
- CPU-Typ unabhängig
 - PCI gibt es auch in Sparc, Alpha, ARM und PowerPC Systemen
- 4 Interruptleitungen (INTA-D)
- Skalierbarkeit durch Bridges und Multifunktionseinheiten
- Multi-Master Fähigkeit (besser als der klassische DMA)
- Schema zur Erkennung und Konfigurierung von Geräten (Ressourcenzuweisung)


Interaktion mit PCI Geräten

Der PCI Konfigurationsadressraum (1)

beim PC wird der Konfigurationsadressraum indirekt über I/O-Ports angesprochen:

Der PCI Konfigurationsadressraum (2)

Format des 64 Byte Headers:

Die **Einheiten-ID** 0xffff bedeutet 'nicht vorhanden'

Am **Header** Bit 7=1 kann man Multifunktions- einheiten erkennen

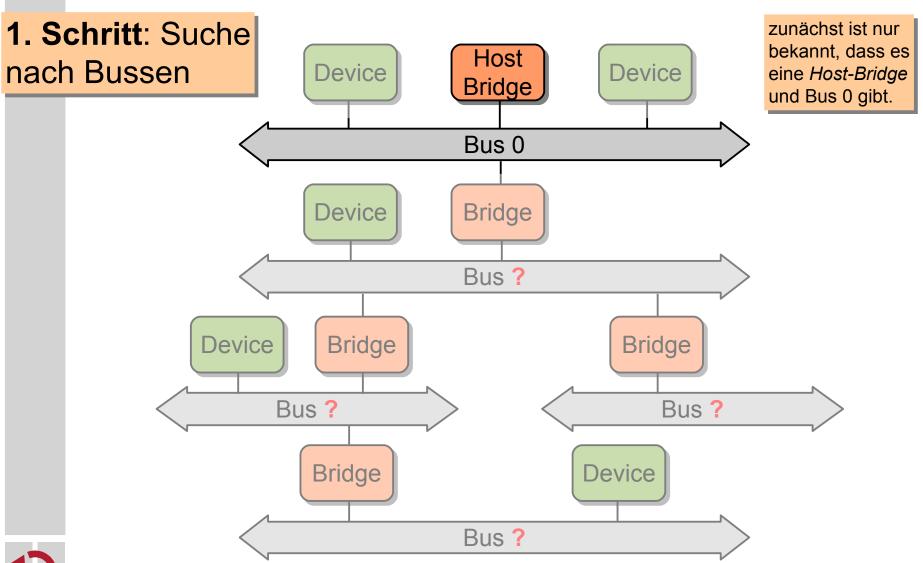
BIST erlaubt einen Selbsttest des Geräts

31 16			15 0			
0x00	Einhe	iten-ID	Hersteller-ID			
0x04	Sta	atus	Befehl			
0x08	K	Classenco	le Revision			
0x0c	BIST	Header	Latenz	CLG		
0x10						
0x14						
0x18	Pacieadroserogistor					
0x1c		Basisadressregister				
0x20						
0x24						
0x28	reserviert oder Card Bus CIS Pointer					
0x2q	reserviert oder Subsystem Ids					
0x30	Erweiterungs-ROM Basisadresse					
0x34	reserviert oder Capabilities Pointer					
0x38	reserviert					
0x3q	MaxLat	MinGNT	INT-Pin	INT-Leit.		

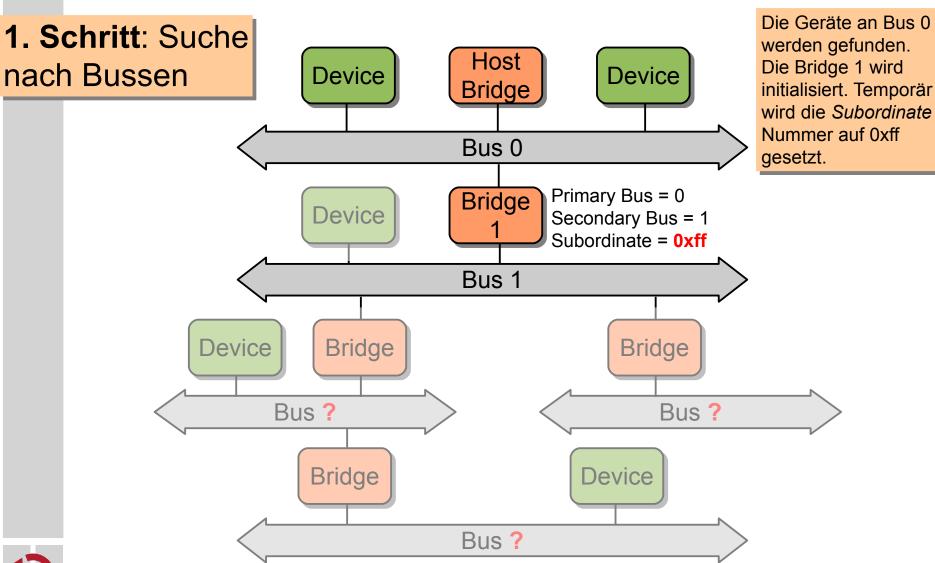
Die Einheiten-ID und Revision identifizieren das Gerät eindeutig. Hersteller-ID und Klassencode sind Zusatzinformationen.

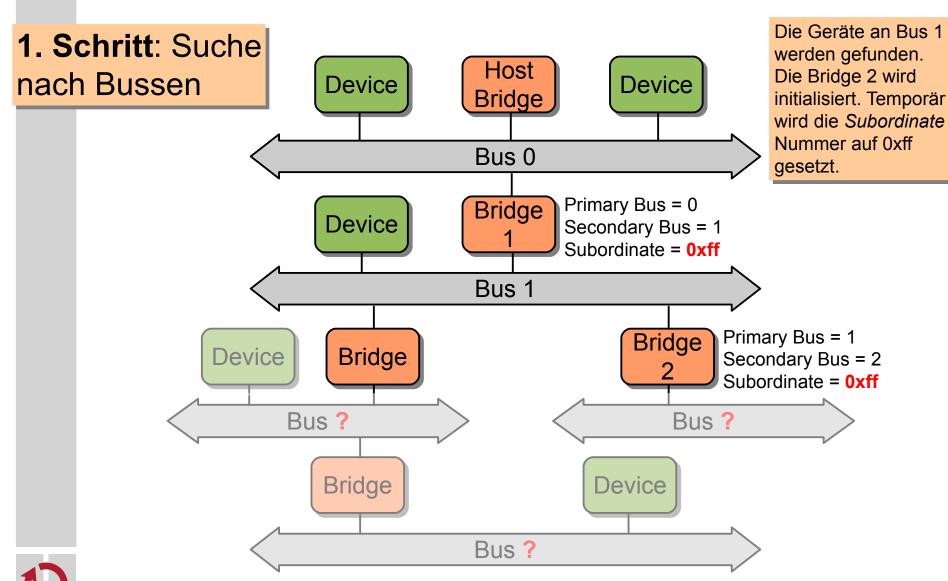
Mit dem **Befehl** lässt sich das Gerät aktivieren und deaktivieren.

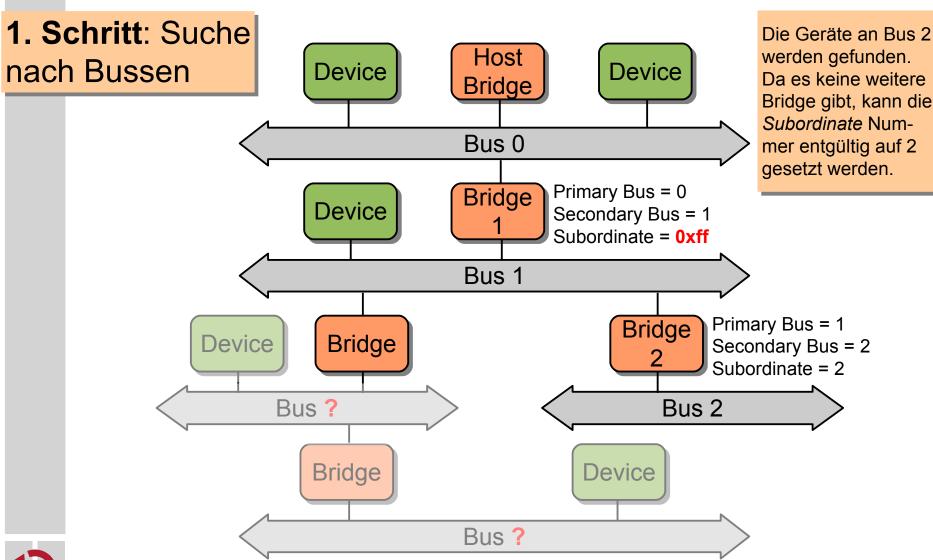
Hier wird festgelegt, welche Adressbereiche die Einheit belegt. Gleichzeitig erfährt das System, wie groß der benötigte Adressraum ist.

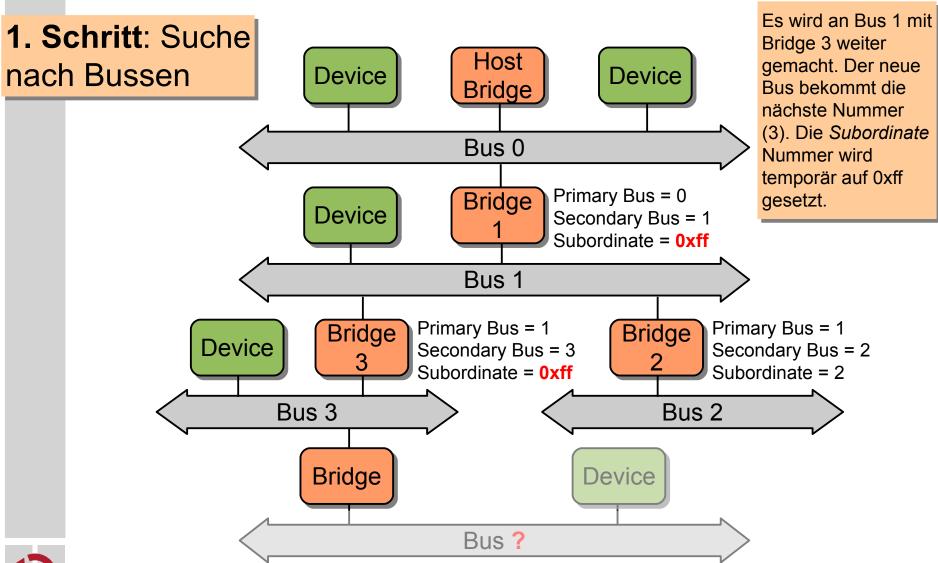


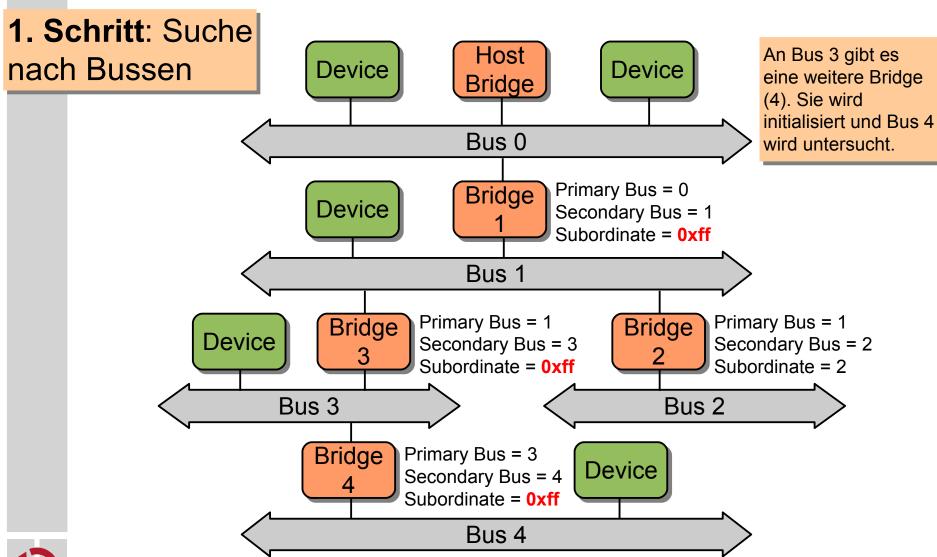
dl

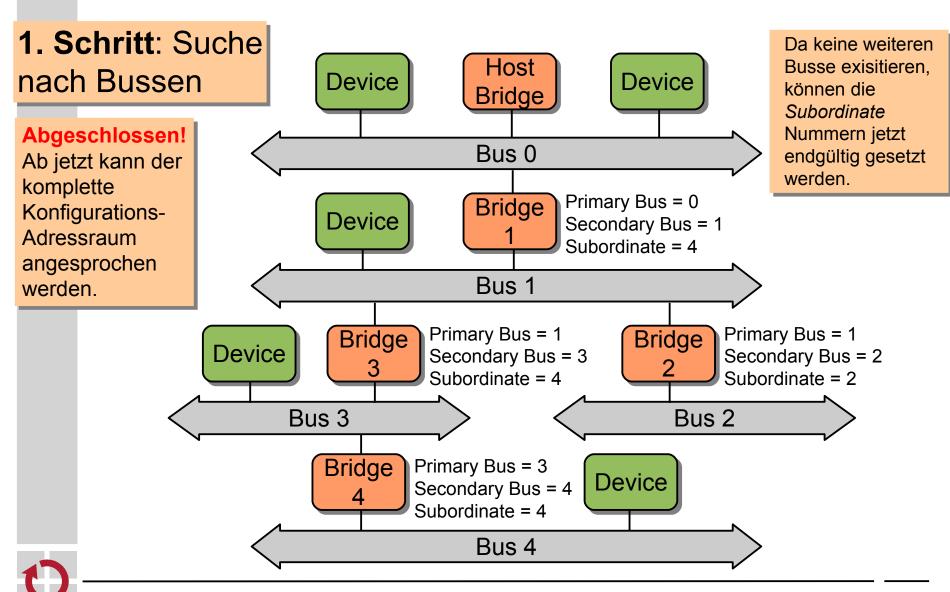

PCI Initialisierung


- Bevor PCI Geräte durch ihre Gerätetreiber angesprochen werden können, muss folgendes erfolgt sein:
 - Konfigurierung der Basisadressregister der Geräte
 - Konfigurierung der PCI-Bridges
 - Speicherfensterregister hängt von den Geräten unterhalb ab!
 - Busnummern (Primary, Secondary, Subordinate)
 - Subordinate ist die Nummer des letzten Busses unterhalb (downstream) der Bridge
- Das BIOS bzw. Betriebssystem muss die PCI Busstruktur schrittweise erforschen und initialisieren
 - bereits belegte Busnummern und Adressbereiche dürfen auf keinen Fall doppelt vergeben werden!




dl





dl

Algorithmus:

 Ausrichtung der aktuellen I/O und Speicheradressen auf die n\u00e4chste 4K bzw. 1M Grenze 2. Schritt:
Zuweisung
der
Adressen

- für jedes Gerät des akt. Busses (in aufsteigender Reihenfolge der I/O Speicher-Anforderungen):
 - Reservierung der I/O und Speicheradressen
 - Aktualisierung der globalen I/O und Speicherzeiger
 - Initialisierung und Aktivierung des Geräts
- rekursive Anwendung des Algorithmus für alle angeschlossenen Bridges
- Ausrichtung der resultierenden Adressen (wie oben)
- Programmierung und Aktivierung der Bridge

Das PCI BIOS – Überblick

- Festlegung durch PCI SIG (1993, Vorlage von Intel 1991)
- auf PCs normalerweise vorhanden, bei anderen Rechnertypen eher selten anzutreffen
- konfiguriert die PCI Bridges und Geräte beim Systemstart
 - minimal, falls ein "Plug&Play Betriebssystem" installiert ist
 - sonst komplett
- nach dem Booten erlaubt das PCI BIOS ...
 - die Suche von PCI Geräten nach Geräteklasse oder Typ
 - den Zugriff auf den Konfigurationsadressraum
- der Zugriff erfolgt über ...
 - den BIOS Interrupt 0x1a (Real Mode)
 - das "BIOS32 Service Directory" (Protected Mode)

Das PCI BIOS – im Protected Mode

- das BIOS32 Service Directory erlaubt (im Prinzip) den Zugriff auf beliebige BIOS Komponenten
- es liegt irgendwo im Bereich von 0xE0000-0xFFFFF

mit dem BIOS32 Service kann man testen, ob ein PCI BIOS vorhanden ist.

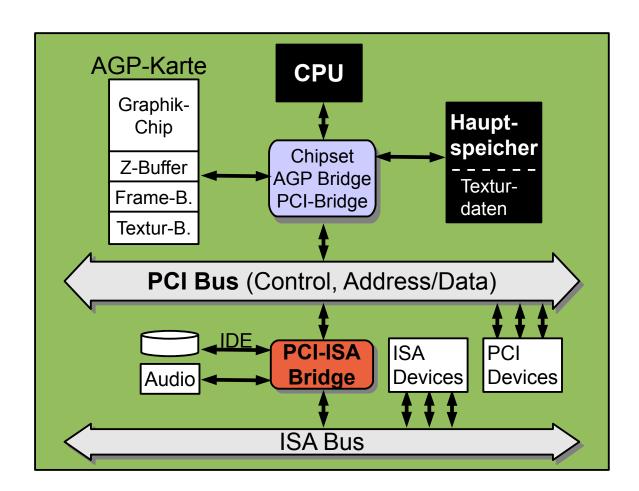
dl

Das PCI BIOS – Funktionsumfang

folgende Funktionen umfasst das PCI-BIOS laut Spezifikation:

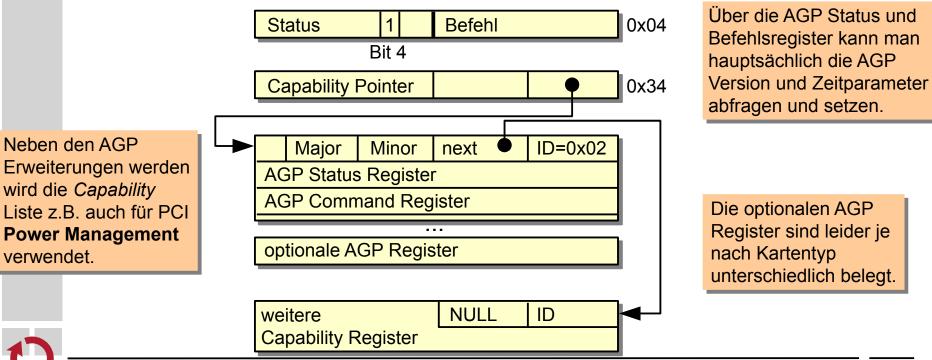
Funktionsname	Argumente	Resultate
PCI BIOS Present	-	ja/nein, letzte Busnr., InitMechanismus
Find PCI Device	Device ID, Vendor ID, Index	Bus/Dev./Func. Nr.
Find PCI Class Code	Class Code, Index	Bus/Dev./Func. Nr.
Generate Special Cycle	Bus Nr.	-
Get Interrupt Routing Opt.	Pufferspeicher	Routing Möglichkeiten
Set PCI Hardware Interrupt	Bus Nr., Device Nr., IntPin, IntNr.	-
Read Configuration Byte/Word/DWord	Bus/Dev./Func./Reg. Nr.	gelesenes Byte/Word/DWord
Write Configuration Byte/Word/DWord	Bus/Dev./Func./Reg. Nr. zu schreibendes Byte/Word/DWord	

dl


Agenda

- Rückblick
 - Bussysteme im PC
- PCI Bus
- PCI aus Sicht des Betriebssystems
 - Initialisierung, PCI BIOS, ...
- PCI Erweiterungen und Nachfolger
 - AGP
 - PCI-X
 - PCI Express
 - Hypertransport
- Zusammenfassung

AGP – Hardware

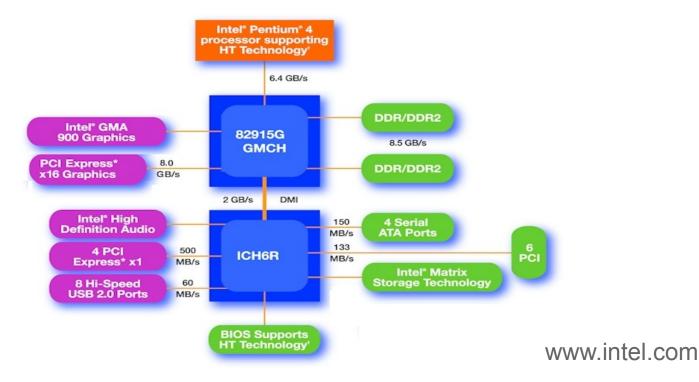

- Accellerated Graphics Port (1997)
- schnelle 1:1 Anbindung einer (3D) Graphikkarte
 - (theoretische) N x 266 MB/s Transferrate für AGP 1x, 2x, 4x, ...

AGP – Initialisierung

- AGP Karte und Bridge präsentieren sich im System wie eine PCI-to-PCI Bridge und ein normales PCI Gerät
 - volle Software-Kompatibilität
- spezielle AGP Register lassen sich über die Capability Liste im Konfigurationsraum ansprechen:

PCI-X (eXtended)

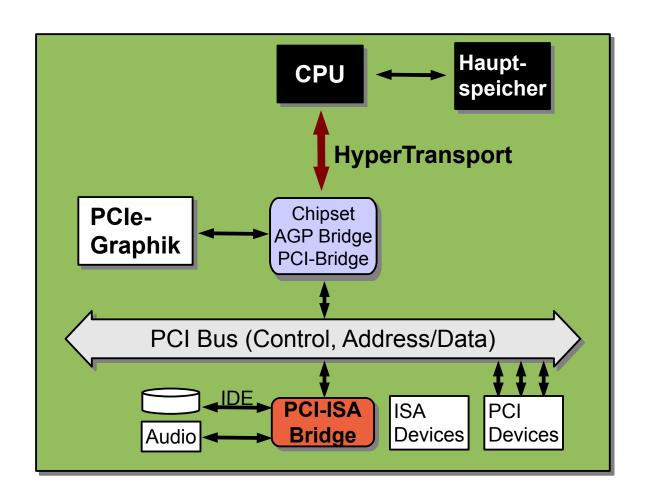
- Erweiterung des PCI Busses (1999)
 - von der PCI Special Interest Group (SIG) im PCI 3.0 Standard festgeschrieben
- erlaubt eine größere Bandbreite bei voller Kompatibilität
 - der PCI-X Bus benutzt den Arbeitsmodus des langsamsten Geräts


PCI-Kartentyp		PCI (konventionell)			PCI-X	
Bus-Frequenz		33 MHz	33 MHz	66 MHz	66 MHz	133 MHz
Spannung		5 V	3,3 V/univ.	3,3 V/univ.	3,3 V/univ.	3,3 V/univ.
Mainboard						
PCI	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz
PCI	66 MHz	-	33 MHz	66 MHz	33/66 MHz	33/66 MHz
PCI-X	66 MHz	-	33 MHz	33/66 MHz	66 MHz	66 MHz
PCI-X	100 MHz	-	33 MHz	33/66 MHz	66 MHz	100 MHz
PCI-X	133 MHz	-	33 MHz	33/66 MHz	66 MHz	133 MHz

- neben der Takterhöhung gibt es auch Split Transactions
 - zugänglich wiederum über die Capabilities Liste

PCI Express

- ... hat technisch wenig mit dem PCI Bus zu tun
 - bidirektionale, serielle Punkt-zu-Punkt Verbindungen
 - Bandbreite pro *Lane* je Richtung: 512 MB/s, 8GB/s bei x16!
 - ein typisches PC System mit PCI Express Geräten (i915)



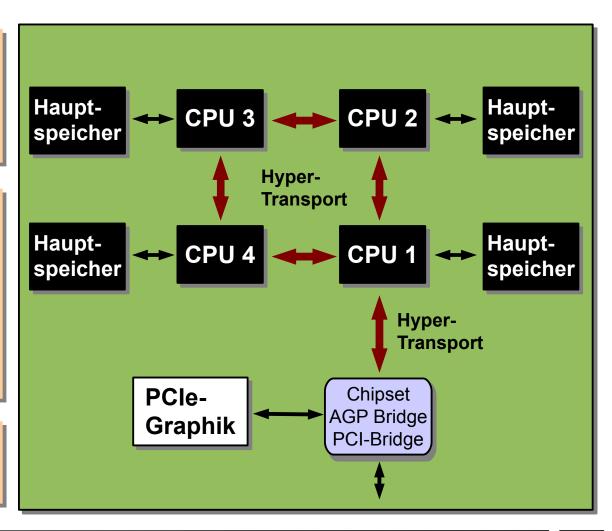
[†] Hyper-Threading (HT) Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and a HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See www.intel.com/info/hyperthreading for more information including details on which processors support HT Technology.

HyperTransport

- (AMD-)CPU integriert Speichercontroller und L2-Cache
- standardisierte Kommunikation mit North Bridge: HyperTransport

HyperTransport

- Versionen 1.0 (2001), 1.1, 2.0 und 3.0 (2006)
 - Konsortium: u.a. AMD, Apple, Cisco, NVIDIA, Sun
- bidirektional, Punkt-zu-Punkt, Links mit 2-32 Bit,
 Taktung bis zu 2,6GHz (DDR)
- je nach Version und Konfiguration bis zu 20,8 GB/s
 - bei aktuellen AMD Sockel-939-Prozessoren: HT 2.0 mit 4GB/s
- Gerätekonfiguration wie bei PCI
- weitere Anwendungen neben FSB-Ersatz
 - CPU-Kommunikation in AMD-Multiprozessor-Systemen
 - Chipsatz-Kommunikation (Northbridge ⇔ Southbridge)
 - Kommunikation mit Coprozessoren: HTX
- Inzwischen: Konkurrenz von Intel verfügbar
 - Intel QuickPath Interconnect (QPI, seit Ende 2008 (i7), 24-32 GB/s)


HyperTransport in MP-Systemen

NUMA (Non-Uniform Memory Architecture)

Die CPUs (u.U. mit mehreren Cores) kommunizieren untereinander via HyperTransport.

Globaler
Adressraum: An
andere CPUs
angebundener
Hauptspeicher kann
adressiert werden,
die Latenz ist jedoch
höher.

Das Betriebssystem muss Tasks **geeignet verteilen**.

Agenda

- Rückblick
 - Bussysteme im PC
- PCI Bus
- PCI aus Sicht des Betriebssystems
 - Initialisierung, PCI BIOS, ...
- PCI Erweiterungen und Nachfolger
 - AGP
 - PCI-X
 - PCI Express
 - Hypertransport
- Zusammenfassung

Zusammenfassung

- im Bereich der PC Bussysteme dominiert seit Jahren PCI
- die neuesten Entwicklungen (PCI Express) haben kaum noch Ähnlichkeit mit dem PCI Bus von 1991
 - serielle Punkt-zu-Punkt Verbindungen und Switches
- neben den physikalischen Eigenschaften definiert PCI auch ein Programmiermodell
 - I/O- und Speicheradressräume
 - Konfigurierung und Initialisierung über Konfigurationsadressraum
 - Bus-Hierarchien
- auch die neuesten Entwicklungen sind auf der Ebene des Programmiermodells zu PCI kompatibel

