Energy-Aware Computing Systems

Energiebewusste Rechensysteme

IX. Energy-Aware Programming

Timo Honig

2019-07-04

wm
<>

Agenda

Preface and Terminology

System Activities and Energy Demand
Cross-Layer Considerations
Retrospective vs. Prospective

Energy-Aware Programming
HEAL, ROAM
Paper Discussion

Summary

O ©thoenig EASY (ST 2019, Lecture 9) Preface and Terminology 3-24

Energy-Aware Programming

motivation

= knowledge transfer:
development — execution phase

= reduction of work to
the necessary minimum

m carry out the remaining work in the
most efficient way

operational goals

= reduce guesswork by lower system
levels (i.e., system software,
firmware, and hardware)

= interweave static aspects (— ahead
of run time) with dynamic aspects
(— at run time)

Cross-Layer Considerations

m compiler optimization (e.g., loop
optimizations, aligned RAM access)

Application Code ® tracing and profiling Tools
(e.g., PowerTOP)

System Software ® energy management stack
and Firmware m latency hiding, race/crawl to sleep

Hardware Energy m dynamic voltage and frequency
scaling (DVFS)

m sleep states (e.g., CPU C-states,
device-specific power saving features)

Management Features

0 ©thoenig EASY (ST 2019, Lecture 9) System Activities and Energy Demand —Cross-Layer Considerations ~ 6—24

Retrospective vs. Prospective: Analysis

® statistics at process level (e.g., PowerTOP), unit of measurement is
wake-ups per second

m wake-ups cause the CPU to return from C-state, subsequent activities
(e.g., 1/0) are likely to follow

®m less wake-ups — lower energy demand

Process Activity

User Activity [Idle I Wake-Up [EZ Work

R 1/ |
O 1dle B Active

P

Time t

0 ©thoenig EASY (ST 2019, Lecture 9) System Activities and Energy Demand — Retrospective vs. Prospective
7-24

Retrospective vs. Prospective: Revisions and Impact

Process Activity 1

E = 68.84mJ

Process Activity 1' (1 + adjusted periodic wakeups)

E = 64.42m)J

Process Activity 1'' (1' + exclude idle times)

E =34.42mJ

[Idle I Wake-Up [Work
>

Time t

0 ©thoenig EASY (ST 2019, Lecture 9) System Activities and Energy Demand — Retrospective vs. Prospective
8-24

Retrospective vs. Prospective: Forward-Looking

Process Activity - \
7777 77 sr77
Wi v i
v 0 v
vz %% %
v v v
v %% v
v v v
v %% v
v v v
s 1277 s

f

ake-Up Work
I |
Time t

—_—

Testing

Development Defect

\/

Deployment _ ||

—

O ©thoenig EASY (ST 2019, Lecture 9) System Activities and Energy Demand — Retrospective vs. Prospective
9-24

Energy-Aware Programming

B proactive energy-aware computing

m cross-layer und cross-phase (positioning and momentum)
» focus: single-chip computing systems and HPC

m holistic analysis and evaluation of software components with regard
to their impact on the energy demand of the systems

—

. . e

S 5 S application processes =

=B

* e

Q* operating system =

— Il 2

aens (5]

- hardware @
N———

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 11-24

HEAL: Energy-Aware Programming

Software

Architecture und Hardware Platform

}

—> libfoo();

®
® .

int main(int argc, char **xargv) {

Program Library

void libfoo() {
“ANANNANAN~
ANNNNAN~
“ANNNNAN~

}

void libfoo() {
“ANANNNAN~
ANANNANAN~
“ANNNNAN~
“ANANNNAN~

ARM-Plattform 1: 1382n)]
ARM-Plattform 2: 650nJ [
ARM-Plattform 3: 493n] [
e ARM-Plattform 4: 378nJ C=
~> C PPC-Plattform 1: 738nJ [
PP PPC-Plattform 2: 489nJ =

N\

Energy Demand by Platform

x86-Plattform 1: 1430n] C—ommmm
%86 5| /x86-Plattform 2: 982nJ [——mm
x86-Plattform 3: 705n] [
x86-Plattform 4: 643n] [

® making energy demand estimates at the function level available
during development

®m basis for energy-aware programming decisions

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 12-24

HEAL: Architecture and Implementation

Malleability

Behavior Analysis Resources

malleability data

energy demand data
N i

Energy Models
Process

£

5
o Q//\c <z <7

®m determine malleability by program analysis

4

Generator ‘ ’ Analyzer

Energiebedarf in J

®m behavioral analysis with process execution and evaluation

m resource-demand analysis using energy models

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 13-24

HEAL: Program Example Fibonacci Sequence

Program: HEAL:
1 # modes: (l)ookup, static 1. path exploration (argv[1]: symbolic)
2 # (c)alculate, dynamic . .
3 # (m)emoisation, dynamic 2. generate program with concrete input
4
5 def main(): z.B. argv[1]: 'c', fnum: 42
6 mode = sys.argv[1] . .
7 fnum = 42 3. program execution and evaluation
8 .
0 if mode —= '1': — energy demand estimate
10 fib_lookup (fnum) @
11 elif mode == 'c': 3 o
12 fib_calc(fnum) @
11
i3 elif mode == 'm':
14 fib_calc_mem(fnum) @ 8
15 5
16 if __name__ == "__main__":
17 main()

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM

14-24

HEAL: Results and Open Questions

O cnergy demand estimates deviate on average by less than
9.1% compared to energy measurements

O the evaluation shows that the energy demand of functionally
identical processes deviate up to 3.9 times

P

bESA

\ @ T.Honig et al.: SEEP: Exploiting Symbolic Execution for Energy-Aware Programming
ACM SIGOPS Operating Systems Review Vol. 45, No. 3, 2012. Best of HotPower'l1l

Ly -

V ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 15-24

HEAL: Results and Open Questions

« comparison of (functionally identical) programs as to their
different non-functional properties

' energy-demand analysis tightly integrated with the
development process of software

. A e/) WW

@ T.Honig et al.: SEEP: Exploiting Symbolic Execution for Energy-Aware Programming
ACM SIGOPS Operating Systems Review Vol. 45, No. 3, 2012. Best of HotPower'l1l

V -

V ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 15-24

HEAL: Results and Open Questions

% missing and inaccurate energy models for hardware
components are the rule

¥ unused potential to further reduce energy demand by
pre-analysis of runtime energy-saving mechanisms

@ T.Honig et al.: SEEP: Exploiting Symbolic Execution for Energy-Aware Programming
ACM SIGOPS Operating Systems Review Vol. 45, No. 3, 2012. Best of HotPower'l1l

g

V ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 15-24

ROAM: Program Variant Generator and Analysis

/

Program Variant 1
Program
[

Program Variant 2

Generator
Analyzer

il Alternative Methods "

[Energy Measurements j@
o Soft/Hardware-

{

m generate program variants: programs with different
software/hardware configurations

B energy measurements with a measuring circuit which is based on a
current mirror for determining the energy demand

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 16-24

ROAM: Architecture and Implementation

® Composition H ® Analysis Run

composition: static preparation for testing

= heterogeneous hardware settings (z. B. energy saving features)
= different software settings (z. B. compiler)

analysis run: dynamic evaluation

m execution of program variants on different hardware platforms
= determination of execution time and energy demand by measurement

©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 17-24

ROAM: Experiments and Results

Composition Analysis Run

First experiment!: comparison of interface-compatible compilers

Energy
Normalized - Absolute

‘nsichneu‘ ‘ cover ‘

‘ GCC ‘ | [Clang ‘

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 18-24

ROAM: Experiments and Results

Composition Analysis Run
ERN BRE o
] —> V1 V2 V. -~ &
ERg =]<] R

First experiment!: comparison of interface-compatible compilers

GCC vs. Clang m in 80% of the cases, GCC generates more energy-efficient
program variants (up to a quarter lower energy demand)

B one program variant of Clang is approx. 10x more
energy-efficient than the corresponding variant of GCC

energy vs. time B no causal relationship between process energy demand and

execution time in 10 % of the program analyses

1Software: GNU GCC 4.8, LLVM Clang 3.4, Hardware: ARM Cortex-M0+ (Kinetis KLO02)

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 18-24

ROAM: Experiments and Results

Composition Analysis Run
EAND = o
3 —> V1 V2V — &
ERg =]<] Y -

Second experiment?: scaling of operating voltage and clock frequency

| »crawl” mode | ,race” mode
power demand Ecraml power demand o F.ce
|
execution time execution time

O 2Software: GNU GCC 4.8, Hardware: ARM Cortex-M0+ (Kinetis KL02, RUN/VLPR)

©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 18-24

ROAM

: Experiments and Results

.)
E SO S >.9
E SP S & S
> 2 SN O RN
b0 ! +31.6%
g o +17.9% |
£ ¥ ‘ ‘
m E 1 !
£ i i
5 05 —64.9% i
Z 1 1
0 i i
Q 1 &
= o | o N &
= ¥ o ¥ @ SN
v 2 q%\ W oo \7@ R bb? Gl
gz RS) K D
s < NN NN NN
g
5% 1
==
§ 0.5
Z —90.5% —90.5 %
0
‘insertsortl l recursionl
’ Crawl te Sleep H [Racete Sleep —‘

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM

18-24

O

ROAM: Experiments and Results

Composition Analysis Run

Second experiment?: scaling of operating voltage and clock frequency

race vs. craw ®m ,race” mode is commonly preferred to
maximize idle time (— exploit sleep modes)

m expected increase in performance occurs in
all test cases (i.e., shortening of the execution time)

energy vs. time m however, no causal relationship between process energy

demand and execution time in 20 % of the program analyses

2Software: GNU GCC 4.8, Hardware: ARM Cortex-M0+ (Kinetis KL02, RUN/VLPR)

©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 18-24

ROAM: Program Example Fibonacci Sequence (l1)

Program: ROAM:

modes: (1)ookup, static 1. generate software and hardware

(c)alculate, dynamic settings to be used
(m)emoisation, dynamic

1

2

3

4 2. generate program variants
5 def main():

6

7

8

9

hwop = roam_fetch_hwops () 3. process execution and evaluation
mode = sys.argv[1i]
fnum = 42 — energy demand measurements
— results evaluation

10 sw_hardware_mode (hwop) ;

11 if mode == '1':

12 fib_lookup (fnum)

13 elif mode == 'c': Q@ race/crawl

14 fib_calc(fnum) 3 2

15 elif mode == 'm': @ race 11

16 fib_calc_mem(fnum)

17 reset_hardware_mode(); @ crawl 8

18 5

19 if __name__ == "__main__":

20 main()

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 19-24

ROAM: Results

O configuration settings made by ROAM reduce hardware
energy demand by between 18 % and 65 %

O choosing the right compiler infrastructure can reduce the
energy demand by a factor of 10

==

Ti @ T.Honig et al.: Proactive Energy-Aware Programming with PEEK

&

USENIX TRIOS '14

O ©thoenig EASY (ST 2019, Lecture 9)

Energy-Aware Programming—HEAL, ROAM 20-24

ROAM: Results

« pre-analysis generates necessary a priori knowledge for
suitable hardware settings at process execution time

' energy measurement during analysis addresses unavailability
of energy models

| |

/ @ T.Honig et al.: Proactive Energy-Aware Programming with PEEK

i USENIX TRIOS '14

—

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—HEAL, ROAM 20-24

Agenda

Energy-Aware Programming

Paper Discussion

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—Paper Discussion 21-24

Paper Discussion

B paper discussion

> R. Pereira et al.
Energy efficiency across programming languages: how do
energy, time, and memory relate?
Proceedings of the 10th ACM SIGPLAN International Conference
on Software Language Engineering (SLE’'17), 2017.

O ©thoenig EASY (ST 2019, Lecture 9) Energy-Aware Programming—Paper Discussion 22-24

Subject Matter

® energy-aware programming connects static (ahead of run time) with
dynamic (at run time) analysis
m use cross-layer considerations to reduce energy demand

® pinpoint relevant program code sections for extended analysis and
manual labor

m reading list for Lecture 10:

» X. Fan et al.
Power provisioning for a warehouse-sized computer

Proceedings of the 34th International Symposium on Computer
architecture (ISCA'07), 2007.

O ©thoenig EASY (ST 2019, Lecture 9) Summary 23-24

Reference List |

[1] HONiG, T.; EBEL, C. ; KAPITZA, R. ; SCHRODER-PREIKSCHAT, W. :
SEEP: exploiting symbolic execution for energy-aware programming.
In: Proceedings of the 2011 Workshop on Power-Aware Computing and Systems
(HotPower '11) ACM, 2011, S. 17-22. —
Best of HotPower 2011 Award.

[2] HONIG, T.; JANKER, H. ; EBEL, C. ; MIHELIC, O. ; KAPITZA, R. ;
SCHRODER-PREIKSCHAT, W. :
Proactive Energy-Aware Programming with PEEK.
In: Proceedings of the 2014 Conference on Timely Results in Operating Systems
(TRIOS '14) USENIX, 2014, S. 1-14

O ©thoenig EASY (ST 2019, Lecture 9) Summary—Bibliography 24-24

	Preface and Terminology
	System Activities and Energy Demand
	Cross-Layer Considerations
	Retrospective vs. Prospective

	Energy-Aware Programming
	HEAL, ROAM
	Paper Discussion

	Summary

