Energy-Aware Computing Systems

Energiebewusste Rechensysteme

XII. Research & Remarks

Timo Hönig

2019-07-25

2-14

Recap (I)

infrastructure

- lacktriangle indirect resource demand ightarrow costs
- must be considered for design and operation of system

metrics

- use-case specific metrics (i.e., PUE)
- correlation with heating, ventilation and air conditioning (HVAC)

systems

- temperature-aware workload placement
- building operating system services
- runtime system for heterogeneous HPC clusters

Recap (I)

infrastructure

- ullet indirect resource demand ightarrow costs
- must be considered for design and operation of system

metrics

- use-case specific metrics (i.e., PUE)
- correlation with heating, ventilation and air conditioning (HVAC)

J

Recap (II)

- uncharted lecture
- Topic: Energy-Efficient Optical Networks
- Speaker: Ralph Schlenk (technical manager in the software engineering department of the optical networks division at Nokia)

Agenda

Remarks

Evaluation

Research Projects and Thesis Topics

Postlude: "Three Dimensions"

©thoenig EASY (ST 2019, Lecture 12) Remarks

4 - 14

©thoenig EASY (ST 2019, Lecture 12) Remarks

5-14

Remarks

- Energy-Aware Computing Systems Lecture (SS 19)
 - General Topics and Basic Principles (Lecture 1 3)
 - Energy-Aware Components, Subsystems, and Systems (Lecture 5 7)
 - Energy-Aware System Software (Lecture 8 10)
- Research Papers
 - broad scope in topics and time
 - ullet embedded software o power provisioning in warehouse-sized computers
 - from $1994 \to 2019$

Remarks

Remarks

- Energy-Aware Computing Systems Lecture (SS 19)
 - General Topics and Basic Principles (Lecture 1 3)

Energy-Aware Computing Systems Lecture (SS 19) ■ General Topics and Basic Principles (Lecture 1 — 3)

■ Energy-Aware System Software (Lecture 8 — 10)

■ Energy-Aware Components, Subsystems, and Systems (Lecture 5 — 7)

- Energy-Aware Components, Subsystems, and Systems (Lecture 5 7)
- Energy-Aware System Software (Lecture 8 10)
- Research Papers
 - broad scope in topics and time
 - ullet embedded software o power provisioning in warehouse-sized computers
 - from $1994 \to 2019$
- Exercises
 - Energy Measurement
 - Energy Model
 - Energy Optimisation

Remarks

- Energy-Aware Computing Systems Lecture (SS 19)
 - General Topics and Basic Principles (Lecture 1 3)
 - Energy-Aware Components, Subsystems, and Systems (Lecture 5 7)
 - Energy-Aware System Software (Lecture 8 10)
- Research Papers
 - broad scope in topics and time
 - ullet embedded software o power provisioning in warehouse-sized computers
 - from $1994 \to 2019$
- Exercises
 - Energy Measurement
 - Energy Model
 - Energy Optimisation
- Excursion. Uncharted Lecture: Nokia

©thoenig EASY (ST 2019, Lecture 12) Remarks

5 - 14

(Ger.) Leistungsnachweis

- Major Course Assessment
- achievable credit points ■ 5 ECTS (European Credit Transfer System)
- corresponding to a face time of 4 contact hours per week
 - lecture and practice, with 2 SWS¹ (i.e., 2.5 ECTS) each
- German or English, thirty-minute oral examination
 - date by arrangement: send e-mail to thoenig@cs.fau.de
 - propose desired date within the official audit period
 - the exception (from this very period) proves the rule...

Major Course Assessment

(Ger.) Leistungsnachweis

- achievable credit points
 - 5 ECTS (European Credit Transfer System)
 - corresponding to a face time of 4 contact hours per week
 - lecture and practice, with 2 SWS¹ (i.e., 2.5 ECTS) each

¹abbr. for (Ger.) Semesterwochenstunden

©thoenig EASY (ST 2019, Lecture 12) Remarks

6 - 14

Major Course Assessment

(Ger.) Leistungsnachweis

- achievable credit points
 - 5 ECTS (European Credit Transfer System)
 - corresponding to a face time of 4 contact hours per week
 - lecture and practice, with 2 SWS¹ (i.e., 2.5 ECTS) each
- German or English, thirty-minute oral examination
 - date by arrangement: send e-mail to thoenig@cs.fau.de
 - propose desired date within the official audit period
 - the exception (from this very period) proves the rule...
- examination subjects
 - topics of lecture, blackboard practice, but also computer work
 - brought up in the manner of an "expert talk"
 - major goal is to find out the degree of understanding of inter-relations

¹abbr. for (Ger.) Semesterwochenstunden

Major Course Assessment

(Ger.) Leistungsnachweis

achievable credit points

- 5 ECTS (European Credit Transfer System)
- corresponding to a face time of 4 contact hours per week
 - lecture and practice, with $2\,\text{SWS}^1$ (i.e., $2.5\,\text{ECTS})$ each
- German or English, thirty-minute oral examination
 - date by arrangement: send e-mail to thoenig@cs.fau.de
 - propose desired date within the official audit period
 - the exception (from this very period) proves the rule...
- examination subjects
 - topics of lecture, blackboard practice, but also computer work
 - brought up in the manner of an "expert talk"
 - major goal is to find out the degree of understanding of inter-relations
- registration through "mein campus": https://www.campus.fau.de

¹abbr. for (Ger.) Semesterwochenstunden

©thoenig EASY (ST 2019, Lecture 12) Remarks

6-14

Evaluation

intermediate participation rate

target participation rate

Agenda

Remarks

Evaluation

Research Projects and Thesis Topics

Postlude: "Three Dimensions"

©thoenig EASY (ST 2019, Lecture 12) Evaluation

7 - 14

Evaluation

intermediate participation rate

target participation rate

Evaluation

Feedback and Discussion

©thoenig EASY (ST 2019, Lecture 12) Evaluation

9 - 14

©thoenig EASY (ST 2019, Lecture 12) Research Projects and Thesis Topics

10-14

Power-Aware Critical Sections

Agenda

Remarks

Evaluation

Power-Aware Critical Sections

Research Projects and Thesis Topics

Postlude: "Three Dimensions"

scalable synchronisation on the basis of agile critical sections

- infrastructure load-dependent and self-organised change of protection against race conditions
- linguistic support preparation, characterisation, and capturing of declared critical sections

 2 http://univis.uni-erlangen.de o Research projects o PAX

11-14

Power-Aware Critical Sections

scalable synchronisation on the basis of agile critical sections

infrastructure ■ load-dependent and self-organised change of protection against race conditions

linguistic support • preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
 - notation language for critical sections
 - program analysis and LLVM integration/adaptation

 2 http://univis.uni-erlangen.de \rightarrow Research projects \rightarrow PAX

© thoenig EASY (ST 2019, Lecture 12) Research Projects and Thesis Topics

11-14

Power-Aware Critical Sections

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support • preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
 - notation language for critical sections
 - program analysis and LLVM integration/adaptation

- power-aware system programming
 - mutual exclusion, guarded sections, transactions
 - dynamic dispatch of synchronisation protocols or critical sections, resp.
- tamper-proof power-consumption measuring
 - instruction survey and statistics based on real and virtual machines
 - energy-consumption prediction or estimation, resp.

©thoenig EASY (ST 2019, Lecture 12) Research Projects and Thesis Topics

 2 http://univis.uni-erlangen.de o Research projects o PAX

Power-Aware Critical Sections

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
 - notation language for critical sections
 - program analysis and LLVM integration/adaptation

- power-aware system programming
 - mutual exclusion, guarded sections, transactions
 - dynamic dispatch of synchronisation protocols or critical sections, resp.

 2 http://univis.uni-erlangen.de o Research projects o PAX

©thoenig EASY (ST 2019, Lecture 12) Research Projects and Thesis Topics

11 - 14

Power-Aware Critical Sections

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support • preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
 - notation language for critical sections
 - program analysis and LLVM integration/adaptation

- power-aware system programming
 - mutual exclusion, guarded sections, transactions
 - dynamic dispatch of synchronisation protocols or critical sections, resp.
- tamper-proof power-consumption measuring
 - instruction survey and statistics based on real and virtual machines
 - energy-consumption prediction or estimation, resp.
- DFG: 2 doctoral researchers. 2 student assistants

 2 http://univis.uni-erlangen.de o Research projects o PAX

Latency- and Resilience-Aware Networking

Latency- and Resilience-Aware Networking

real-time capable network communication

- transport channel for cyber-physical systems
- predictable transmission latency
- in a certain extent guaranteed quality criteria

 3 http://univis.uni-erlangen.de o Research projects o LARN

©thoenig EASY (ST 2019, Lecture 12) Research Projects and Thesis Topics

12-14

 3 http://univis.uni-erlangen.de o Research projects o LARN

©thoenig EASY (ST 2019, Lecture 12) Research Projects and Thesis Topics

12-14

Latency- and Resilience-Aware Networking

real-time capable network communication

- transport channel for cyber-physical systems
- predictable transmission latency
- in a certain extent guaranteed quality criteria

Auffassung von der kausalen [Vor]bestimmtheit allen Geschehens bzw. Handelns (Duden)

- latency-aware communication endpoints, optimised protocol stack
- specialised resource management, predictable run-time behaviour

Latency- and Resilience-Aware Networking

real-time capable network communication

- transport channel for cyber-physical systems
- predictable transmission latency
- in a certain extent guaranteed quality criteria

Auffassung von der kausalen [Vor]bestimmtheit allen Geschehens bzw. Handelns (Duden)

- latency-aware communication endpoints, optimised protocol stack
- specialised resource management, predictable run-time behaviour
 - in time (phase 1) and energy (phase 2) respect

 3 http://univis.uni-erlangen.de o Research projects o LARN

 3 http://univis.uni-erlangen.de o Research projects o LARN

Latency- and Resilience-Aware Networking

real-time capable network communication

- transport channel for cyber-physical systems
- predictable transmission latency
- in a certain extent guaranteed quality criteria

Auffassung von der kausalen [Vor]bestimmtheit allen Geschehens bzw. Handelns (Duden)

- latency-aware communication endpoints, optimised protocol stack
- specialised resource management, predictable run-time behaviour
 - in time (phase 1) and energy (phase 2) respect
- DFG: doctoral researchers, 2 student assistants (1 FAU, 1 Uni SB)

 3 http://univis.uni-erlangen.de o Research projects o LARN

©thoenig EASY (ST 2019, Lecture 12) Research Projects and Thesis Topics

12-14

Three Dimensions

Power, Time, ...

Agenda

Remarks

Evaluation

Research Projects and Thesis Topics

Postlude: "Three Dimensions"

©thoenig EASY (ST 2019, Lecture 12) Postlude: "Three Dimensions"

13-14

Three Dimensions

Power, Time, ...

...and Escher.

"Only those who attempt the absurd will achieve the impossible. I think it's in my basement... let me go upstairs and check."

- M.C. Escher

