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C Object-oriented Programming

C.1 Overview
m  Motivation for the OO paradigm
m  Software-design methods
m Basic terms of OO programming
m  The Evolution of the object model
m  Fundamental concepts of the OO paradigm
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C.3 Motivation for the OO Paradigm

1 Egals

Increasing complexity of large software
O "industrial-strength" software [Boo94]
0 impossible for one developer to comprehend all details of its design
0 very long life span
0 many users depend on their proper functioning
0 many people responsible for maintenance and enhancement

Software crisis

[ Hardware increasingly capable

0 Software becomes larger and larger

O Costs for maintenance and enhancement rise dramatically

O Not enough good software developers to create the software users need
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C.3 Motivation for the OO Paradigm

1 Goals (2)

Increase the productivity of programmers
0 Design patterns for repeatedly occurring problems
0 Reusage of existing software

[ Better extensibility of software by
modularization and clear interfaces

O Incremental development from small & simple to huge & complex systems
[0 Better control over complexity and costs of software maintenance

= Shift from the needs of the machine to abstractions of the problem domain
[ Better understanding of the problem
O Terminology of the problem domain is reflected in the software solution
0 better understanding of the solution
A WA g e oo coormisssososisss OO
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C.4 Software-Design Methods

1 Classification [Bo0o94]

Top-down structured design (composite design)

Object-oriented design

2 Classes of Programming Languages

... at least the most important ones
Procedural / imperative
Functional

Object-oriented
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C.4 Software-Design Methods

3 Top-Down Structured Design

~(Composite Design)
Units of decomposition: Subroutine
Algorithmic decomposition
Not suitable for structuring today’s large and complex software systems

Top-down structured design cannot describe:
— data abstraction & information hiding
— concurrency

Problems arise when applications are very complex or
when object-oriented languages have to be used

Widely used technique

Procedural languages ideally suited for implementations
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C.4 Software-Design Methods

3 Top-Down Structured Design (2)

(Composite Design)

= Example:

update file

determine region

| formatting | |take new data|

calculate
checksum

SN S
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C.4 Software-Design Methods C.4 Software-Design Methods

4 Object-oriented Design 4 ... Object-oriented Design (3)
m  Concepts reflected in the structure of modern programming languages

0 Smalltalk 0 Eiffel

Bertrand Meyer:[Mey88] O Cit 0 Java

Computing systems perform certain actions on certain objects; 0 Ada

to obtain flexible and reusable systems,
it is better to base the structure of software

. ) m  General basis: object-oriented decomposition
on the objects than on the actions.

m Advantages:
+ Reusage of common mechanisms
O software becomes smaller
+ Modifications and improvements of the software become easier
+ Results are less complex
+ Better understanding of the principal’s ideas
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C.4 Software-Design Methods C.5 Object-oriented Programming
4 ... Object-oriented Design (2) C.5 Object-oriented Programming

m  Software system is modeled as a collection of cooperating objects 1 Definition (Grady BOOCh)
m Each object is -
an instance of a class
in a hierarchy of classes
OOP is a method of implementation in which programs are

[ ] i : :
Example of a class hierarchy organized as
cooperative collections of objects

s memory - ]

= | S each of which represents an

N - I$ .

A = permanent read-only volatile |2 instance of some class

2 memory memory memory || S )

=3 \ | | 2 and whose classes are all members of a hierarchy of classes
] . .

: oo o5 AV = united via
a Floj <_| Floppy | | | | | | | . . . .
PRy inheritance relationships
Objects / Instances Classes
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C.5 Object-oriented Programming

2 Basic Terms

Polymorphism

Destructor
Template
Message
Class Method

N

Inheritance

Type
Constructor
Overloading
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C.5 Object-oriented Programming

3 Objects & Methods

m  Software developer’s view:
0 an object is a “thing” from the problem domain
O has a state
0 has behavior
0 has a unique identity

m  Program-technical point of view:
0 an encapsulated unit of data and functions that operate on this data
0 an object has a clear interface (operations = methods )

OP 1
object
interface OP 2
OP 3 implementation of
OP 1,0P 2 and OP 3

[0 object-based programming languages  [Weg87]
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C.5 Object-oriented Programming

4 Classes
m  Software developer’s view: m  Program-technical point of view:
0 a class is a set of objects with 0 a class is a template for objects
common structure and O each object is an
commeon behavior instance of a class

0 object creation =
instantiation

state description
QFE methods class
state of obj. 1 state of obj. 2
methods methods

object 1 object 2 object 3

instantiation

state of obj. 3
methods

[J class-based programming languages
= objects & classes
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C.5 Object-oriented Programming

5 Objects and Classes in C++

m  Class declaration similar to a structure declaration in C

m  Access to members of an object (instance variables and methods) with
the operators . or -> , like the access to structure components

= Example:

/I Class counter
class Counter

private:
int value;
public:
void incr() { value++; }
void decr() { value--; }
int get_value() { return value; }
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C.5 Object-oriented Programming

6 7M£thod5 in C++

m Definition within a class declaration:
0 method is handled as inline function

m  Definition separate from the class declaration
0 assignment to class with the scope operator ::
0 method invocations are handled like normal function calls

= Example:

class Counter {
private:
int value;
public:
void incr(); void decr(); int get_value();

{value++; }

{ value--; }
{ return value; }

void Counter::incr()
void Counter::decr()
int Counter::get_value()
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C.5 Object-oriented Programming

7 Instantiation in C++

m Instantiation of Objects either
0 statically at compile time, or
0 dynamically during run time

[J Static Instantiation

m By object definition

m Example:
void main()
Counter c1; I object c1 of class Counter
Counter *pc1; I pointer to an object of class Counter
}
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_Instantiation in C++ (2)

Dynamic Instantiation

C++ operators new and delete

Example:

class Counter

0 oon J§
void main()

Counter c1; 1
Counter *pc1; 1l

pcl = new Counter;
pcl->incr();
cl.incr();

aélete pcl;
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create object c1 statically
pointer to an object of class Counter
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7 Instantiation in C++ (3)

Constructor

C.5 Object-oriented Programming

Method for the initialization of objects

method name = class name

0 method is automatically invoked during instantiation

Example:

class Counter {

private:
int value;
public:
—» Counter(int c){ value = c; }
void incr() { value++; }
h
Counter c1(20); 1

cp = new Counter(30);
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C.5 Object-oriented Programming

8 ngects and Classes in Java

[J Essential Differences to C++

m  No static instantiation

m  Dynamic instantiation O only references (pointers) to objects
[J access to object components through object reference and operator .

m  No need to delete objects explicitly
[J automatic garbage collection

m  Methods are implemented always in the class declaration
O but no in-line mechanism

= No pointer arithmetic

c.z21

C.5 Object-oriented Programming

9 Inheritance

m  Relationship among classes where
one class shares the structure and/or behavior
defined in another class / other classes

| window |

A

| dialog |
\ dialog o
instance of an

[ y/n dialog | | file dialog | inheriting class

inheritence hierarchy

c.22

C.5 Object-oriented Programming

9 Inheritance (2)

0 Terms
m  Superclass / base class: class from which another class inherits
m  Subclass: class which inherits from other class(es)
m  Single inheritance: subclass has exactly one superclass
m  Multiple inheritance: subclass has several superclasses

| window | | dialog | | file browser

A
| dialog | file dialog
single inheritence multiple inheritence
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C.5 Object-oriented Programming

9 Inheritance (3)

O

Software developer’s view
Specialization / generalization of classes
Common aspects of classes are collected in a superclass

Hierarchy of abstractions:
O from more general classes to specialized classes and vice versa

Documentation of the relationship between classes
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C.5 Object-oriented Programming C.5 Object-oriented Programming

9 Inheritance (4) 9 Inheritance (6)

[J Program-technical point of view [J Multiple Inheritance

0 additional methods 0 naming conflicts of variables or
methods of the different

= Extension of an existing class implementations = Problems:

AN

O additional data superclasses [ dialog | [ file browser |
m Code reusage: 0 inheritance of the same superclass
no reimplementation of inherited data and methods necessary through different paths
® Reimplementation of a method is possible, if the method of the superclass file dialog
is not appropriate for the subclass = Application:

m Methods of the superclass can be invoked at an object of the subclass O less important for code reusage

0 very important to describe

m  Modifications of a superclass effect all subclasses type conformance
(central maintenance) (see section about typing)
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C.5 Object-oriented Programming C.5 Object-oriented Programming
9 Inheritance (5) 10 Inheritance in C++
[0 Reimplementation m  Subclass inherits variables and methods of the superclass
m  Reimplementation of a method: m  Subclass may modify superclass
0 hides the method of the superclass 0 additional methods and variables

0 modified methods

draw window| = Methods of the subclass may access public and protected components of
_ o the superclass
hides o O public superclass
draw (®) O the interface of the superclass is inherited

0 private superclass
O the interface of the superclass is not inherited
0 default behavior: invocation of the subclasses’ method 0 objects of the subclass are not type-conform

0 invocation of the reimplemented method of the superclass?
m private data and methods of the superclass are not visible for methods of

the subclass

Object-Oriented Concepts in Distributed Systems C.26 Object-Oriented Concepts in Distributed Systems c.28
Jirgen Kleindder, Universitét Erlangen-Nurmberg, IMMD 1V, 1999 C-OOP.fm 1999-05-06 16.32 ° Jiirgen Kleinoder, Universitat Erlangen-Nirnberg, IMMD 1V, 1999 C-OOP.fm 1999-05-06 16.32 :




C.5 Object-oriented Programming

10 Inheritance in C++ (2)

[0 Example (1)

/I Class counter
class Counter

protected:
int value;
public:
void incr() { value++; }
void decr() { value--; }
int get_value() { return value; }

%

/I Subclass resettable counter
class RCounter : public Counter

private:
int initial;

public:
RCounter(int v) {initial = v; value = v; }
void reset() { value = initial; }
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C.5 Object-oriented Programming

10 Inheritance in C++ (3)

0 Example (2)

/I Class window
class Window

protected:
int x, y, width, height;
public:
virtual void init (int X, inty, int w, int hY{ initialize '}
virtual void move(int x, int y) { move window }
virtual void display() { display window }
virtual void delete() { remove window }

%

/I Subclass bordered window
class BorderedWindow: public Window

public:
virtual void display() { display bordered window }
virtual void change_width(int x) { change width '}
virtual void change_hight(int y) { change hight }
b
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C.5 Object-oriented Programming

11 Dynamic Binding

m Decision which method to execute at run time (dynamic)

Window w = new BorderedWindow();
w->display();

m  This is also true if an object invokes a method at itself!

0 Example:
— move() finally calls display() to redraw the window
— BorderedWindow inherits move() from Window
— invoking move() at an instance of BorderedWindow finally calls
display() of BorderedWindow

the pointer this always references
the "whole object" and not just the
part of the superclass
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C.5 Object-oriented Programming

11 Dynamic Binding (2)

m  Without dynamic binding
“true inheritance” is not possible

O self reference (pointer this) is not
adjusted correctly

[ Static Binding
Decision which implementation of a method is taken at compile time
(depending on the type of the pointer)

m In C++ only “virtual” methods are bound dynamic
0 other methods are generally bound static

m In Java all methods are bound dynamic
[0 static binding can be enforced by the keyword final in the method declaration
O such methods cannot be reimplemented in subclasses

public  final  void incr() { value += step; }
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