D Distributed Systems

D Distributed Systems

D.1

Overview

Definition and Motivation

Taxonomy

Communication Models

Selected Problems of Distributed Systems

Object-Based Distributed Systems

Object-Oriented Concepts in Distributed Systems D.1

Franz J. Hauck « Universitat Erlangen-Ntimberg = IMMD 1V, 1999

D-Distrib.fm 1999-05-18 09.32

D.2 References

D.Zﬁferences

General:

NeS98. J. Nehmer, P. Sturm: Systemsoftware, Grundlagen moderner Betriebssysteme. dpunkt,
1998.

Mul89. S. Mullender (Ed.): Distributed Systems. ACM Press, 1989.

Tan%4. A. S. Tanenbaum: Distributed Operating Systems. Prentice Hall, 1994.

Tan95. A. S. Tanenbaum: Verteilte Betriebssysteme. Prentice Hall, 1995.
Special Problems:

BiN84. A. D. Birrel, B. J. Nelson: “Implementing Remote Procedure Calls.” ACM Transactions on
Computer Systems 2(1), Feb. 1984, pp. 39-59.

Flyn72. M. J. Flynn: “Some Computer Organizations and Their Effectiveness.” IEEE Transactions on
Computers, C-21, Sept. 1992, pp. 948-960.

Lam78. L.Lamport: “Time, Clocks, and the Ordering of Events in a Distributed System.” R. S. Gaines
(Ed.): Communications of the ACM 21(7), July 1978, pp. 558-565.

Matt89. F. Mattern: Verteilte Basisalgorithmen. Springer, Informatik-Fachberichte Nr. 226, July 1989.

Object-Oriented Concepts in Distributed Systems D.2

Franz J. Hauck « Universitat Erlangen-Ntirnberg = IMMD 1V, 1999

D-Distrib.fm 1999-05-18 09.32

sotar 2L Auore

D.3 Definition and Motivation

D.3Eﬁnition and Motivation

m “Distributed System”
Definition according to Tanenbaum and van Renesse
0 It looks like an ordinary centralized system.
O It runs on multiple, independent CPUs.
O The use of multiple processors should be invisible (transparent).
m “Distributed System”
Definition according to Mullender
0 Additionally: Not any single points of failures
m Definitions are not precise
0 Sometimes it is hard to identify a centralized or a distributed system.
U Definitions are often based on certain characteristics that are important.
Object-Oriented Concepts in Distributed Systems D.3

Franz J. Hauck « Universitat Erlangen-Ntimberg « IMMD 1V, 1999

D-Distrib.fm 1999-05-18 09.32

D.3 Definition and Motivation

1 Advantages

Efficiency to cost ratio
0 High performance computers are very expensive
0 Microprocessors became very cheap

0 Multiple microprocessors can easily have more computing power than a high
performance computer and cost much less.

Costs
0 Distributed systems can be much cheaper at same capacity.
0 Expensive devices (e.g., color printers) can be shared by many users.

Efficiency

0 Distributed systems can be much more efficient than any available high
performance computer.

Object-Oriented Concepts in Distributed Systems D.4

Franz J. Hauck « Universitat Erlangen-Ntirnberg = IMMD 1V, 1999

D-Distrib.fm 1999-05-18 09.32

D.3 Definition and Motivation D.3 Definition and Motivation

1 Advantages (2) 1 Advantages (4)
m Centralized CPU vs. personal computer 0 Availability
0 Response time of centralized systems is very bad at high load. 0 Distributed systems can have redundant components
0 Personal computers are available for a single user. (CPUs, memory, communication channels, etc.)
0 More computing power available for a single user: better user interfaces, etc. 0 System just runs on if a component fails.
O Load Balancing U Reliability
0 Unlike individual PCs, a distributed system can grant peak performance to a 0 Reliability needs availability.
single user without annoying other users. 0 Reliable systems mask failures

(e.g., CPU failure, communication failures, etc.)
[0 Inherent distribution

0 Distributed systems can be made very reliable. However, this is a difficult
0 People are distributed task.
O Information is distributed
0 Devices are distributed
0 Distributed systems model the inherent distribution of today’s organizations.

O People can communicate via distributed systems. Some day, a distributed
system might replace the POTS (plain old telephone system).

Object-Oriented Concepts in Distributed Systems D.5 Object-Oriented Concepts in Distributed Systems D.7
Franz J. Hauck « Universitét Erlangen-Ndrnmberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 : Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 :
D.3 Definition and Motivation D.3 Definition and Motivation
1 Advantages (3) 2 Disadvantages
m Scalability A Concurrency
0 “No” restriction on the maximum size of the system. U Distributed systems are inherently concurrent.

VT O Controlling concurrency is complex.
[J Extensibility, incremental growth

0 Combining well-understood components can generate new problems not

O Itis easier to add a new computer to a distributed system than to extend a apparent to the components.

high performance machine.
A Propagation of effect
0O One malfunctioning computer can bring down the whole system.
0 There can be unforeseen dependences between components.

A Security
0 Itis harder to secure a physically distributed system.
0 Communication channels can be wire tapped and eavesdropped.
O Data access could not be controlled on certain sites.

Object-Oriented Concepts in Distributed Systems D.6 Object-Oriented Concepts in Distributed Systems D.8
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32 . Franz J. Hauck « Universitét Erlangen-Niirnberg = IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32 .

sotar 2L Auore

D.3 Definition and Motivation

2 Disadvantages (2)

A Efficiency
0 Distributed systems can only gain efficiency for the total output of the entire
system. If you cannot parallelize your application you cannot benefit from the
available high performance.
A Load Balancing
O Itis hard to balance the load because the physical distribution of resources
may not match the distribution of demands.
A Scalability
O A working system with ten nodes may fail miserably when it grows to a
hundred nodes.
A Complexity

O All'in all, a distributed system is much more complex than a centralized one
(e.g., dealing with partial failures, concurrency, load balancing, etc.)

Object-Oriented Concepts in Distributed Systems D.9
Franz J. Hauck « Universitét Erlangen-Ndrnmberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 :

D.4 Taxonomy

D.4 Taxonomy

m Classification according to Flynn (1972)

O SISD - Single Instruction Stream, Single Data Stream
all current single CPU computers (PCs, Mainframes)

O SIMD - Single Instruction Stream, Multiple Data Streams
high performance computers, vector computers

O MISD — Multiple Instruction Streams, Single Data Stream
no known system available that implements this category

0 MIMD — Multiple Instruction Streams, Multiple Data Streams
systems with independent CPUs

m Distributed systems are always seen as MIMD computers

Object-Oriented Concepts in Distributed Systems 10
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

sotar 2L A

D.4 Taxonomy

D.4 Taxonomy (2)

m Taxonomy of parallel and distributed computer systems (MIMD)

Parallel and

Distributed Systems

closely coupled loosely coupled

Multiprocessors Multicomputers
(shared memory) (private memory)
B Connection B Connection
us Oriented us Oriented

according to Tanenbaum 1995

Object-Oriented Concepts in Distributed Systems D.11
Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 :

D.4 Taxonomy

1 Multiprocessors

m Shared memory
O All CPUs share the memory
0 Memory is coherent
» Written data items are immediately visible to other CPUs

m Bus-based systems
0 CPUs access memory via a bus
O Limited number of CPUs
O Increased performance by CPU-side caches
0 Cache consistency achieved by bus snooping

O 0 B B B e

L1 1 [1 [] [Cache

\ \ \ \ \ Bus
Object-Oriented Concepts in Distributed Systems 12

Franz J. Hauck « Universitat Erlangen-Ntirnberg = IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.4 Taxonomy

1 Multiprocessors (2)

m Connection-oriented systems

0 For more than 64 processors bus-based systems fail

O Cross-bar switch Omega switching network

D D D D 2x2 Sv7itch

Alowas

moom

O Cross-bar switches need n? switches

0 Omega networks need nllbg,n switches

0 Slow memory access

0 Solution: hierarchical systems (NUMA = Non uniform memory access)

Object-Oriented Concepts in Distributed Systems D.13

Franz J. Hauck = Universitat Erlangen-Ntirnberg « IMMD 1V, 1999

D-Distrib.fm 1999-05-18 09.32

D.4 Taxonomy

2 Multicomputers

m Each CPU has its own private memory
m Bus-based multicomputers

0 Workstations in a LAN

|| |] Private Memory
O B B B B e
Network
0 CPUs connected to a fast communication bus
Object-Oriented Concepts in Distributed Systems D.14

Franz J. Hauck « Universitat Erlangen-Ntirnberg = IMMD 1V, 1999

D-Distrib.fm 1999-05-18 09.32

D.4 Taxonomy

2 Multicomputers (2)

m Connection-oriented multicomputers

0 Examples of topologies:

Grid Torus Hypercube

i

Biatiatiatas
v

[0 Each CPU is connected to a number of other CPUs

Computers in a wide area network?
0 Bus-based, as each CPU is virtually connected to every other
0 Connection-oriented, as there is no uniform access to other CPUs

Object-Oriented Concepts in Distributed Systems D.15

Franz J. Hauck « Universitat Erlangen-Ntimberg « IMMD 1V, 1999

3

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Niirnberg = IMMD IV, 1999

D-Distrib.fm 1999-05-18 09.32

D.4 Taxonomy

Network Operating Systems

Early distributed systems

Loosely-coupled systems
O Multicomputers usually in a LAN

One (but not necessarily the same) operating system on each system
0 Users act locally
0 Users have access to remote systems

* Remote login: rlogin faui04a

* Remote copy: rcp faui04a:aFile myCopy

¢ Shared file systems

 Shared devices (e.g., printers)

D.16

D-Distrib.fm 1999-05-18 09.32

D.4 Taxonomy

3 Network Operating Systems (2)

m Shared file systems

0 Users can operate on remote files as on local files

O File server provide remote access to local files

O Local file name is not necessarily equal to remote file name

Server
Rem
[o]
te Acce Ss
Client
Object-Oriented Concepts in Distributed Systems D.17
Franz J. Hauck » Universitat Erlangen-Ntrnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

der g s Ators.

D.4 Taxonomy

4 True Distributed Systems

Same operating system on each node

System behaves like a uniprocessor

0 Users should not see any differences
if they access the system from another node.

0 The identity of the local computer is not important.
0 File sharing semantics is usually well-defined.

Transparencies

0 Location transparency — location of resources is irrelevant

O Migration transparency — resources may move

O Replication transparency — resources may be replicated

0 Concurrency transparency — multiple accesses to a resource at a time
O Parallelism transparency — activities may be executed in parallel

Object-Oriented Concepts in Distributed Systems 18
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32 :

D.SEmmunication Models

Communication needs agreement
O Protocols

D.5 Communication Models

1 Protocol layers according to the ISO OSlI reference model

Application 1

Presentation

P N W A o N

Physical Network

Application 2

Layers

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999

D-Distrib.fm 1999-05-18 09.32

D.19

1 Protocol Layers (2)

Physical Layer
O Transmission of Os and 1s on the wire

Data Link Layer

D.5 Communication Models

0 Sending bits; separating frames or packets; checking frame integrity

Network Layer
0 Routing of messages in larger networks

Transport Layer
O Implementation of reliable connections
O Fragmentation and reassembling

Session Layer
0 Dialog control; synchronization

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Niirnberg = IMMD IV, 1999

D-Distrib.fm 1999-05-18 09.32

D.20

D.5 Communication Models

1 Protocol Layers (3)

Presentation Layer
O Transparency of different internal representations of data

Application Layer

0 Set of application protocols
« Electronic mail protocol
* File transfer protocol
* etc.

Object-Oriented Concepts in Distributed Systems D.21

Franz J. Hauck « Universitat Erlangen-Ntimberg = IMMD 1V, 1999

D-Distrib.fm 1999-05-18 09.32

D.5 Communication Models

2 Eljssiﬁcation

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999

Synchronicity
O Is the sender blocked until the receiver gets a message, or not?

Pattern of Interaction
0 Message Passing — a message is sent from one party to the other

0 Request-Reply (Client-Server) Interaction —
there is a message to the receiver and a message back to the original sender

Addressees
0 One receiver
O Multiple receivers (group communication, multicast, broadcast)

D-Distrib.fm 1999-05-18 09.32

D.22

D.5 Communication Models

2 Datagram Message

m Message passing; asynchronous send
A B

send m receive
s,
Sage

blocked
0 Sender can proceed immediately
0 Receiver may be blocked until a message arrives
0 Needs buffer space for not yet received messages
Object-Oriented Concepts in Distributed Systems D.23

Franz J. Hauck « Universitat Erlangen-Ntimberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.5 Communication Models

3 Bgndezvous Model

m Message passing; synchronous send
A

vs]

send receive
meSSQQe

ACK

blocked

0 Sender waits until message is received
0 Receiver may be blocked until a message arrives
O Needs no buffer space

Object-Oriented Concepts in Distributed Systems

Franz J. Hauck « Universitat Erlangen-Ntirnberg = IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.24

D.5 Communication Models D.5 Communication Models

4 Synchronous Request-Reply Model 6 Reliability
®m Request-reply interaction; synchronous send m |tis possible that messages get lost if we do not use a reliable connection
Client Server 0 Reliable connections introduce acknowledge messages (ACK)

O For simple message passing this means a lot of overhead

send receive

Cquest Message

[J Combining reliability with the request-reply interaction model

m Possible errors
0 Server crash

reply failure model is: total amnesia
working (server looses all knowledge of former requests)
blocked 0 Request message gets lost

0 Reply message gets lost

O Client waits until reply message is received

: . - .
0 Server may be blocked until a request message arrives Ideal semantics

O exactly-once

0O Client and server do not work concurrentl
y The request is processed exactly once at the server side.

O Well known representative is the RPC (remote procedure call)

Object-Oriented Concepts in Distributed Systems D.25 Object-Oriented Concepts in Distributed Systems D.27
Franz J. Hauck « Universitét Erlangen-Ndrnmberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 . Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 -
D.5 Communication Models D.5 Communication Models
5 Asynchronous Request-Reply Model 6 Reliability (2)
m Request-reply interaction; asynchronous send m At-Least-Once Semantics
Client Server U Request is processed once or more times
O Client will never notice an error message, but it may notice that the request
send request Messag receive was processed multiple times: operations need to be idempotent.
e

® Implementation

O If the client does not get a reply message after some time (time-out), it

rcv_reply resends the request.

repl . -,) . .
ply i » There is no additional functionality needed at the server side.
working) o
blocked » However, the server can ignore resent requests if it can detect them.
0 Client and server can work concurrently
0 Basis for group communication
Object-Oriented Concepts in Distributed Systems 26 Object-Oriented Concepts in Distributed Systems 28

D.
Franz J. Hauck « Universitat Erlangen-Ntirnberg = IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 Franz J. Hauck « Universitat Erlangen-Ntirnberg = IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

Auore

. . D.5 Communication Models
6 Reliability (3)
m At-Most-Once Semantics

0 The request is processed once or not at all.

® Simple implementation (at the client side only)

O If the reply message does not arrive within a certain period of time
an error is returned to the caller (at-most-once semantics).

0 Otherwise, the result is returned (exactly-once semantics).

m More complex implementation

0 Client repeats request message after time-out
(hides message losses on the wire).

0 Client has to identify server crashes (error code to the caller,
at-most-once semantics).

O Server keeps reply messages (enables resending if message gets lost)
0 Server has to identify and ignore old requests after server crash.
O If the result is returned we have exactly-once semantics.

Object-Oriented Concepts in Distributed Systems D.29
Franz J. Hauck » Universitat Erlangen-Ntrnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32 .

der g s Ators.

D.5 Communication Models

6 Reliability (4)

A Request message gets lost

Client Server
send receive

=
Q
[}
£
=

working

R blocked

reply messad reply
0 Request is repeated
Object-Oriented Concepts in Distributed Systems 30
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

sotar 2L A

D.5 Communication Models

6 Reliability (5)

A Processing has not yet finished

Client Server
send receive
=
>
Q
[}
E
= ignored)
working
blocked
reply
U Repeated request is ignored
Object-Oriented Concepts in Distributed Systems D.31
Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32
D.5 Communication Models
6 Reliability (6)
A Reply message gets lost
Client Server
send receive
- reply
>
Q
GE) working
resent blocked
0 Server keeps reply message and resends it
Object-Oriented Concepts in Distributed Systems 32

Franz J. Hauck « Universitat Erlangen-Ntirnberg = IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.5 Communication Models

6 Reliability (7)

A Server crashes
Client Server

send receive

I’equest meSSage

time-out

return error

O Server identifies old requests (old generation number) and returns error

code (at-most-once semantics)

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitat Erlangen-Niirnberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

working
blocked

D.33

g s Ators.

D.5 Communication Models

7 Bgmote Procedure Calls

m Request-reply model can be used to implement RPCs
[Birrell and Nelson 1984]

0 Instead of sending a request message, we invoke a remote procedure

U Instead of receiving a reply message, we get the results of the invocation

[Invocation of a procedure is location-transparent
0O Syntax may be the same for local or remote invocation
O Very intuitive
0 No need for explicit usage of send and receive primitives

m Implementing RPCs
0J Stub procedures on client and server side

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

D.34

7 Remote Procedure Calls (2)

® Implementing RPCs using stub procedures

D.5 Communication Models

Client Server

call A Procedure A

call call
4 4
Stub Procedure Ac Stub Procedure Ag
A A
send/receive receive/reply
Request Request
Reply Reply
Protocol Protocol

Transport or Network Layer
acc. to Nehmer 1995

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999

D-Distrib.fm 1999-05-18 09.32

D.35

7 Remote Procedure Calls (3)

m Client stub procedure

D.5 Communication Models

U Marshalling of parameters (composing a request message)

0 Sending request message
0 Waiting for reply message
0 Unmarshalling of the result
O Implementing delivery semantics

m Server stub procedure
0 Receiving request message
0 Unmarshalling of parameters
O Invoking server procedure
0 Marshalling of the result
0 Sending reply message
O Implementing delivery semantics

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Niirnberg = IMMD IV, 1999

D-Distrib.fm 1999-05-18 09.32

D.36

D.5 Communication Models

7 Remote Procedure Calls (4)

A Problems with RPCs
0 Marshalling of parameters

* Number and types must be known
(cmp. with C: printf("Count %d\n", count))

O Parameter passing semantics
* Call-by-value: no problem
« Call-by-reference: How to implement?
O No global variables
0O Semantics
« Server crashes; no exactly-once semantics
O Performance
» No concurrency
* Large parameter data
* Short procedures

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Ndrnmberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.5 Communication Models

7 Remote Procedure Calls (5)

®m Automatic generation of stub procedures
U Tools generate code for:
« parameter marshalling
« client stub procedure
* server stub procedure
« server loop waiting for request messages

m Binding client stubs to server stubs

0 Server stub has a network address that must be known to the client stub

0 Problem: How does the client know its server?

[1 Name server

0 Symbolic names are converted to network addresses

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

D.38

A

D.5 Communication Models

8 Name Server and Binding

m Well known name server converts names to addresses
0 Client knows a unique name for its server and the address of a name server
0 Name server converts this name to a dynamic network address

0 Client can always bind to the server
O Server has to register its dynamic network address with the name server

lien
Client 3 RPC Server

\J

2. Query 1. Register
Name Server

Object-Oriented Concepts in Distributed Systems D.39
Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 :

D.5 Communication Models

9 Group Communication

m Motivation
0 Often more than one server need to be informed
» multiple servers administrate a resource
« multiple redundant servers (no “single point of failure”)

m Terminology
O Unicast
* One receiver (1:1)
0 Anycast
* One receiver of many (1:1 of n)
0 Multicast
« Multiple receivers (1:n)
0 Broadcast
« All receivers of a special group (1:n)

Object-Oriented Concepts in Distributed Systems 40
Franz J. Hauck « Universitét Erlangen-Niirnberg = IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

D.5 Communication Models

9 Group Communication (2)

® Implementation of multicast
0 Using a hardware-based multicast
* e.g., Ethernet multicast
0 Using a hardware-based broadcast
* e.g., Ethernet broadcast
« filtering of not addressed parties at receiver side
0 Using unicast messages
« sending an individual message to each party

Kernel discards
message

1 Multicast 1 Broadcast 3 Unicasts

acc. to Tanenbaum 1995

Object-Oriented Concepts in Distributed Systems D.41
Franz J. Hauck « Universitét Erlangen-Ndrnmberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 .

D.5 Communication Models

9 Group Communication (3)

m Primitives for group communication
U Message passing

* Same primitives as for unicasts (send , receive)
and multiple addressees for send

« Different primitives: group_send , group_receive
0 Request-reply interaction
» Multiple rcv_reply invocations to get all reply messages

m Variants of group communication semantics
O Reliability: none, k-reliable, atomic/reliable
0 Message ordering: none, FIFO order, causal order, total order

Object-Oriented Concepts in Distributed Systems 42
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32 :

D.5 Communication Models

9 Group Communication (4)

Reliability

0 None: messages may arrive or may not arrive at a receiver

O K-reliable: at least k members of the group receive the message

O Atomic/reliable: all members or none of them receive the message

Message ordering

0O None: messages arrive in arbitrary order at a receiver

O FIFO order: messages arrive in the order sent by the sender

U Causal order: causality of messages is reflected in the order of arrival

« If a member of the group receives a message A and then sends a
message B to the group, each group member will first receive A and then
message B.

0 Total order: as causal order, but additionally not causally dependent
messages arrive in the same order at each receiver

Object-Oriented Concepts in Distributed Systems D.43
Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 :

D.5 Communication Models

9 Group Communication (5)

m Examples for different message ordering

FIFO Order
A
A A —
c / / A A /
b v e
Causal Order
A
A A .
© / / ' a4 /
D YV \ /7 [
Total Order
A
A A .
C /4 / ' a4 /
D Y \ /7" \[—
Object-Oriented Concepts in Distributed Systems 44

Franz J. Hauck « Universitat Erlangen-Ntirnberg = IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

D.6 Selected Problems of Distributed Systems

m Causality
0 Simple message passing may violate causality (Log file example)

" Processes that log events

B

o
Log \\

Log entries are not causally ordered

m Synchronization of processes
0 Semaphores and monitors depend on coherent shared memory
0 No shared memory on multicomputer systems

®m Synchronization of clocks
0 System clocks are never exactly synchronized in distributed systems

Object-Oriented Concepts in Distributed Systems

Franz J. Hauck « Universitat Erlangen-Nirnberg » IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

D.6 Selected Problems of Distributed Systems (2)

m Example: UNIX make command

ELGIS 0 Editor runs on machine A

test.o: test.c O Compiler runs on machine B

test: test.o

18 26 34 42 50
ClockofmachineB 11 ¢ 1 1 1 1 1 | 4

File test.o create(/

10 16 24 32 40
S Y I

Clock of machine A
File test.c written

[J Make command will not notice necessary update!!

Object-Oriented Concepts in Distributed Systems

Franz J. Hauck « Universitat Erlangen-Ntirnberg = IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

1 Logical Clocks

m Usually the precise absolute time is not necessary
0 We only need to know when one event causally depends on another
Oa - bisread “bis causally dependent on a”
Olfa -bandb - cthena - c (transitivity)
O If neither a -~ b nor b — ais true then a and b are said to be concurrent

m Clock condition:

O If an event b causally depends on an event a then timestamp of a must be
less than the timestamp of b

Oa-b 0O T()<T(b)

m Algorithm of Lamport (1978)
0 Messages as the only means for communication
O Fulfills clock condition

D.45 Object-Oriented Concepts in Distributed Systems D.47

Franz J. Hauck « Universitat Erlangen-Ntimberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

1 Logical Clocks (2)

m Example
A B C A B c
0 0 0 0 0 0
6 8 10 6 8 10
12 ™16 20 12 ™16 20
18 24 30 18 24 30
24 32 w0 24 32 N0
30 40 50 30 0 50
36 48 60 36 48 60
42 56 14 70 42 61 4 70
48 64 80 48 69 80
54147 72 90 70 14 77 90
60 80 100 76 85 100

without logical clocks with logical clocks

0 Send event happens before arrival: send time must be less than arrival time!
U Solution: adjust local clock

46 Object-Oriented Concepts in Distributed Systems 48
Franz J. Hauck « Universitét Erlangen-Niirnberg = IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

Auore

D.6 Selected Problems of Distributed Systems

1 Logical Clocks (3)

m Lamport’s algorithm

0 Each process has its own logical clock
(a counter LC that is used for timestamping of events)

0 Logical clock ticks for each local event

* Localevent:LC:=LC +1

» Send event: LC := LC + 1; send(message, LC)

* Receive event: receive(message, LCg); LC :=max(LC, LCg) +1
O Fulfills clock condition
O Reverse clock condition is not fulfilled!

*T(@)<Th) I a-b

Object-Oriented Concepts in Distributed Systems

Franz J. Hauck « Universitat Erlangen-Ntimberg = IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

1 7Loigical Clocks (4)

m How does it help?
0 Logging processes: timestamp log messages with local clock

A B Log A B Log
(0] [0] [0] (0] [0] [0]
20| [6] [8] 20| [6]| [8]
40| [12] [16] 40| [12] [16]
80| Naa| [a2 (80| 61| [32]
100 0 40 100 7 40
[140] [42\ [56] [140] [79 N\ [76]
60| [48] \ [64] [160] [85] \[84]
[180] [54| 40772 [180] [91] 40 92]
200] [60] [80] 200] [97] [100]

without logical clocks with logical clocks

O Logical clocks help to figure out an order of the log entries that reflects
causality

Object-Oriented Concepts in Distributed Systems

Franz J. Hauck « Universitat Erlangen-Ntirnberg = IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.50

Auore

1 Logical Clocks (5)

D.6 Selected Problems of Distributed Systems

m Does it help for the “make” example?

A B File server
0] [14 12
12 16— 14
14 18] |16
16 -« 20 18
18 22 20
20] N2a| [22]
22 26 24
24 28 W26
26 30 28
28 32 ?4 30
30 38 F [32
32 |« 36 34
34 38 36

without logical clocks

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999

1 Logical Clocks (6)

A: write test.c (timestamp 10)
FS:test.c written

A: make starts compiler

B: write test.o (timestamp 26)
A: write test.c (timestamp 24)
FS:test.o written

FS:test.c written

D.51

D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

m Does it help for the “make” example?

A B File server
10 |14 12
12 16 [> 14
14 18] |16
17 |=-—120 18
19 22 20
21 24 22
23 26 24
25 28 W27
27 |30 29
29 32 31
31 34/ 133
34 |--—136 35)
36 38 37

with logical clocks
g No!

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Niirnberg = IMMD IV, 1999

A: write test.c (timestamp 10)
FS:test.c written

A: make starts compiler

B: write test.o (timestamp 26)
A: write test.c (timestamp 25)
FS:test.o written

FS:test.c written

D.52

D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

2 Clock Synchronization

m Local clocks are realized in software
O Time chip signals interrupt that counts clock ticks
0 Local clock has a drift to UTC (Universal Coordinated Time)

dc
gt 1 ideal: (iT(t: =1
fast
O dc <1
i dt
£ slow
X
[5}
o
© >
UTC, t

0 Synchronize local clocks to minimize drift to UTC
0 Sources: DCF77, GEOS, GPS, Atomic clock

Object-Oriented Concepts in Distributed Systems D.53
Franz J. Hauck « Universitét Erlangen-Ndrnmberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 .

D.6 Selected Problems of Distributed Systems

3 l/gctor Time

m Sometimes we would like to know whether two events are causally
dependent by looking at their timestamps

0 Corresponds to reverse clock condition
O Impossible to derive with logical clocks

m Vector time introduced by Mattern (1989)
0 Each process i of k processes maintains a clock vector V; of k clocks
O Local event: V{[i] := Vi[i] + 1
0 Send event : V{[i] := Vj[i] + 1; send(message, V;)
0 Receive event: Vj[i] := Vj[i] + 1; receive(message, Vs);
Oj: Vil = max(Vi, Vsil)
0 Comparing two time vectors:
cas<b: = Oi:ali] <b[i]
cea<b: e (ash)O(a#b)
callb: = -(a<b)O~(b<a)

Object-Oriented Concepts in Distributed Systems 54
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

3 Vector Time (2)

m Example: Logging Processes

A B Log

(1,0,0) (0,1,0) (0,0,1)
(2,0,0) +(0,2,0) (0,0,2) A: (1.0.0
(3.0.0 x 039\ [003] MUY 5010
(4,0,0) (3,4,0) (1,04) |-
(5,0,0) (3,5,0) (1,2,5)
600)| _1G60| MGESE| | g5
(7,6,0) (3,7,0 (3,5.7) 7
(8,6,0) (3,8,0) \ (3,5.8))
(9.6.0 39,0) 359 | — A(200)
(10,6,0) (3,10,0) (3,5,10) N\
(11,6,0) (3,11,0)\ (8,6,10))—— A:(8,6,0)

0 Clocks start with concurrent timestamps

O From the log we can identify causality of all logged events

Object-Oriented Concepts in Distributed Systems D.55
Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

4 7I\/I£tual Exclusion

m Semaphore needs coherent shared memory
0 Multicomputers cannot use a semaphore

m Centralized semaphore server and request-reply interaction
U Centralized component (coordinator) acts like a semaphore
0 Every process has to contact the coordinator to get access to a critical region

0 B 5 B

Grant)
Request Request (is blocked)

Coordinator

O Process B sends a release message to the coordinator after leaving the
critical region

0 Single point of failure

Object-Oriented Concepts in Distributed Systems 56
Franz J. Hauck « Universitét Erlangen-Niirnberg = IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

4 Mutual Exclusion (2)

m Distributed algorithm
O Lamport (1978)
O Improved by Ricart and Agrawala (1981)

m Algorithm by Ricart and Agrawala
0 Total ordering of events
» Lamport’s logical clock value plus process ID (time, pid)

« The tuple makes timestamps of different events different and comparable
(if time is equal process ID of different events is not)

0 Group of processes that may enter a critical region

0 Process that wants to enter the region has to send a message to all others:
 group_send(LC, pid)
» Send must be reliable

» Process waits until all other group member grant permission to enter the
critical region

Object-Oriented Concepts in Distributed Systems D.57
Franz J. Hauck » Universitat Erlangen-Ntrnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32 .

der g s Ators.

D.6 Selected Problems of Distributed Systems

4 Mutual Exclusion (3)

0 If a process receives a message it does the following:

» The receiver is not in the critical region and does not want to enter it:
send(OK) to the original sender
» The receiver is in the region:
the message is enqueued
« The receiver is waiting for entering the critical region:
The receiver compares the timestamps of the incoming message
with the timestamp of its own request message
The own timestamp is lower:
the message is enqueued
The own timestamp is higher:
send(OK) to the original sender
0 After leaving a critical region a process sends back an OKfor all enqueued
request messages and deletes those messages

Object-Oriented Concepts in Distributed Systems 58
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

sotar 2L A

D.6 Selected Problems of Distributed Systems

4 Mutual Exclusion (3)

= No conflict: it clearly works

0 The sender immediately gets OKs
O No further messages are sent or enqueued

Object-Oriented Concepts in Distributed Systems D.59
Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 °

D.6 Selected Problems of Distributed Systems

4 Mutual Exclusion (4)

m Two processes want to enter the critical region at the same time

@D n OK

0 The process with the lowest timestamp will win

Object-Oriented Concepts in Distributed Systems 60
Franz J. Hauck « Universitét Erlangen-Niirnberg = IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

4 Mutual Exclusion (5)

m |sitreally better?
0 n points of failures
0 2(n — 1) messages
0O Group membership must be known to all other processes

m Hardly better than the centralized version
O Shows that it is possible to solve the problem by a distributed algorithm
0 Good example for distributed algorithms

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Ndrnmberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

5 Election Algorithms

m Problem
0 Find out a (new) coordinator, initiator, sequencer, or something similar
0 After the run of the algorithm
« one group member should be the coordinator,
« all other group member should know who was elected.

O Multiple processes may start the election, but only one process will be
elected.

6 Deadlock Detection

m Problem
0 Find out whether some processes are involved in a deadlock
O Traversing the distributed dependency graph

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

Object-Oriented Concepts in Distributed Systems
Franz J. Hauck « Universitét Erlangen-Niirnberg = IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

D.6 Selected Problems of Distributed Systems

7 Distributed Garbage Collection

m Problem
0 Find out data object that are not referenced any more
0 Traversing the distributed reference graph

8 Echo Algorithms

m Problem

0 Distributed information to all of not fully interconnected processes and
compute a function (e.g. maximum of the output of all processes)

D.63

D.7 Object-Based Distributed Systems

D.7 Object-Based Distributed Systems

m So far: processes
O Processes & message passing
0 Processes & remote procedure calls

m Object-based programming
0 Objects
O Classes
0 Methods, method invocation

O Inheritance (object-oriented programming)

[0 Systems that are distributed and object-based

D.64

D.7 Object-Based Distributed Systems

1 Centralized-Object Approach

D.7 Object-Based Distributed Systems

1 Centralized-Object Approach (3)
m Objects as distributable entities
0 Objects are distributed on several nodes
O Objects communicate with each other

m Object mobility
0J Objects may migrate from one node to the other

0 Remote method invocation

Reference

0 Stubs have to be created for all references of the moved object
0 Local stub pairs can be abbreviated

Object-Oriented Concepts in Distributed Systems D.65 Object-Oriented Concepts in Distributed Systems
Franz J. Hauck » Universitat Erlangen-Ntrnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32 . Franz J. Hauck « Universitat Erlangen-Nirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

D.67

D.7 Object-Based Distributed Systems

1 Centralized-Object Approach (2)

D.7 Object-Based Distributed Systems

1 Centralized-Object Approach (4)
®m Implementing remote method invocation

A Disadvantages
U Stub objects similar to stub procedures

0 No transparent replication as object is a centralized entity

Node A Node B Node A Node B Node C
) Server
Client Client Stub Stub Server
Object Object >
— > -
A
O In general:
Y Quality-of-service requirements often need object code at the client side!
Request Request . Rep"cation
Reply Reply)
Protocol Protocol Caching
‘ f » Bandwidth reservation
Transport or Network Layer * etc.
O Client-stub object represents server object at client's node
Object-Oriented Concepts in Distributed Systems D.66 Object-Oriented Concepts in Distributed Systems D.68
Franz J. Hauck « Universitat Erlangen-Nirberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 : Franz J. Hauck « Universitat Erlangen-Nirnberg « IMMD 1V, 1999 :

D-Distrib.fm 1999-05-18 09.32
Auore

D.7 Object-Based Distributed Systems

2 Fragmented-Object Approach

m Distributed objects consist of fragments that can be spread over multiple
nodes

O Fragments communicate with each other
0 Method invocation is always done locally (local fragment is needed)

Node A Node B

O

Node C
Fragmented Object
Object-Oriented Concepts in Distributed Systems D.69
Franz J. Hauck » Universitat Erlangen-Ntrnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32 .

D.7 Object-Based Distributed Systems

2 Fragmented-Object Approach (2)

J Advantages

U More general; includes the centralized object approach
« one fragment is the main object
« other fragments are stubs

O Arbitrary communication between fragments
« group communication for fragments replicating the object’s state
« real-time or transactional communication
» communication with the object is always local

O “Intelligent stubs”
« local fragment can replicate or cache data of the object
* local fragment can compute methods that do need little of the object’s data

Object-Oriented Concepts in Distributed Systems 70
Franz J. Hauck « Universitét Erlangen-Niirnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32

sotar 2L A

D.7 Object-Based Distributed Systems

2 Fragmented-Object Approach (3)

A Disadvantages
0 Programmer has to build up the object-internal communication by his own
« tools and libraries may help (e.g., stub fragment generator)
* special name services may be needed
0 System does not know about stubs

* Somehow, the system has to load the fragment code from somewhere
whereas it otherwise only has to generate a stub.

Object-Oriented Concepts in Distributed Systems D.71
Franz J. Hauck « Universitét Erlangen-Ndrnberg « IMMD 1V, 1999 D-Distrib.fm 1999-05-18 09.32 :

D.7 Object-Based Distributed Systems

2 Fragmented-Object Approach (4)

= Object mobility

0 Mobility is relative because the object is always accessed via a local
fragment

O Fragments may be mobile: fragments need to be replaced by one another

Node A Node B
Node C
Fragmented Object
Object-Oriented Concepts in Distributed Systems 72
Franz J. Hauck « Universitét Erlangen-Niirnberg = IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32 .

D.7 Object-Based Distributed Systems

2 Fragmented-Object Approach (5)

m Example:

0 A new main fragment is built up at the side of stub fragment, takes over the
essential data from the old main fragment, and replaces the stub.

0 The old main fragment is replaced by a new stub fragment

Node A Node B

L
g

Object-Oriented Concepts in Distributed Systems D.73
Franz J. Hauck » Universitat Erlangen-Ntrnberg « IMMD IV, 1999 D-Distrib.fm 1999-05-18 09.32 .

Fragmented Object

