Energy-Aware Computing Systems

Energiebewusste Rechensysteme

II. Principles

Timo Hönig

2019-05-02

Sutter '05 [7]

3 - 31

Agenda

Preface

Terminology

System Entities and Properties **Switching Circuits** Power and Energy Demand

Interlude: Dark Silicon

System Characterization

Basic Metrics

Extended and Composite Metrics

Summary

©thoenig EASY (ST 2019, Lecture 2) Preface

2-31

Preface: The Power Wall

©thoenig EASY (ST 2019, Lecture 2) Preface

Disambiguation: Energy-Aware Computing Systems

recap: meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

- 1. capacity for the exertion of power
- 2. a fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system

aware (old en.) gewær

- 1. having or showing realization, perception, or knowledge
- 2. state of being conscious of something

com·put·ing (lat.) computare: com (together) + putare (to settle)

- 1. task of making a calculation
- 2. to use a computer

sys-tems plural of (gr.) systemas: to place together

- 1. a regularly interacting or interdependent group of items forming a unified whole
- 2. a group of devices (...) or an organization forming a network especially for distributing something or serving a common purpose

©thoenig EASY (ST 2019, Lecture 2) Terminology

6 - 31

Energy-Aware Computing Systems

- leading questions \rightarrow system constraints
 - what is the average or maximum power demand? \rightarrow supply requirements
 - which limits (e.g., thermal) must be adhered to? \rightarrow demand limit
 - ullet is there a maximum energy demand? o extend system service duration
- metrics
 - what are the correct **metrics** to answer the leading questions?
 - what correlation towards other (non-functional) system properties must be respected?
 - what are the influencing factors and variables?
- methods
 - what are the correct **methods** to answer the leading questions?
 - how to determine the relevant base data (e.g., power and energy
 - ullet what is the correct momentum of analysis? o a priori / at runtime / a posteriori

Disambiguation: Energy-Aware Computing Systems

dissecting the terminology

energy	aware	computing	systems
energy	efficient	computing	systems
power	aware	computing	systems
power	efficient	computing	systems

energy vs. power

energy: capacity to do work power: rate of doing work

to be aware as a prerequisite to be efficient

aware : perception and sensing \rightarrow e.g., measure ground truth

efficient : retrospective, current, and predictive \rightarrow e.g., \uparrow results, \downarrow efforts also consider and reflect on: efficient vs. effective

efficient : useful work per quantity of energy invested

effective : degree of reaching a pursued goal

©thoenig EASY (ST 2019, Lecture 2) Terminology

7 - 31

Switching Circuit

dt. Schaltkreise

- switch: a device for making and breaking the connection in an *electric* circuit
- basic components in CMOS technology
 - transistors (imperfect switches)
 - wires (interconnect)
- transistor types
 - NMOS (n-type transistor)
 - PMOS (p-type transistor)

Basic System Components: Transistors

©thoenig EASY (ST 2019, Lecture 2) System Entities and Properties-Switching Circuits

11-31

Recap: Base Units in Electric Circuits¹

- Current I
 - flow of electric charge
 - Ampere, unit: A
- Voltage V
 - potential between two points (e.g., ground and V_{dd})
 - Volt, unit: V

■ Power P

- rate at which electrical energy is transferred by an electric circuit ⇒ power: rate of doing work
- Watt, unit: $W \rightarrow V \cdot A$...or: J / s

Energy E

- energy that is transmitted by electricity or stored in electrical fields
 ⇒ energy: ability to do work
- Joule, unit: $J \rightarrow V \cdot A \cdot s$...or: $W \cdot s$

¹Digest

Logic Gates

- NMOS and PMOS transistors
 - ...implement logic gates
 - ...switch capacitances

- charges move into and out of capacitors
 - input capacitances (e.g., gate capacitances)
 - output capacitances (e.g., wire length, fanout $\rightarrow \#$ driven gates)

©thoenig EASY (ST 2019, Lecture 2) System Entities and Properties-Switching Circuits

12-31

Power and Energy Demand of Systems

Definition (Energy Demand)

The energy demand E of a system is measured in joules (J) and is determined by the integral of power demand over time.

$$E_{\rm op} = \int_{t_0}^{t_1} p(t) \cdot dt$$

Example

The energy demand $E_{\rm op}$ that is required to execute an operation is calculated by integrating the time function of the power demand p(t) over the time $t_{op}=t_1-t_0$ required to run the operation.

Power and Energy Demand of Systems

Definition (Power Demand)

The power demand P of a system is measured in joules per second (J/s). One joule per second equals one watt (W).

$$P_{total} = \underbrace{\left(C_{load} \cdot f_{p} \cdot A \cdot {V_{dd}}^{2}\right)}_{P_{dynamic}} + \underbrace{\left(I_{short} \cdot V_{dd}\right)}_{P_{short-circuit}} + \underbrace{\left(I_{leak} \cdot V_{dd}\right)}_{P_{static}}$$

Components of Power Demand

The instantaneous power demand of a circuit is split into three components: **dynamic**, **short-circuit**, and **static** power demand. Dynamic and static power demand commonly dominate.

©thoenig EASY (ST 2019, Lecture 2) System Entities and Properties – Power and Energy Demand

16-31

Short Circuit and Static Power Demand

- Short-Circuit Power Demand
 - finite rise and fall times of voltages
 - NMOS/PMOS transistors conduct simultaneously $\Rightarrow P_{short} = I_{short} \cdot V_{dd}$

- Static Power Demand (Leakage)
- gate leakage
 - sub-threshold current
 - drain junction leakage
- Trends
 - $\,\blacksquare\,$ capacitances decrease \to less power is required to drive the capacitance
 - $\blacksquare \ \, \text{lower supply voltages} \to \text{lower leakage current}$
 - ullet but: lower threshold voltages o higher leakage
 - gap between voltage scaling and transistor scaling results in higher power density and dark silicon...

©thoenig EASY (ST 2019, Lecture 2) System Entities and Properties-Power and Energy Demand

Dynamic Power Demand

- Dynamic Power Demand
 - Capacitance $C_{load} \rightarrow \{ gate, diffusion, wire \}$ capacitance
 - Operating Frequency $f_p \rightarrow \text{clock frequency}$
 - Activity Factor $A \rightarrow$ fraction of clock frequency, $\{0...1\}$
 - ullet Supply Voltage $V_{dd} o (ext{dynamic})$ voltage that is required for operation

©thoenig EASY (ST 2019, Lecture 2) System Entities and Properties-Power and Energy Demand

17 - 31

Dennard Scaling Revisited: Dark Silicon

Interlude

- technology trend, state of the art
 - 2019: Core i9-7900X (14 nm, approx. 7 billion transistors, 140 W)
 - \blacksquare chip area unchanged $\Rightarrow \uparrow$ density of transistors $\Rightarrow \uparrow$ power density
 - result: violation of power constraints as to thermal limits
 - effect: hitting the utilization wall [8] leads to unpowered areas

Dark Silicon [2] and its impact...

Although cores fit onto die as to shrinking semiconductor scaling, they can't be powered simultaneously due to power constraints^a

^aat least not at with highest clock speed

- effective (and unbeloved) counter-measures
 - switch off cores
 - run cores with reduced clock speed
 - reschedule activities

Dennard Scaling Revisited: Dark Silicon

Interlude

Jahagirdar '12 [4]

Basic Metrics: Power

- Power P (Watt, unit: W or J / s)
 - rate at which electrical energy is transferred by an electric circuit ⇒ power: rate of doing work
- Power is a suitable metric for...
 - \blacksquare power supply constraints, cooling facilities \rightarrow peak power
 - lacktriangle prediction of heat dissipation o average and peak power

Dennard Scaling Revisited: Dark Silicon

- impact of dark silicon
 - future generation systems increasingly interweave design processes of hardware and software components
 - impose challenges for operating systems
 - strict focus on energy-awareness
- energy-aware system designs require...
 - comparison of systems with regards to different properties
 - power demand
 - energy demand
 - performance
 - latency
 - design criteria (static) → hardware and software
 - system planning (dynamic) \rightarrow hardware and software
- **metrics** and methods for system characterization

©thoenig EASY (ST 2019, Lecture 2) Interlude: Dark Silicon

22-31

Basic Metrics: Energy

- Energy *E* (Joule, unit: J or W · s)
 - energy that is transmitted by electricity or stored in electrical fields ⇒ energy: ability to do work
- Energy is a suitable metric for...
 - \blacksquare dimensioning of electricity supplies \to battery life
 - energy bill

Power 5 4 3 2 2 1 0 1 2 3 4 5 6 7 8 9

©thoenig EASY (ST 2019, Lecture 2) System Characterization – Basic Metrics

25-31

© thoenig EASY (ST 2019, Lecture 2) System Characterization – Basic Metrics

Basic Metrics: Power vs. Energy Revisited

- power and energy demand are insufficient metrics
- system characteristics may differ strongly even though power or energy characteristics are the same
 - \blacksquare performance \rightarrow execution time in systems
 - \blacksquare latency \to response time in networked systems
- extended metrics combine basic metrics (e.g., power, energy demand)
 with additional system properties (e.g., execution time)
- basic metrics are used to build different composite metrics
 - energy demand itself can be interpreted as a composite metric
 - $\begin{tabular}{ll} \hline & power-delay^* \ product \ (PDP): \\ power \ demand \ (in \ Watt) \cdot delay \ (in \ seconds) \rightarrow energy \ demand \ (in \ Joule) \\ \hline \end{tabular}$
- more complex metrics to be explored which consider and emphasize different system properties to varying degrees...

*delay: time unit, i.e., measured in seconds

© thoenig EASY (ST 2019, Lecture 2) System Characterization – Basic Metrics

26 - 31

Subject Matter

- **power** and **utilization walls** (dark silicon) forces drastic redesign of computing systems for energy awareness
- energy demand of computing systems must be seen in due consideration of other non-functional properties (e.g., performance)
- available metrics must be suitable for individual use
- reading list for Lecture 3:
 - ► Vivek Tiwari et al.

Power Analysis of Embedded Software: A First Step Towards Software Power Minimization

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1994.

Extended and Composite Metrics

- power-delay product (PDP): P_{avg} · t
 - average energy consumed per switching event
 - good for fixed voltage designs
- energy-delay product (EDP): $E \cdot t = P_{avg} \cdot t \cdot t$
 - equal weight for changes of **energy demand** and **performance**
 - Horowitz et al. [3] \hookrightarrow metric is misleading for systems with dynamic voltage scaling \to ED²P
- energy-delay-squared product (ED²P)
 - metric good for fixed micro architecture with dynamic voltage scaling
 - Brooks et al. [1]
- energy-delay-cubed product (ED³P)
 - further emphasize on performance, used for high-performance scenarios
 - Srinivasan et al. [6]

©thoenig EASY (ST 2019, Lecture 2) System Characterization – Extended and Composite Metrics

28 - 31

Reference List I

[1] BROOKS, D. M.; BOSE, P.; SCHUSTER, S. E.; JACOBSON, H.; KUDVA, P. N.; BUYUKTOSUNOGLU, A.; WELLMAN, J.; ZYUBAN, V.; GUPTA, M.; COOK, P. W.: Power-aware microarchitecture: design and modeling challenges for next-generation microprocessors. In: IEEE Micro 20 (2000), Nov. Nr. 6, S. 26–44

[2] Esmaeilzadeh, H. ; Blem, E. ; Amant, R. S. ; Sankaralingam, K. ; Burger, D. .

Dark silicon and the end of multicore scaling.

In: Proceedings of the 38th Annual International Symposium on Computer Architecture (ISCA), 2011, S. 365–376

- [3] HOROWITZ, M.; INDERMAUR, T.; GONZALEZ, R.:
 Low-power digital design.
 In: Proceedings of 1994 IEEE Symposium on Low Power Electronics, 1994, S. 8–11
- [4] JAHAGIRDAR, S.; GEORGE, V.; SODHI, I.; WELLS, R.: Power management of the third generation Intel Core micro architecture formerly codenamed Ivy Bridge. In: Proceedings of the IEEE Hot Chips 24 Symposium (HCS), 2012, S. 1–49

Reference List II

[5] POLLACK, F. J.:

New microarchitecture challenges in the coming generations of CMOS process technologies.

In: Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture, 1999

[6] Srinivasan, V.; Brooks, D.; Gschwind, M.; Bose, P.; Zyuban, V.; Strenski, P. N.; Emma, P. G.:

Optimizing pipelines for power and performance.

In: Proceedings of the 35th Annual IEEE/ACM International Symposium on Microarchitecture, 2002, S. 333–344

[7] SUTTER, H.:

The free lunch is over: A fundamental turn toward concurrency in software. In: *Dr. Dobb's journal* 30 (2005), Nr. 3, S. 202–210

[8] Venkatesh, G.; Sampson, J.; Goulding, N.; Garcia, S.; Bryksin, V.; Lugo-Martinez, J.; Swanson, S.; Taylor, M. B.:

Conservation Cores: Reducing the energy of mature computations.

In: Proceedings of the 15th International Conference on Architectural Support for Programming Languages and Operating Systems, 2010, S. 205–218

