O

Energy-Aware Computing Systems

Energiebewusste Rechensysteme

V. Components and Subsystems

Timo Honig

2019-05-23

A
Y

wim

Preface: The Parts vs. The Whole

, The Whole is Greater Than
The Sum of Its Parts” (Aristoteles)

= synergy — working together
= the purpose of individual parts (components) may be
unrelated to the achieved whole (overall system)

necessary preliminary work

= construction of systems
requires meaningful assembly
of the individual parts

m ..the sum of parts does not
become a greater whole
by accident...

Agenda

Preface
Terminology

Operating Domains
Scopes and Frontiers
Monitoring and Control

Components and Subsystems
Energy-Aware Processing Strategies
Data Processing and Computing (CPU)
Volatile Data (Uncore, Memory)

Summary

O ©thoenig EASY (ST 2018, Lecture 5) Preface

Abstract Concept: Components and Subsystems

m components and subsystems

= component: constituent part or element

= hardware components

< implementation of basic
system functions

< functional interactions
between components
implement subsystems...

o ©thoenig EASY (ST 2018, Lecture 5) Terminology

Abstract Concept: Components and Subsystems

Scopes and Frontiers

components and subsystems

= overall systems are composed of subsystem

= software subsystems

— hardware drivers and interaction — logic
— local operation with a global scope

= duty and high art of computing

- drive functionalities of hardware components

<~ correct

— efficient (i.e., performance
characteristics) o)

< with minimal effort (i.e., low [
energy demand) i

©thoenig EASY (ST 2018, Lecture 5) Terminology 7-29

Monitoring and Control

considerations with regards to the
impact and scope

local and global scope

= fast path to deep sleep state (i.e.,
without query towards higher level
abstractions)

= may (unnecessarily) stall other
components when functionality is
needed (e.g., ramp-up delay)

time frontier

m consider reordering of actions —
keep quality of service (e.g.,
performance) but reduce energy
demand?

= runtime reordering (dynamic),
programming reordering (static)

©thoenig EASY (ST 2018, Lecture 5) Operating Domains—Scopes and Frontiers 9-29

Energy-Aware Processing Strategies

higher level monitoring

= software tracks (global) system state
= operation states of components
(i.e., active, idle, standby, sleep)

diversified control

= components have varying
characteristics — different control
mechanisms

= subsystems that operate
components are heterogeneous...

..and so are the energy-aware processing strategies.

O ©thoenig EASY (ST 2018, Lecture 5) Operating Domains—Monitoring and Control 11-29

all processing strategies depend on individual system components
(— hardware) and responsible subsystems (— software)

. data processing and computing — CPU

= general purpose CPU cores as components
= strategies to reduce energy demand under acceptance of moderate
performance impacts

. volatile data — uncore, memory

= uncore and memory as components
= reduce energy demand of memory components under consideration of
necessary performance (i.e., memory bandwidth)

o ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Energy-Aware Processing Strategies 13-29

Data Processing and Computing CPU

Data Processing and Computing CPU

recap: conflicting goals for reducing the energy demand of m recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations computation-bound and memory-bound operations
1.05 T T T T 1.05 T T T T
e e
1.00 - g 1.00 - g
% 095 / %0,95 /
o b=
§: //A//./ +—+add reg [power demand % //A//./ +—+add reg [power demand
?0.85 e @go;i Jf.abel. %‘10'35 e %—x goto labell
~ I s : ~ el fretien
O—8r/w L1 cache O—8r/w L1 cache
oxcution tine 080 i ey vion 0.80 4—aread memory
B8 r/w memory BN r/w memory
075 333 4[‘)() 4‘66 X 5;3 d[MHG]AO 6&{) 7,"53 075 333 4(‘1(1 4&6 X 5%3 d[MHG](‘)O GAO 7,‘33
execution spee Z execution spee Z]
(8] [8]
naive approach: run memory-bound and CPU-bound threads with low m considerations and problems of the naive approach:

and high clock speed, respectively

m dynamic characteristics of workloads

= simple system model (# cores, interlocked voltages, cache size)
= input-depended, variable size of working set

m costs for frequency switching

©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 15-29 ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 15-29
Data Processing and Computing CPU Memory-aware Scheduling (Combining) CPU

recap: conflicting goals for reducing the energy demand of

. : ® contention between cores as to resource demand (i.e., cache, memory)
computation-bound and memory-bound operations
o m quad core processor (clock speed 1.6 GHz to 2.4 GHz)
100@ — . m shared L2 cache by cores in pairs, memory shared by all cores
; T

/A//./ —radd reg oover dmand
%—x goto label

o
S

o
2
7

energy performance ratio
=
o
3

A—A read memory
B8 r/w memory

| 1 | | 1 |
333 400 466 533 600 660 733
execution speed [MHz]

6

execution time
(normalized) 4

[1 instance

Eha e Hcalcli functign 3 O 2 instances
A—Aread L1 cache
G—8r/w Ll cache separate
execuion time 080 2 caches

[2 instances
19 shared caches
M 4 instances

[8] aluadd stream-fit2 stream-fit! ~ stream
. . . Figure 1. Normalized runtime of microbenchmarks running
improved energy-aware processing strategies on the Core2 Quad 4, 5]
1. memory-aware scheduling (combining strategy) '
2. load/store and execute (sequencing strategy) = aluadd: compute-bound
3. thread assignment to heterogeneous cores (assigning strategy) B stream{-fit2,-fit1}: memory-bound, varying size of working set
O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 15-29 0 ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 16-29

Memory-aware Scheduling (Combining) CPU

Memory-aware Scheduling (Combining) CPU

contention between cores as to resource demand (i.e., cache, memory)
quad core processor (clock speed 1.6 GHz to 2.4 GHz)

shared L2 cache by cores in pairs, memory shared by all cores

6

5
execution time
(normalized) 4

O 1 instance
O 2 instances
separate

caches
[2 instances
shared caches
M 4 instances

aluadd stream-fit2 stream-fit1 stream

Figure 1. Normalized runtime of microbenchmarks running
on the Core2 Quad
[4, 5]

penalty depends on contention <— process characteristics

identification of memory-bound process by number of memory
transactions

©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 16-29
Memory-aware Scheduling (Combining) CPU

proposed strategy: combined scheduling to reduce contention

co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]
epochs'cores2+3 . . .
core3 DDDDDDDDDDDDDDDD
corezl-lll-lll-lll-ll

WMDDDDDDDDDDDD:DDD
C°"’°I -I. I.I-I

epochs cores 0+1

Figure 4. Sorted scheduling. Bars correspond to memor){4y 5]
intensity.

group CPU cores into pairs of two

run processes with complementary resource demands on each pair

©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 17-29

Memory-aware Scheduling (Combining) CPU

O

proposed strategy: combined scheduling to reduce contention

co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]

epochs cores 2+3

mamDDDDD':'DDDDDDD:'D
corezl-lll-lll-lll-ll
mm:‘DDDEDDD:DDD‘:DDD
coreolll-lll-Ill-Ill-

epochs cores 0+1

Figure 4. Sorted scheduling. Bars correspond to memor){4r 5]
intensity.

scale to lowest frequency if no compute-bound processes are ready
— only memory-bound processes are ready

scale to highest frequency if at least one compute-bound process is
ready — best results (i.e., lowest EDP) [5]

©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 17-29

proposed strategy: combined scheduling to reduce contention

co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]
epochs'cores2+3 . . .
mmDDDDDDDDDDDDDDDD
cmll-lll-lll-lll-ll

WMDDDD:DDD:DDD:DDD
CoreoI. I -I.I-I

epochs cores 0+1

Figure 4. Sorted scheduling. Bars correspond to memor){4v 5]
intensity.

limitations and considerations

= inferences with scheduling strategy — risk of priority inversion
m scheduling policy on effective for specific sizes of working set
= memory hierarchy and cache sizes must be considered

0 ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 17-29

Load/Store and Execute (Sequencing) CcPU Load/Store and Execute (Sequencing) cPU

m proposed strategy: sequenced execution to extend phases of [
homogenous operations

proposed strategy: sequenced execution to extend phases of
homogenous operations

fundamental idea based on computer architecture which provides
performance improvements with decrease in complexity

m fundamental idea based on computer architecture which provides]
performance improvements with decrease in complexity

A7 «-400 . negative Toop count Access Execute
Memory A2 « 0 . initialize index P -
A3 « 1 . index increment
X2 «r . loadloop invariants into
wl r E-instructions X5 «t . ;‘eg;st(irs)
ry e loop:X3+z+10, A2 . load z(k+10 > "
il a i . X7+z+11,A2X4 . loadz(k+11) FEQ + 2+ 10, 12 o g o QEQ
d A-instructions “X2%F X3 X3 « X5 Crrz(k+10)-flt.mul t. t* AEQ « z + 11, A2 « Q
* k+11 AEQ « y, A2 X6 « X3 +f X4
& Y . 11(d ()k) A7 « A7 + 1 EAQ « AEQ *f X6
‘v | dat X6 « X3 +f X4 X4 « . loady
Decoupled Acce.ss/Execute '&.“___a_é,‘ﬂm_. XT*EX6 AT« A7+ 1 . r*z(x+10)+t*z(k+11)) x, A2 « EN .
Computer Architectures % I Execute X, A2 « X4 . ¥(k)*(al3£o]ve) . A2« A2+ A3
. \ data A2 « A2+ A3 . increment loop counter .
(Smith 1982, [7]) wag | - - Processor JAM(_]ocp " store intox(k)
EAQ . increment index
Access .
Processor AEBQ « Branchif A7< 0
Fig.2b. Compilation onto CRAY-1-11 ke Fig. 2c. Access and execute programs for
A X architecture straight-line section of loop
register I register
file EABQ file
Fig. 1. Conceptual DAE Architecture
O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 18-29 O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 18-29
Load/Store and Execute (Sequencing) cPU Load/Store and Execute (Sequencing) cPU
m create two streams for operations of the same kind m create two streams for operations of the same kind
Coupled Coupled

f

min fmin

tmin lc‘min i

min

Decoupled Decoupled
fmin fmax fmin fmax
access phase: load/store execute phase: compute access phase: load/store execute phase: compute
® gains and benefits (cf. [2
Access Phase Execute Phase & (cf. [2]) _
fetch data int h ; i dat = reduce voltage and frequency thrashing
| |
prej € C ata |.n O caches, fexecu € opera |.ons on data = eliminate unnecessary CPU stalling and memory wait cycles
write intermediate results in hot caches (i.e., Fmitati q "]
. B |imitations and considerations
to memory computations) _
h | lock q th hich clock q = compiler support — open target system and components
= run with low clock spee = run with high clock spee = synchronization efforts (i.e., branches)
O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 19-29 ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 19-29

Thread Assignment to Heterogeneous Cores CPU

Thread Assignment to Heterogeneous Cores CPU

proposed strategy: assigning homogenous operations to
heterogeneous cores

exploit characteristics at the hardware level (i.e., heterogeneous cores)

Highest Cortex-A 15 Operating Point
erdrive condition
/ —#—Cortex-A15

7 =B=Cortex-A7

Power

st|Cortex-A15 Operating Point

est Cortex-A7 Operating Point

perating Point

Performance

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 20-29

Thread Assignment to Heterogeneous Cores CPU

proposed strategy: assigning homogenous operations to
heterogeneous cores

exploit characteristics at the hardware level (i.e., heterogeneous cores)

application of previously
proposed strategies (i.e.,
combining, sequencing) Display and

Video

dependS On Sub-system

R | oo |

Mali-T6XX GPU

__L2 Cache

ADB-400 | ADB-400 ADB-400
I MMU-400 MMU-400 MMU-400

m last level cache
= memory interconnect

‘ CoreLink CCI-400 Cache Coherent Interconnect ‘

[TZC-400]
‘ DMC ‘ To Peripheral Interconnect
[oowiroor |

©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 20-29

Volatile Data

Uncore, Memory

proposed strategy: assigning homogenous operations to
heterogeneous cores

exploit characteristics at the hardware level (i.e., heterogeneous cores)

big.LITTLE system DynamIQ big.LITTLE system

Interrupt Controller Interrupt Controller
—

Rest of system Rest of system
(GPU, Video, Display, etc.) (GPU, Video, Display, etc.)

Shared memory
—

Coherent Interconnect Coherent Interconnect

Memory Controller

©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 20-29

CPU centric approaches (i.e., DVFS with general purpose CPU cores)
influence only parts of a system’s performance and energy demand
fine-grained energy demand processing strategies must consider
additional components

= uncore (caches, memory and 1/O controllers)
= memory
= (external) peripheral

Processor cores
9
Uncore components 11.8%
(non-memory)
12.2%
Memories

76%

Figure 1. Area breakdown of the OpenSPARC T2 SoC. [3]

o ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Volatile Data 22-29

Volatile Data: Caches, Memory and 1/O Controllers

Volatile Data: Memory Memory

8-Core Intel® Core™ i7-5960X
Processor Extreme Edition

18-Core Intel® Xeon™ E5-2696 v3 Processor

R g
Queue; Uncore, /0 [

Intel® Core™ i7-5960X Processor Extreme Edition Intel® Xeon™ E5-2696 v3 Processor
Transistor count: 2.6 Billion

ey) Transistor count: 5.96 Billion
Die size: 354 mm* (intel Die size: 662 mm*

“ 20MB of cache is shared across all 8 cores ** 45MB of cache s shared across all 8 cores

m until SandyBridge: linked core and uncore voltages and frequencies

m since Haswell: individual core and uncore voltages and frequencies

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Volatile Data 23-29

Considerations and Caveats

significant power demand of memory
DDR memory can operate at multiple frequencies

explore dynamic voltage and frequency scaling for memory

apply classic DVFS approach

= lower frequency directly reduces switching power
= lower frequencies allow lower voltages

8 200

800MHz +
1066MHz x|

150 [11333MHz %
100 A ii,@'/
B

M I 50 .
£3E23593F 0 2GBis 4GB/s 6GBis
" taestg Figure 5: Memory latency in as a function of channel

333MHz memory. bandwidth demand. []_]

2

Latency (ns)

0

BW/chan (GB/s)
IS

1 —

PES| —

DO —

©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Volatile Data 24-29

Subject Matter

®m subsystem control hardware at component level

= implementation of complex software mechanisms
= influence on multiple components — multiple dimensions

m cross-component interferences

® processor cores vs. uncore components vs. memory
= ..plus external data paths (I/O, network)

® impact of strategies

m overhead of energy-aware processing strategies
— state monitoring
— control algorithms

®m upcoming challenges

= non-volatile memory
= power capping at component-level

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—\Volatile Data

hardware components must be controlled by software subsystems

achieve low energy demand of the overall system without sacrificing
performance (too much)

composition of components and subsystem determines the benefit of
the overall approach — , greater whole”

reading list for Lecture 6:

» Yuvraj Agarwal et al.
Occupancy-Driven Energy Management
for Smart Building Automation
Proceedings of the ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Building (BuildSys), 2010.

25-29

o ©thoenig EASY (ST 2018, Lecture 5) Summary 27-29

Reference List |

Reference List Il

[1]

[2]

Davip, H. ; FaLLIN, C. ; GorBaTOv, E. ; HANEBUTTE, U. R. ; MuTLU, O. :
Memory Power Management via Dynamic Voltage/Frequency Scaling.

In: Proceedings of the 8th ACM International Conference on Autonomic Computing
(ICAC’11), 2011, S. 31-40

Koukos, K. ; BLACK-SCHAFFER, D. ; SpiLiorouLos, V. ; KAXIRAS, S. :
Towards More Efficient Execution: A Decoupled Access-execute Approach.
In: Proceedings of the 27th International ACM Conference on International
Conference on Supercomputing (ICS'13), 2013, S. 253-262

[3] L, Y.; MutLy, O. ; GARDNER, D. S. ; MITRA, S. :
Concurrent Autonomous Self-test for Uncore Components in System-on-Chips.
In: Proceedings of the 28th VLSI Test Symposium (VTS’10) IEEE, 2010, S. 232-237
[4] MERKEL, A. ; BELLOSA, F. :
Memory-aware Scheduling for Energy Efficiency on Multicore Processors.
In: Proceedings of the Workshop on Power Aware Computing and Systems
(HotPower'08), 2008, S. 123-130
[5] MERKEL, A. ; STOESS, J. ; BELLOSA, F. :
Resource-conscious Scheduling for Energy Efficiency on Multicore Processors.
In: Proceedings of the 2010 ACM SIGOPS European Conference on Computer
Systems (EuroSys’10), 2010, S. 153-166
0 ©thoenig EASY (ST 2018, Lecture 5) Summary —Bibliography 28-29

[6]

[7]

(8]

OUSTERHOUT, J. K. u.a.:

Scheduling Techniques for Concurrent Systems.

In: Proceedings of the 1982 International Conference on Distributed Computing
Systems (ICDCS'82) Bd. 82, 1982, S. 22-30

SwmitH, J. E.:

Decoupled Access/Execute Computer Architectures.

In: Proceedings of the 9th Annual Symposium on Computer Architecture (ISCA’82),
1982, S. 112-119

WEISSEL, A. ; BELLOSA, F. :

Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power
Management.

In: Proceedings of the International Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES’02) ACM, 2002, S. 238-246

o ©thoenig EASY (ST 2018, Lecture 5) Summary—Bibliography 29-29

