C Object-oriented Programming

C Object-oriented Programming

C.1 Overview
m Motivation for the OO paradigm
m Software-design methods
m Basic terms of OO programming
m The Evolution of the object model
m Fundamental concepts of the OO paradigm
Object-Oriented Concepts in Distributed Systems c1

Jiirgen Kleinoder, Universitét Erlangen-Ntirnberg, IMMD 1V, 1999

C-OOP.fm 1999-05-06 16.32

C.2 References

C.2 Bgferences

ABC83. M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshot and R. Morrison, “An Approach
to Persistent Programming”, The Computer Journal, Vol. 26, No. 4, pp. 360-365, 1983.

Boo94. Grady Booch, Object-Oriented Analysis and Design (with Applications), Benjamin/
Cummings, Redwood (CA), 1994.

CoY9la. P. Coad, E. Yourdon. Object-Oriented Analysis. Prentice Hall, 1991.

Coa91b. P. Coad, E. Yourdon. Object-Oriented Design. Prentice Hall, 1991.

Cox86. Brad J. Cox. Object Oriented Programming. Addison Wesley, 1986.

CW85. Luca Cardelli, Peter Wegner, "On Understanding Types, Data Abstraction, and
Polymorphism", Computing Surveys, Vol. 17, No. 4, Dec. 1985.

GHJ+97. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software, 10th print, Addison-Wesley, 1997

Jac92. |. Jacobson. Object-Oriented Software Enineering — A Use Case Driven Approach.
Addison-Wesley, 1992.

MaM88. Ole Lehrmann Madsen, Birger Mgller-Pedersen, "What object-oriented programming may
be — an what it does not have to be", ECOOP ‘88 — European Conference on OO
Programming, pp. 1 - 20, S. Gjessing, K. Nygaard [Eds.]; Springer Verlag, Oslo, Norway,
Aug. 1988.

Object-Oriented Concepts in Distributed Systems c2

Jiirgen Kleindder, Universitat Erlangen-Nirnberg, IMMD IV, 1999

C-OOP.fm 1999-05-06 16.32

C.2 References

C.2 References (2)

Mey86. Bertrand Meyer, "Genericity versus Inheritance”, Conference on Object-Oriented
Programming Systems, Languages, and Applications - OOPSLA '87, pp. 391 - 405, Portland
(Oreg., USA), published as SIGPLAN Notices, Vol. 21, No. 11, Nov. 1986.

Mey88. Bertrand Meyer. Object Oriented Software Construction. Prentice Hall Inc., Hemel
Hempstead, Hertfordshire, 1988.

Oes97. B. Oestereich. Objektorientierte Softwareentwicklung: Analyse und Design. Oldenbourg,
1997.

Rum9l. J. Rumbaugh. Object-Oriented Modelling and Design. Prentice Hall, 1991.

Str91. Bjarne Stroustrup. The C++ programming language, 2. ed., Addison-Wesley, 1991.

Str93. Bjarne Stroustrup, "A History of C++", ACM SIGPLAN Notices, Vol. 28, No. 3, pp.271 - 297,
Mar. 1993.

Weg87. Peter Wegner, “Dimensions of Object-Based Language Design”, OOPSLA '87 — Conference
Proceedings, pp. 1-6, San Diego (CA, USA), published as SIGPLAN Notices, Vol. 22, No.
12, Dec. 1987.

Weg90. Peter Wegner, “Concepts and Paradigms of Object-Oriented Programming”, ACM OOPS
Messenger, No. 1, pp. 8-84, Jul. 1990.

Object-Oriented Concepts in Distributed Systems C.3

Jiirgen Kleinoder, Universitét Erlangen-Niirnberg, IMMD 1V, 1999

C-00P.fm 1999-05-06 16.32

Reproduktion jcer

C.3 Motivation for the OO Paradigm

C.3 Motivation for the OO Paradigm

1 Egals

Increasing complexity of large software
O "industrial-strength" software [Boo94]
0 impossible for one developer to comprehend all details of its design
0 very long life span
0 many users depend on their proper functioning
0 many people responsible for maintenance and enhancement

Software crisis

[Hardware increasingly capable

0 Software becomes larger and larger

O Costs for maintenance and enhancement rise dramatically

O Not enough good software developers to create the software users need

Object-Oriented Concepts in Distributed Systems c4

Jirgen Kleinoder, Universitét Erlangen-Ndrnberg, IMMD 1V, 1999

C-00P.fm 1999-05-06 16.32

Reprodktion jder o

C.3 Motivation for the OO Paradigm

1 Goals (2)

Increase the productivity of programmers
0 Design patterns for repeatedly occurring problems
0 Reusage of existing software

[Better extensibility of software by
modularization and clear interfaces

O Incremental development from small & simple to huge & complex systems
[0 Better control over complexity and costs of software maintenance

= Shift from the needs of the machine to abstractions of the problem domain
[Better understanding of the problem
O Terminology of the problem domain is reflected in the software solution
0 better understanding of the solution
A WA g e oo coormisssososisss OO

C.4 Software-Design Methods

C.4 Software-Design Methods

1 Classification [Bo0o94]

Top-down structured design (composite design)

Object-oriented design

2 Classes of Programming Languages

... at least the most important ones
Procedural / imperative
Functional

Object-oriented

Object-Oriented Concepts in Distributed Systems C.6
Jiirgen Kleinoder, Universitat Erlangen-Ndrnberg, IMMD 1V, 1999 C-OOP.fm 1999-05-06 16.32 .

C.4 Software-Design Methods

3 Top-Down Structured Design

~(Composite Design)
Units of decomposition: Subroutine
Algorithmic decomposition
Not suitable for structuring today’s large and complex software systems

Top-down structured design cannot describe:
— data abstraction & information hiding
— concurrency

Problems arise when applications are very complex or
when object-oriented languages have to be used

Widely used technique

Procedural languages ideally suited for implementations

Object-Oriented Concepts in Distributed Systems C.7
Jiirgen Kleinoder, Universitét Eriangen-Niirnberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32 :

C.4 Software-Design Methods

3 Top-Down Structured Design (2)

(Composite Design)

= Example:

update file

determine region

| formatting | |take new data|

calculate
checksum

SN S

Object-Oriented Concepts in Distributed Systems C.8
Jiirgen Kleinoder, Universitat Erlangen-Nirnberg, IMMD 1V, 1999 C-OOP.fm 1999-05-06 16.32

C.4 Software-Design Methods C.4 Software-Design Methods

4 Object-oriented Design 4 ... Object-oriented Design (3)
m Concepts reflected in the structure of modern programming languages

0 Smalltalk 0 Eiffel

Bertrand Meyer:[Mey88] O Cit 0 Java

Computing systems perform certain actions on certain objects; 0 Ada

to obtain flexible and reusable systems,
it is better to base the structure of software

.) m General basis: object-oriented decomposition
on the objects than on the actions.

m Advantages:
+ Reusage of common mechanisms
O software becomes smaller
+ Modifications and improvements of the software become easier
+ Results are less complex
+ Better understanding of the principal’s ideas

Object-Oriented Concepts in Distributed Systems C.9 Object-Oriented Concepts in Distributed Systems C.11

Jiirgen Kleinéder, Universitat Erlangen-Nirmberg, IMMD 1V, 1999 C-0OP.fm 1999-05-06 16.32 : Jiirgen Kleindder, Universitit Erlangen-Niirnberg, IMMD IV, 1999 C-00P.fm 1999-05-06 16.32
C.4 Software-Design Methods C.5 Object-oriented Programming
4 ... Object-oriented Design (2) C.5 Object-oriented Programming

m Software system is modeled as a collection of cooperating objects 1 Definition (Grady BOOCh)
m Each object is -
an instance of a class
in a hierarchy of classes
OOP is a method of implementation in which programs are

[] i : :
Example of a class hierarchy organized as
cooperative collections of objects

s memory -]

= | S each of which represents an

N - I$.

A = permanent read-only volatile |2 instance of some class

2 memory memory memory || S)

=3 \ | | 2 and whose classes are all members of a hierarchy of classes
] . .

: oo o5 AV = united via
a Floj <_| Floppy | | | | | | |
PRy inheritance relationships
Objects / Instances Classes
Object-Oriented Concepts in Distributed Systems C.10 Object-Oriented Concepts in Distributed Systems c.12

Jiirgen Kleindder, Universitat Erlangen-Nirnberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32 . Jiirgen Kleindder, Universitat Erlangen-Nirnberg, IMMD IV, 1999 C-00P.fm 1999-05-06 16.32

C.5 Object-oriented Programming

2 Basic Terms

Polymorphism

Destructor
Template
Message
Class Method

N

Inheritance

Type
Constructor
Overloading
Object-Oriented Concepts in Distributed Systems C.13
Jiirgen Kleindder, Universitét Erlangen-Niimberg, IMMD 1V, 1099 C-OOP.fm 1999-05-06 16.32 .

C.5 Object-oriented Programming

3 Objects & Methods

m Software developer’s view:
0 an object is a “thing” from the problem domain
O has a state
0 has behavior
0 has a unique identity

m Program-technical point of view:
0 an encapsulated unit of data and functions that operate on this data
0 an object has a clear interface (operations = methods)

OP 1
object
interface OP 2
OP 3 implementation of
OP 1,0P 2 and OP 3

[0 object-based programming languages [Weg87]

Object-Oriented Concepts in Distributed Systems C.14
Jirgen Kleindder, Universitét Erlangen-Nimberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32 °

C.5 Object-oriented Programming

4 Classes
m Software developer’s view: m Program-technical point of view:
0 a class is a set of objects with 0 a class is a template for objects
common structure and O each object is an
commeon behavior instance of a class

0 object creation =
instantiation

state description
QFE methods class
state of obj. 1 state of obj. 2
methods methods

object 1 object 2 object 3

instantiation

state of obj. 3
methods

[J class-based programming languages
= objects & classes

Object-Oriented Concepts in Distributed Systems C.15
Jiirgen Kleinoder, Universitét Eriangen-Niirnberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32 .

C.5 Object-oriented Programming

5 Objects and Classes in C++

m Class declaration similar to a structure declaration in C

m Access to members of an object (instance variables and methods) with
the operators . or -> , like the access to structure components

= Example:

/I Class counter
class Counter

private:
int value;
public:
void incr() { value++; }
void decr() { value--; }
int get_value() { return value; }

Object-Oriented Concepts in Distributed Systems C.16
Jirgen Kleindder, Universitét Erlangen-Nimberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32 °

C.5 Object-oriented Programming

6 7M£thod5 in C++

m Definition within a class declaration:
0 method is handled as inline function

m Definition separate from the class declaration
0 assignment to class with the scope operator ::
0 method invocations are handled like normal function calls

= Example:

class Counter {
private:
int value;
public:
void incr(); void decr(); int get_value();

{value++; }

{ value--; }
{ return value; }

void Counter::incr()
void Counter::decr()
int Counter::get_value()

Object-Oriented Concepts in Distributed Systems

Jirgen Kleinoder, Universitét Erlangen-Niimberg, IMMD 1V, 1999 C-OOP.fm 1999-05-06 16.32

7

a
[]

C.17

C.5 Object-oriented Programming

7 Instantiation in C++

m Instantiation of Objects either
0 statically at compile time, or
0 dynamically during run time

[J Static Instantiation

m By object definition

m Example:
void main()
Counter c1; I object c1 of class Counter
Counter *pc1; I pointer to an object of class Counter
}

Object-Oriented Concepts in Distributed Systems

Jiirgen Kleinoder, Universitét Erlangen-Nimberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32

O

O

_Instantiation in C++ (2)

Dynamic Instantiation

C++ operators new and delete

Example:

class Counter

0 oon J§
void main()

Counter c1; 1
Counter *pc1; 1l

pcl = new Counter;
pcl->incr();
cl.incr();

aélete pcl;

Object-Oriented Concepts in Distributed Systems
Jiirgen Kleinoder, Universitét Erlangen-Ncirmberg, IMMD IV, 1999

C.5 Object-oriented Programming

create object c1 statically
pointer to an object of class Counter

C.19

C-00P.fm 1999-05-06 16.32

7 Instantiation in C++ (3)

Constructor

C.5 Object-oriented Programming

Method for the initialization of objects

method name = class name

0 method is automatically invoked during instantiation

Example:

class Counter {

private:
int value;
public:
—» Counter(int c){ value = c; }
void incr() { value++; }
h
Counter c1(20); 1

cp = new Counter(30);

Object-Oriented Concepts in Distributed Systems
Jiirgen Kleinoder, Universitat Erlangen-Nirnberg, IMMD 1V, 1999

I constructor

create c1, initialize value to 20

C.20

C-00P.fm 1999-05-06 16.32

Object-Oriented Concepts in Distributed Systems
Jiirgen Kleinoder, Universitét Erlangen-Niirnberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32

Object-Oriented Concepts in Distributed Systems
Jiirgen Kleinoder, Universitat Erlangen-Ndrnberg, IMMD 1V, 1999 C-OOP.fm 1999-05-06 16.32

C.5 Object-oriented Programming

8 ngects and Classes in Java

[J Essential Differences to C++

m No static instantiation

m Dynamic instantiation O only references (pointers) to objects
[J access to object components through object reference and operator .

m No need to delete objects explicitly
[J automatic garbage collection

m Methods are implemented always in the class declaration
O but no in-line mechanism

= No pointer arithmetic

c.z21

C.5 Object-oriented Programming

9 Inheritance

m Relationship among classes where
one class shares the structure and/or behavior
defined in another class / other classes

| window |

A

| dialog |
\ dialog o
instance of an

[y/n dialog | | file dialog | inheriting class

inheritence hierarchy

c.22

C.5 Object-oriented Programming

9 Inheritance (2)

0 Terms
m Superclass / base class: class from which another class inherits
m Subclass: class which inherits from other class(es)
m Single inheritance: subclass has exactly one superclass
m Multiple inheritance: subclass has several superclasses

| window | | dialog | | file browser

A
| dialog | file dialog
single inheritence multiple inheritence
Object-Oriented Concepts in Distributed Systems C.23
Jiirgen Kleinoder, Universitét Erlangen-Ncirmberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32 h

C.5 Object-oriented Programming

9 Inheritance (3)

O

Software developer’s view
Specialization / generalization of classes
Common aspects of classes are collected in a superclass

Hierarchy of abstractions:
O from more general classes to specialized classes and vice versa

Documentation of the relationship between classes

Object-Oriented Concepts in Distributed Systems C.24
Jiirgen Kleingder, Universitét Erlangen-Niirmberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32 :

C.5 Object-oriented Programming C.5 Object-oriented Programming

9 Inheritance (4) 9 Inheritance (6)

[J Program-technical point of view [J Multiple Inheritance

0 additional methods 0 naming conflicts of variables or
methods of the different

= Extension of an existing class implementations = Problems:

AN

O additional data superclasses [dialog | [file browser |
m Code reusage: 0 inheritance of the same superclass
no reimplementation of inherited data and methods necessary through different paths
® Reimplementation of a method is possible, if the method of the superclass file dialog
is not appropriate for the subclass = Application:

m Methods of the superclass can be invoked at an object of the subclass O less important for code reusage

0 very important to describe

m Modifications of a superclass effect all subclasses type conformance
(central maintenance) (see section about typing)
Object-Oriented Concepts in Distributed Systems C.25 Object-Oriented Concepts in Distributed Systems c.27
Jiirgen Kleinoder, Universitét Erlangen-Nirnberg, IMMD 1V, 1999 C-OOP.fm 1999-05-06 16.32 h Jiirgen Kleinoder, Universitét Erlangen-Ncirmberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32 h
C.5 Object-oriented Programming C.5 Object-oriented Programming
9 Inheritance (5) 10 Inheritance in C++
[0 Reimplementation m Subclass inherits variables and methods of the superclass
m Reimplementation of a method: m Subclass may modify superclass
0 hides the method of the superclass 0 additional methods and variables

0 modified methods

draw window| = Methods of the subclass may access public and protected components of
_ o the superclass
hides o O public superclass
draw (®) O the interface of the superclass is inherited

0 private superclass
O the interface of the superclass is not inherited
0 default behavior: invocation of the subclasses’ method 0 objects of the subclass are not type-conform

0 invocation of the reimplemented method of the superclass?
m private data and methods of the superclass are not visible for methods of

the subclass

Object-Oriented Concepts in Distributed Systems C.26 Object-Oriented Concepts in Distributed Systems c.28
Jirgen Kleindder, Universitét Erlangen-Nurmberg, IMMD 1V, 1999 C-OOP.fm 1999-05-06 16.32 ° Jiirgen Kleinoder, Universitat Erlangen-Nirnberg, IMMD 1V, 1999 C-OOP.fm 1999-05-06 16.32 :

C.5 Object-oriented Programming

10 Inheritance in C++ (2)

[0 Example (1)

/I Class counter
class Counter

protected:
int value;
public:
void incr() { value++; }
void decr() { value--; }
int get_value() { return value; }

%

/I Subclass resettable counter
class RCounter : public Counter

private:
int initial;

public:
RCounter(int v) {initial = v; value = v; }
void reset() { value = initial; }

Object-Oriented Concepts in Distributed Systems C.29

Jirgen Kleinoder, Universitét Erlangen-Niimberg, IMMD 1V, 1999 C-OOP.fm 1999-05-06 16.32

C.5 Object-oriented Programming

10 Inheritance in C++ (3)

0 Example (2)

/I Class window
class Window

protected:
int x, y, width, height;
public:
virtual void init (int X, inty, int w, int hY{ initialize '}
virtual void move(int x, int y) { move window }
virtual void display() { display window }
virtual void delete() { remove window }

%

/I Subclass bordered window
class BorderedWindow: public Window

public:
virtual void display() { display bordered window }
virtual void change_width(int x) { change width '}
virtual void change_hight(int y) { change hight }
b
Ob/ectr%red Concepts in Distributed Systems C.30

Jiirgen Kleinoder, Universitét Erlangen-Nimberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32

C.5 Object-oriented Programming

11 Dynamic Binding

m Decision which method to execute at run time (dynamic)

Window w = new BorderedWindow();
w->display();

m This is also true if an object invokes a method at itself!

0 Example:
— move() finally calls display() to redraw the window
— BorderedWindow inherits move() from Window
— invoking move() at an instance of BorderedWindow finally calls
display() of BorderedWindow

the pointer this always references
the "whole object" and not just the
part of the superclass

Object-Oriented Concepts in Distributed Systems C.31
Jiirgen Kleinoder, Universitét Eriangen-Niirnberg, IMMD IV, 1999 C-OOP.fm 1999-05-06 16.32

C.5 Object-oriented Programming

11 Dynamic Binding (2)

m Without dynamic binding
“true inheritance” is not possible

O self reference (pointer this) is not
adjusted correctly

[Static Binding
Decision which implementation of a method is taken at compile time
(depending on the type of the pointer)

m In C++ only “virtual” methods are bound dynamic
0 other methods are generally bound static

m In Java all methods are bound dynamic
[0 static binding can be enforced by the keyword final in the method declaration
O such methods cannot be reimplemented in subclasses

public final void incr() { value += step; }

Object-Oriented Concepts in Distributed Systems C.32
Jiirgen Kleinoder, Universitat Erlangen-Nirnberg, IMMD 1V, 1999 C-OOP.fm 1999-05-06 16.32

