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Motivation: Software Platform Development for Motor-Control Systems

System Properties: Functional safety, real-time capability, computational space-time

Logical / Functional vs Technical Architecture

Technical Architecture

Deployments: tasks and memory

Multicore, memory mapping and isolation properties

Scheduling and component deployment at the architecture level: ASSIST

Implementation Analyses

Memory handling, spatial isolation and timing analyses by abstract interpretation

Implementation of architectural scheduling and mapping analyses at the level of the
operating system

Schaeffler Products

E-Mobility / actuator applications comprise, for instance:
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E-Wheel Drive

Hybrid Module
eAxle

Active Roll-Stabilizer

Gearbox actuator

A wide range of these applications need an e-motor control

Source: A. Leitner, G. Drenkhahn@Schaeffler R&D Conference 2017

Why do we need Software for Electric Drives at all?

Basic components of many modern electrical 
motors:

• Rotating armature with or without magnet

• Three phase windings in the stator

Connecting such a motor to a DC battery will 
not generate continuous rotation of the 
rotor…
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Source: A. Leitner, G. Drenkhahn@Schaeffler R&D Conference 2017



Why do we need Software for Electric Drives at all?
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Solution: Usage of a "B6 bridge" with six transistors
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E-Motor

Switching the transistors in a coordinated way generates

a rotating electromagnetic field

Source: A. Leitner, G. Drenkhahn@Schaeffler R&D Conference 2017

Why do we need Software for Electric Drives at all?

High demands on 

Energy efficiency

Torque precision

Reliability

Availability

Real-time capability

High intelligence and complexity of the control software!

A significant part of our motor-control know how gets condensed into software
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Source: A. Leitner, G. Drenkhahn@Schaeffler R&D Conference 2017

Software Variability in Automotive Mechatronic Projects

How to build software in a way that it can be reused in a mechatronic product line?

Variability points in projects

• System environment (e.g. the concrete vehicle)

• E-Motor type and power class (0,5 -200 kW)

• Microcontroller (derivative) and sensors

• Real-time properties

• Safety requirements such as spatial and temporal freedom from interference

• Software architecture

Challenge: 

Reuse established motor-control functions in a diverse and variable project environment
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Source: A. Leitner, G. Drenkhahn@Schaeffler R&D Conference 2017

The E-Motor-Control Software Library
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E-Motor Control SW Platform
Mechatronic

Project #1

Mechatronic

Project #2

Library functions are developed using Matlab / Simulink

Source: A. Leitner, G. Drenkhahn@Schaeffler R&D Conference 2017



Functional Features
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Motor types

Permanent magnet synchronous motor

Asynchronous induction motor

Electric current control

Field oriented control

Feed forward, magnetic saturation, 
reluctance

Field weakening control

(Over-)modulation schemes 
and variable switching frequencies

Superimposed controllers

Speed (window) control

Jerk control

Derating and Diagnostics

Self protection and fault detection

Performance derating

Sensors and Observers

Angle tracking observer

Power loss and temperature estimation

Magnetic flux in stator windings

Libraries for various utilities

Table lookup and interpolation

Numerical routines

Signal filters

Source: A. Leitner, G. Drenkhahn@Schaeffler R&D Conference 2017

But: Features are not Everything

Project-specific development and the design of software architectures is often driven by 
functional requirements (features, functionality)

But non-functional requirements (properties) such as memory management, security, multicore-
usage are equally important

Platform development suffers from the same problems:

Function-focused development in Matlab/Simulink does not work by itself to realize the 
platform concept

• Hardware-agnostic development is problematic

• Non-functional properties such as project-specific space-time criteria, safety or 
adaptability are equally important for e-mobility applications!
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Selection of a Microcontroller Unit

The decision of a microcontroller unit (MCU) is not only driven by technical reasons

• Cost per unit

• Physical space occupied and weight

• People …

Arbitrary selection of an MCU is usually a really bad idea!

MCUs from different vendors differ in various ways

• Communication, latencies

• Memory architecture

• Cache coherence

• Pinning

• etc.

Solution: Decision for a processor family from a single vendor supports construction-kit
approach. An analysis of the available derivatives is still needed!
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Modular Controlboard Hardware Platform

For e-mobility applications, we develop a particular electronic control unit (ECU) we termed
Controlboard:

Generic control board for electric drive applications

"Construction kit" to derive quickly project-specific variants 

Characteristics:

A great choice of different interfaces available:

CAN/Flexray

Resolver/Induction/Hall sensors

Temperature sensors

PWM/SPI/ADC type interfaces

Independent drive of two motors possible (traction, actor)

Infineon AURIX multicore processor family (particular derivative with lockstep, MPU, etc.)

Safety functions ASIL-D possible by redundancies and external watchdog
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Source: M. Fritz , A. Leitner  (Schaeffler, 2017))



Functionality, Safety, Computational Space-Time

Functionality, safety, computational space-time: Alignment of design goals

• Functionality often benefits from methods applied in the context of safety-relevant systems

• Safety mechanisms should not just be „mounted on top of functionality“

Properties such as timing, memory usage and safety are a cross-cutting system aspect

• They have to be respected at all system, hardware and software levels

• The engineering disciplines rely on each other, they are equally important

• Properties should be included in the design process just as any other functionality or relevant 
property

Safety focus our project: Provide real-time capability in a multicore environment and
provide spatial isolation and good code/data placement
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Isolation in ISO 26262: Freedom from Interference (FFI)

From ISO26262-6, Annex D

• Software elements must not affect each other in an unintended and negative way

• Errors in an application shall not spread to other applications

• Errors in an application shall not spread to infrastructure services

• Errors in an application shall not affect other system elements

• Elements subject to decomposition must be isolated from each other

Achievement of FFI 

• Timing and execution: Temporal isolation: Scheduling, execution budgets, watchdogs, ...

• Memory: Spatial isolation: Semantic analysis, memory-protection unit, ...

• Safe exchange of information: Communication between isolated elements: checksums, ...
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FFI in Space and Time

Physical isolation of software instances (e.g., independent MCUs): Federated architecture

All resources (memories, CPU time, etc.) can be assigned to a specific functionality

Often, functionalities need to cooperate, they have dependencies

• Safe data exchange between components

• Waiting times / latencies have to be respected in system design, etc.

Functionalities may also be deployed on the same MCU: Integrated architecture

• To reduce physical weight and size as well as costs

• Complicates the provision of FFI

• In contrast to physically isolated components, sophisticated mechanisms are needed for FFI
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Temporal and Spatial Isolation: A Software Topic Only? 

CPU time and memory must be shared across components

• CPU time sharing can be achieved by the use of an RTOS scheduler

• A scheduler provides a framework for the construction of a real-time system

• An unfortunate application structure may impede timely execution

• A proper thread / task architecture has to be created

• Memory partitions and their locations have to be defined, data and code has to be assigned
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<<task>>

Watchdog

attributes

priority=1

core=2

preemption=yes

sharedMem=no

function=wdgFkt

…

<<task>>

IO Handling

attributes

priority=12

core=1

preemption=yes

sharedMem=yes

function=acquire

…

<<task>>

Calculation

attributes

priority=12

core=1

preemption=yes

sharedMem=yes

function=calc

…

<<task>>

Diagnostics

attributes

priority=20

core=1

preemption=yes

sharedMem=yes

function=diag_mem

function2=values

<<Memory>>

sharedMem

attributes

address_start=0x0

address_end=0x800

sync=semaphore

mapped_data=…

accessed_by=…

…

<<access>>

<<access>>

<<access>>



Temporal and Spatial Isolation: A Software Topic Only? No!

Scheduling and isolation are system-architectural topics:

• The temporal /spatial partitioning is dependent on the system requirements / architecture

• CPU selection

• Distributed network of MCUs, etc.

• Aspects at all system-architectural levels influence each other

Example: Temporal Constraints, Computational Spacetime, Error Spreading

• Undesired memory accesses may induce temporal faults

• Unspecified or faulty sensor values may induce temporal faults

• A faulty design specification may induce temporal faults

• Measures (e.g., software-based replication) meant to provide safety 

• Affect timing behavior

• May in turn induce temporal faults

The holistic solution has to be respected during analyses
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Mechanisms for Providing Timely Execution
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Software: Task / Thread 

Architecture including

partitioning

Hardware Watchdog

Monitoring

CPU Selection / 

Architecture of Distributed 

System

Determination of logical

WCET Assignment of execution

budgets / schedule

determination

Verification

Semantic Code Analyses

Verification

Measurement-based Tests

Execution-budget 

monitoring through real-

time OS
Application-level exception

handling

Other techniques

System Architecture

Software Architecture, 

Implementatíon, Verification

System at Runtime

Mechanisms for Providing Safe / Efficient Memory Management

• Memory protection / management can be implemented at different granularities

• The techniques can be combined to achieve a suitable level of protection

Examples for techniques:

• At the program level architectural-design level (ahead-of-time)

• Hardware-based mechanisms
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Mechanisms for Providing Safe / Efficient Memory Management

At the program and architectural-design level (ahead-of-time)

• Use of a programming-language subset in order to deal with systematic faults at the software
level (bugs) 

• Example: Restrict the use of untyped memory (cf. semantic code analyses (more than
MISRA-C!)), use of memory-safe/type-safe language

• Syntactic and semantic code analyses identifying false pointer usage, false use of operations
and bogus data flows

• Etc

Use language properties, deployment decisions and/or semantic-analysis results or to provide
data and code mapping

Example for deployment decisions: assign data / code to threads and partitions

• Define protection boundaries for an application

• Control-flow (i.e., thread) and partition isolation with respect to memory

Note: The thread architecture is part of the software-architecture design. The thread
architecture includes information on the set of threads, their interplay and characteristics
(priority, stack size, dependencies etc.). Verification of task-local (thread-local) memory usage
such as stack usage or memory-region usage supports spatial isolation.

19



Mechanisms for Providing Safe / Efficient Memory Management

Hardware-based mechanisms

• Error-correction codes to deal with (random) permanent/transient faults in memories: Ensure
that pointers and types are not affected by memory faults.

Example: ECC protection of memories may be provided by the MCU or it can alternatively be
applied at the software level. 

• Hardware-based memory protection, for instance, a region-based memory-protection unit

Note: MPU-based partitions are broadly used and belong to the sandboxing techniques, that is, 
an MPU cannot detect semantic faults but it restricts error spreading to the software partition
that exposes a memory-safety defect (e.g., false pointers, stack overflow, bit flip in memory
occupied by data relevant to memory safety).
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How to Construct A Safe Real-Time System?
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Functional Architecture

Technical Architecture

Software Implementation
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Functional Architecture

Technical Architecture

Software Implementation
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How to Construct A Safe Real-Time System?
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Technical Architecture

Software Architecture

System Architecture
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Functional Architecture

Software Implementation
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How to Construct A Safe Real-Time System?

Iterative Incremental

23



An Engineering Framework for Generic Application Software 

Schaeffler R&D Mechatronics is part of the ARAMiS II Research Consortium

• Follow-up project of Automotive Railway Avionics Multicore Systems (ARAMiS I)

• https://www.aramis2.com/

• Project budget is 24 Mio. Euros in total

In ARAMiS II, we have been implementing an engineering framework that will support us in 
building our Software Platform according to the construction-kit approach by cross-
architectural space-time analyses:

• Schedulability analyses at the level of the functional / technical architecture

• Spatial isolation specification at the level of the functional / technical architecture

• Hybrid semantic and dynamic timing analyses at the binary-code level

• Semantic reachability and scope analyses at the source-code level

In this way, we both support correctness and safe / efficient mapping of tasks to
multicores and data / code to physical memories

24

ID 01IS16025

Building Blocks of the Engineering Framework

Functional / technical architecture analyses

• Functional and data dependencies

• Logical spatial isolation realms

• Temporal isolation and logical execution time

• Task deployment and hardware constraints

Source- and binary-code analyses

• Data- and code accesses at the source-code level: scopes and isolation realms

• Timing: Reconstruction of control-flow graph from binary and measurement of basic-block 
execution on target hardware

25

System Architecture

Example: Functional / Logical vs Technical Architectures
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Technical architecture

Source: Method Park (2018)

System Architecture

Cruise Control – Functional architecture
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«block»

Determine current 

speed

«block»

Determine desired 

speed

«block»

Determine brake 

status

«block»

Calculate throttle 

setting

«block»

Throttle Control

Source: Method Park (2018)



System Architecture

Cruise Control – Technical architecture
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Cruise Control HMI 

Unit

Cruise Control System

Brake System

Engine Control

Wheel Sensor

current speed

pulse signal

button event throttle setting

brake status

Source: Method Park (2018)

Technical Architecture

Definition and deployment of architectural building blocks is part of the technical architecture

• Selection of microcontroller

• Selection of an operating system and other infrastructure services

• Allocation of architectural building blocks to physical elements

• Tasks to processors

• Components to isolation realms

• Etc.
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Memory-protection Model of AUTOSAR OS

30

trusted

application

Data

non-trusted

application

kernel

non-trusted

application

Task A

DataData
Data

CodeCode
Code

Code

Task B Task 

C

Task 

DData DataData
Data

Stack
Stack Stack Stack

kernel protection

control-flow isolation

application isolation

TCB

Source: M. Stilkerich: Memory Protection at Option (2012)

Technical Architecture: Deployment View for Spatial Isolation
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ASSIST: Scheduling at the Level of Architectures

How to derive a technical architecture from a functional architecture?

Define constraints for the technical architecture

• Hardware resources

• Temporal isolation and other timing properties

• Spatial isolation

• etc.

Solve Constraint Satisfaction Problem
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ASSIST

33

ASSIST: Mapping
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ASSIST is extended to output an initial operating-system configuration

Implementation-Level Analyses

• The actual implementation affects timing and memory-handling properties

• Therefore, the implementation has to be analyzed

• Source code

• Binary code

• Depending on the programming being used, these analyses differ

• Type-safe languages are already memory safe and support the correctness of memory
handling

• Programs coded in languages (e.g. C) that have a weak type system may be analyzed to
establish memory safety

• C programs are predominant in the embedded domain

• Semantic analysis and abstract interpretation in particular can be used to make C 
programs memory-safe

• Semantic analyses can be used to determine timing behavior

35



Semantic Code Analyses

Objective: Detection of runtime errors in programs (dynamic tests are often unsuitable)

Sound vs. Unsound:

Unsound tools report only a subset of actual runtime errors (false alarms and undetected
errors) 

Sound tools reliably report supported runtime-error types (false alarms, but no undetected
runtime errors) and prove their absence, accordingly

Quality of sound tools is measured by number of false alarms

False alarms require manual analysis efforts

High number of false alarms impedes efficient use during development („continuous
verification“): Example for a sound tool is Astrée, which makes use of abstract interpretation
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Source: M. Stilkerich (Schaeffler, 2018)

Retrofitting an Unsafe Language with Astrée

Astrée ensures memory safety by statically proving absence of certain types of runtime errors

• Invalid usage of pointers and arrays

• Invalid ranges and overflows

• Invalid shift argument

• Uninitialized variables

• Division or modulo by zero

• Failed or invalid directives

• Invalid function calls

• Data and control flow alarms

• Invalid concurrent behavior

Thus, we can establish memory safety in a C program! This, in turn, allows to

• Construct spatial isolation realms by logical separation of all global data

• Build application- and hardware-tailored, safe memory management

using Abstract Interpretation
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ARAMiS II: KESO goes ASSIST and Astrée

KESO : Research project (2005-2017) in the domain of safety-critical Java (SCJ) Real-Time 
Specification for Java (RTSJ)

• Respect of system description and the operating-system model (AUTOSAR OS)

• Semantic analyses on type-safe code, e.g. reachability analyses to provide software-based
spatial isolation and escape and region analyses for automatic memory management

Astrée extensions being developed in ARAMiS in cooperation with AbsInt:

• Respect AUTOSAR OS model

• Definition of spatial-isolation realms

• MCU‘s memory model

• Data classifications and assisted memory mapping

• Verification of synchronization mechanisms
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Real-Time Specification for Java (RTSJ)
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Memory management by means of logical memory types

• Local variables: Regional memory with smallest „scope“ (stack)

• ScopedMemory: Memory in scope of user-defined threads

• HeapMemory: Globally accessible, memory-managements strategy up tp the implementation
(e.g. garbage collector)

• ImmortalMemory: cf. C‘s global variables, statically allocated



Apply KESO‘s memory handling to Astrée

Two-dimensional data classification

• Respect of program semantics: cf. RTSJ‘s memory model; stacks, data segments

• Extension for constant data

• Respect of the microcontroller‘s physical memory architecture

Data classes

• Thread-local data, allocation in core-local memory, local access (e.g. stack assignment)

• Thread-local data, allocation in core-local memory, cross-core access

• Thread-global data, allocation in core-local memory

• Thread-global, core-global data

• Constant data

• True constants (e.g. placement in flashes PF0 / PF1)

• Runtime-constants (Calibration parameters)

For data classification, Astrée respects the OS‘s thread model and an application‘s OS 
configuration, the MCU‘s memories and the memory-safe C code

40

Respect the Memory Architecture: Infineon AURIX TC277

AURIX Bild?
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Source: S. Wegener: Towards Multicore WCET Analysis (2017)

Hardware Specification with ASSIST
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ASSIST is used to define the

hardware at the system-architectural

level

• Information about task setup and

isolation requirements is used to

compute valid mappings

• Information on the memories is

merely passed to Astrée

Source: R. Hilbrich (DLR, 2018)

Astrée: Operating-System and Memory-Scope Extensions

43



An Engineering Framework for Generic Application Software 
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An Engineering Framework for Generic Application Software 
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Variable (V)/ Function (F) 

Classification

Magic Memory-Handling 

Tool

Executable incl. Deployment

Linker Script (Memory-

Protection) Sections

VF-to-Memories Mapping 

(Tagged F/V)

Compiler+Linker

ASSIST: Solve Constraint

Satisfaction Problem

Artefact to be processed

Information

Analyzer/transformation tool

End product

Start

AUTOSAR OS

SW-Platform

Library 

Dependencies in Functional

Architecture

System Specification

System Configuration:

Mapping Constraints

Résumé

Construction of a SW Platform

• Generic applications developed using the Matlab / Simulink DSL

• ECU developed to construction-kit approach using a processor family

• Timing and memory analyses at the architecture and implementation level in ARAMiS II

Further reading:

Avoiding systematic faults in timing at the system-architectural level:

Evaluation of Architecture Variants for Hard Real-Time Systems

Real-Time Systems Lecture at Chair of Operating Systems, Computer Science Department at 
University of Erlangen-Nuremberg

ARAMiS II Research Project

Astrée

ASSIST

KESO
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Test tool development for electronic-control units (48V)

Case Study with TC3x Derivative

Timing Analysis via abstract interpretation and dynamic tracing with TimeWeaver

Scheduling Analysis with ASSIST at the level of logical architectures

Scheduling Analysis with TA Toolsuite and Chronsim at the technical architecture level

Safe memory mapping and management using Astrée and StackAnalyzer

Multi-level memory-protection analyses

AUTOSAR RTE Verification by abstract interpretation and application- and hardware-
specific analysis of synchronization patterns in the AUTOSAR OS / Runtime Environment

Virtual Prototyping with Vector VTT

RegTime: Timing analyses in control systems


