
CHAPTER 9

ReiserFS for Linux

1

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

One of the earliest journaling file systems for Linux was ReiserFS. This project was
started by a remarkable person, Hans Reiser, a young Ph.D. in computer science.
Hans Reiser is a harsh critic of mediocrity in operating system design and soft-

ware design in general. As a strong believer in the thorough implementation of excellent
design, he felt compelled to start his project as proof of his ideas about file systems. The
result, ReiserFS, is remarkable most of all for it’s scientific and intellectual approach to
design and programming. However, it’s biggest shortcoming is its poor interaction with
other Linux kernel components (like NFS, for instance). Still, ReiserFS has now been in
use for a few years and many users are quite satisfied with it, for example, the mp3.com
Web site. The SuSE distribution was ‘ReiserFS’s earliest adopter and has been supporting
it since release 6.2 of SuSE Linux.

The main goal of ReiserFS is to provide reasonably fast recovery after a crash, and to
have transactional file system meta-data updates. ReiserFS is fast, especially for small
files and also for directories with many files in them. One of the future goals is to have
write-ahead logging at least as fast as the original file system with preserve lists turned
on. In this chapter we will get to know the details of the ReiserFS design and concepts as
well as more practical issues, such as installation, administration, etc.

THE FILE SYSTEM NAME SPACE
One of ReiserFS’s central concepts is the unified name space. Ideally, Hans Reiser would
like to create a file system composed of objects that are both ‘files’ and directories’.

In this example, bmoshe is a user, bmoshe/mail is an inbox, bmoshe/mail/Mes-
sage-ID/20000615091245.A2500@moshebar.com is an e-mail, and bmoshe/mail/Mes-
sage-ID/20000615091245.A2500@moshebar.com/to might be the To: field of the header
of that e-mail. Combined with groupings, I should be able to look for:

mail/[from/Avivit phones]

to find all of Avivit’s e-mails on phones.
Such a unified and closed name space potentially has a big impact on the ease of

programming, especially object-oriented (OO) programming. As you can see from
the line below, every object can naturally be thought of as it’s own NamingContext,
with its fields/accessor and mutator methods as the subnames. So, to paraphrase the
above example:

moshe.getMailBox().getMessageByID(“20000615091245.A2500@moshebar.com”)

Those familiar with the Plan 9 and Inferno operating systems might find similarities,
and rightly so. A unified name space, such as that proposed by Hans Reiser, is nothing
but an “everything-is-a-file” concept, turned upside down.

There are, however, still some conceptual anomalies in his proposed abstraction of a
file system. First of all, the problem with relying on attributes is that they break closure,

2 Linux Fi le Systems

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

since attributes are not objects. In fact, they are not even object fields (although they may
be exposures of such fields).

Unifying Reiser’s groupings and orderings may prove a difficult task.As Reiser puts
it, hypersemantics attempts “to pick a manageably few columns which cover all possible
needs. Generalization, aggregation, classification, and membership correspond to the
is-a, has-property, is-an-instance-of, and is-a-member-of columns, respectively.” The
problem, Reiser pointed out, is that you must know the relationship in order to be able to
search for it. Using Reiser’s example, you can’t find Santa Claus without reindeer, unless
you know how to decompose the propulsion-provider-for relationship into the above ca-
nonical relationships.

So, as you can see, name space unification and closure still remain to be explored. As
such, using ReiserFS for a production system might prove reliable and efficient, but you
will still be using a proof-of-concept file system or a research-and-development tool, and
not a product by any means.

Let’s now explore some more of ‘ReiserFS’s technical design concepts.

BLOCK ALIGNMENTS OF FILE BOUNDARIES
ReiserFS aligns file boundaries with blocks on the disk. It does so for a number of reasons:
-to minimize the number of blocks a file is spread across (which is especially beneficial for
multiple block files when locality of reference across files is poor); to avoid wasting disk
and buffer space in storing every less-than-fully-packed block; to not waste I/O band-
width with every access to a less-than-fully-packed block when locality of reference is
present; to decrease the average number of block fetches required to access every file in a
directory; and it results in simpler code.

The simpler code of block aligning file systems follows from not needing to create a
layering to distinguish the units of the disk controller and buffering algorithms from the
units of space allocation, and also from not having to optimize the packing of nodes, as is
done in balanced tree algorithms.

Hans Reiser tried from the beginning to aggregate small files in a way so as to avoid
wasting disk space. The simplest solution was to aggregate all small files in a directory,
into either a file or the directory. But any aggregation into a file or directory wastes part of
the last block in the aggregation. What does one do if there are only a few small files in a
directory—aggregate them into the parent of the directory? What if there are only a few
small files in a directory at first, and then there are many small files—how does the OS de-
cide what level to aggregate them at, and when to take them back from a parent of a direc-
tory and store them directly in the directory?

Of course, this problem is closely related to the balancing of nodes in a balanced tree.
The balanced tree approach, by using an ordering of files which are then dynamically ag-
gregated into nodes at a lower level, rather than a static aggregation or grouping, avoids
this set of questions.

In the ReiserFS approach, both files and filenames are stored in a balanced tree. This,
along with small files, directory entries, inodes, and the tail ends of large files causes ev-

Chapter 9: ReiserFS for Linux 3

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

erything to be more efficiently packed as a result of relaxing the requirements of block
alignment, and eliminating the use of a fixed space allocation for inodes.

The body of large files is stored in unformatted nodes that are attached to the tree but
are isolated from the effects of possible shifting by the balancing algorithms. Neither
NTFS nor XFS aggregate files, they block align files, although they do store small files in
the statically allocated block address fields of inodes if they are small enough to fit there.

Semantics (files), packing (blocks/nodes), caching (read-ahead sizes, etc.), and the
hardware interfaces of disks (sectors) and paging (pages) all have different granularity is-
sues associated with them. Understand that the optimal granularity of these often differs,
and abstracting them into separate layers in which the granularity of one layer does not
unintentionally impact other layers can improve space/time performance. ReiserFS in-
novates in that its semantic layer often conveys an un-granulated ordering to the other
layers rather than one granulated by file boundaries. While reading the algorithms of
ReiserFS’s code, the reader is encouraged to note the areas in which ReiserFS needs to go
further. ‘

BALANCED TREES AND LARGE FILE I/O
It is quite complex to understand the interplay between I/O efficiency and block size for
larger files, and space does not allow a systematic review of traditional approaches.
ReiserFS has the following architectural weaknesses that stem directly from the overhead
of repacking to save space and increase block size:

▼ When the tail (files less than 4K are all tail) of a file grows large enough to
occupy an entire node by itself, it is removed from the formatted node(s) it
resides in, and converted into an unformatted node.

■ A tail that is smaller than one node may be spread across two nodes, which
requires more I/O to read if the locality of reference is poor.

■ Aggregating multiple tails into one node introduces the separation of the file
body from tail, which reduces read performance. For ReiserFS files near to the
node in size the effect can be significant.

▲ When you add one byte to a file or tail that is not the last item in a formatted
node, then on average half of the whole node is shifted in memory. If any of
your applications perform I/O in such a way that they generate many small
unbuffered writes, ReiserFS will make you pay a high price for not being able
to buffer the I/O.

Most applications that create substantial file system load employ effective I/O buffer-
ing, often simply as a result of using the I/O functions in the standard C libraries.

By avoiding accesses in small blocks/extents, ReiserFS improves I/O efficiency. Ex-
tent-based file systems such as VFS, and write-clustering systems such as ext2fs, are not so
effective in applying these techniques that they choose to use 512-byte blocks rather than

4 Linux Fi le Systems

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9: ReiserFS for Linux 5

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

1K blocks as their defaults. Ext2fs reports a 20 percent speed-up when 4K rather than 1K
blocks are used, but the authors of ext2fs advise the use of 1K blocks to avoid wasting space.

There are a number of worthwhile large file optimizations that have not been added
to either ext2fs or ReiserFS, and both file systems are somewhat primitive in this regard,
rReiserFS being the more primitive of the two. Large files simply were not my research
focus, and this being a small research project, I did not implement the many well-known
techniques for enhancing large file I/O. The buffering algorithms are probably more cru-
cial than any other component in large file I/O, and partly out of a desire for a fair com-
parison of the approaches, I have not modified these. No significant optimizations for
large files have been devised in ReiserFS, beyond increasing the block size. Except for the
size of the blocks, there is not a large inherent difference between:

▼ The cost of adding a pointer to an unformatted node to a tree plus writing
the node.

▲ Adding an address field to an inode plus writing the block. It is likely that,
except for block size, the primary determinants of high performance large file
access are orthogonal to the decision of whether to use balanced tree
algorithms for small and medium sized files.

For large files there is an advantage to not having the tree more balanced than the tree
formed by an inode which points to a triple indirect block. There is performance over-
head due to the memory bandwidth cost of balancing nodes for small files.

(2)Serialization and Consistency
The issue of ensuring recoverability with minimal serialization and data displacement in-
evitably dominate high performance design. Let’s define the two extremes in serializa-
tion so that the reason for this can be made clear. Consider the relative speed of a set of
I/O’s in which every block request in the set is fed to the elevator algorithms1 of the ker-
nel and serially to the disk drive firmware , each request awaiting the completion of the
previous request. Now consider the other extreme, in which all block requests are fed to
the elevator algorithms together, so that they are all sorted and performed close to their
sorted order. The un-serialized extreme may be an order of magnitude faster due to the
cost of rotations and seeks. Unnecessarily serializing I/O prevents the elevator algorithm
from doing its job of placing all of the I/O’s in their layout sequence rather than chrono-
logical sequence. Most high performance design centers around making I/O’s in the or-
der they are laid out on disk, and in the order that the I/O’s will want to be issued.

ReiserFS employs a new scheme called preserve lists for ensuring recoverability,
which avoids overwriting old meta-data by writing the meta-data nearby.

1 The elevator algorithms within the kernel schedule I/O operations to and from the disk(s).

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tree Definitions
Balanced trees are designed with a set of keys assumed to be defined by the application,
and the purpose of the tree design is to optimize searching with these keys. In ReiserFS,
the purpose of the tree is to optimize the reference locality and space-efficient packing of
objects, and the keys are defined according to that algorithm. Keys are used in place of
inode numbers in the file system, thus substituting the mapping of keys to a node loca-
tion (the internal nodes) rather than a mapping of an inode number to a file location. Keys
are longer than inode numbers, but o fewer of them need to be cached when more than
one file is stored in a node.

ReiserFS trees require that a filename be resolved one component at a time. It is an in-
teresting topic for future research whether this is necessary or optimal. It is a more com-
plex issue than one might realize. Directory at a time lookup accomplishes a form of
compression, makes mounting other name spaces and file system extensions simpler,
makes security simpler, and makes future enhanced semantics simpler. Since small files
typically lead to large directories, it is fortunate that, as a natural consequence of our use
of tree algorithms, our directory mechanisms are much more effective for very large di-
rectories than most other file systems. The tree has three node types: internal nodes, for-
matted nodes, and unformatted nodes. The contents of internal and formatted nodes are
sorted in the order of their keys. (Unformatted nodes contain no keys.)

Internal nodes consist of pointers to subtrees separated by their delimiting keys. The
key that precedes a pointer to a subtree is a duplicate of the first key in the first formatted
node of that subtree. Internal nodes exist solely to allow a determination of which format-
ted node contains the item corresponding to a key. ReiserFS starts at the root node, exam-
ines its contents and can determine which subtree contains the item corresponding to the
desired key. From the root node ReiserFS descends into the tree, branching at each node,
until it reaches the formatted node containing the desired item.

The first (bottom) level of the tree consists of unformatted nodes, the second level con-
sists of formatted nodes, and all levels above consist of internal nodes. The highest level
contains the root node. The number of levels is increased as needed by adding a new root
node at the top of the tree.

All paths from the root of the tree to all formatted leaves are equal in length. The paths
to unformatted leaves are also equal in length but are one node longer than paths to for-
matted leaves. This equality in path length, and the high fanout it provides is vital to high
performance.

Formatted nodes consist of items, which are of four types: direct, indirect, directory,
and stat data items. All items contain a unique key that is used to sort and find the item.
Direct items contain the tails of files, which are the last part of the file (the last file_size
modulo FS block size of a file). Indirect items consist of pointers to unformatted nodes.
All but the tail of the file is contained in the unformatted nodes. Directory items contain
the key of the first directory entry in the item followed by a number of directory entries.

A file consists of a set of indirect items followed by a set of up to two direct items, with
the two direct items representing an example of a tail split across two nodes. If a tail is
larger than the maximum size of a file that can fit into a formatted node, but is smaller

6 Linux Fi le Systems

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

than the unformatted node size (4K), then it is stored in an unformatted node, and a
pointer to it, plus a count of the space used, is stored in an indirect item.

Directories consist of a set of directory items, which, in turn,consist of a set of direc-
tory entries. Directory entries contain the filename and the key of the file which is named.
There is never more than one item of the same item type from the same object stored in a
single node (there is no reason one would want to use two separate items rather than
combining). The first item of a file or directory contains its stat data.

When performing balancing, and when analyzing the packing of the node and its two
neighbors, ReiserFS ensures that the three nodes cannot be compressed into two nodes.

Ordering Within the Tree
Some key definition decisions depend on usage patterns, and this means that someday
one will select from several key definitions when creating the file system. For example,
consider the decision of whether to pack all directory entries together at the front of the
file system, or to pack the entries near the files they name. For large file usage patterns
one should pack all directory items together, since systems with such usage patterns are
effective in caching the entries for all directories. For small files the name should be near
the file. Similarly, for large files the stat data should be stored separately from the body,
either with the other stat data from the same directory, or with the directory entry.

It is feasible to pack an object completely independently of its semantics using these
algorithms, and there may be applications for which a packing different than that deter-
mined by object names is more appropriate.

The Structure of a Key
Each file item has a key with a structure: locality_id, object_id, offset, and uniqueness.
The locality_id is, by default, the object_id of the parent directory. The object_id is the
unique id of the file, and is set to the first unused object_id when the object is created. This
can result in successive object creations in a directory being adjacently packed which is
advantageous for many usage patterns. For files, the offset is within the logical object of
the first byte of the item. In version 0.2 all directory entries had their own individual keys
stored with them and each were distinct items.In the current version, ReiserFS stores one
key in the item that is the key of the first entry, and computes each entry’s key as needed
from this one key. For directories, the offset key component is the first four bytes of the
filename; you may think of this as a lexicographic rather than numeric offset. For direc-
tory items, the uniqueness field differentiates identical filename entries in the first four
bytes. For all items it indicates the item type and for the leftmost item in a buffer, it indi-
cates whether the preceding item in the tree is of the same type and object. Placing this in-
formation in the key is useful when analyzing balancing conditions, but increases key
length for non-directory items, and is a questionable architectural feature.

Every file has a unique object_id, but this cannot be used for finding the object, only
keys are used for that. Object_ids merely ensure that keys are unique. If you never use the
ReiserFS features that change an object’s key then it is immutable, otherwise it is mutable.
(This feature aids support for NFS daemons, etc.) Developers spent some time debating

Chapter 9: ReiserFS for Linux 7

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

whether the use of mutable keys for identifying an object had deleterious long-term ar-
chitectural consequences. In the end, Hans Reiser decided it was acceptable if there was a
requirement that any object recording a key should possess a method for updating the
copy of itself.

This is the architectural price of avoiding having to cache a map of the object_id to lo-
cation that might have very poor locality of reference due to object_ids not changing with
object semantics. ReiserFS packs an object with the packing locality of the directory it was
first created in unless the key is explicitly changed. It remains packed there even if it is un-
linked from the directory. It will not move it from the locality where it was created with-
out an explicit request, unlike some other file systems which store all multiple link files
together and pay the cost of moving them from their original locations when a second
link occurs. A file linked with multiple directories should at least get the locality reference
benefits of one of those directories.

In summary, this approach first places files from the same directory together, and
then places directory entries from the same directory together, and with the stat data for
the directory. Note that there is no interleaving of objects from different directories in the
ordering, and that all directory entries from the same directory are contiguous. This does
not actually pack the files of small directories with common parents together, and does
not employ the full partial ordering in determining the linear ordering. It merely uses
parent directory information. The appropriate place for employing full tree structure
knowledge is in the implementation of an FS cleaner, not in the dynamic algorithms.

The balancing of nodes in the tree happens according to the following ordered priorities:

1. Minimize the number of nodes used.

2. Minimize the number of nodes affected by the balancing operation.

3. Minimize the number of uncached nodes affected by the balancing operation.

4. If shifting to another formatted node is necessary, maximize the bytes shifted
by priority.

5. Is based on the assumption that the location of an insertion of bytes into the
tree is an indication of the likely future location of an insertion, and that policy
4 will, on average, reduce the number of formatted nodes affected by future
balance operations.

There are also more subtle effects. If you randomly place nodes next to each other,
and have a choice between those nodes being somewhat efficiently packed or packed to
an extreme—either well or poorly packed—you are more likely to be able to combine
more of the nodes if you choose the policy of extremism. Extremism is a virtue in
space-efficient node packing. The maximum shift policy is not applied to internal nodes,
as extremism is not a virtue in time-efficient internal node balancing.

8 Linux Fi le Systems

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BUFFERING AND THE PRESERVE LIST
Version 0.2 of ReiserFS implemented a system of write ordering that tracked all shifting
of items in the tree. It ensured that no node that an item had been shifted from was writ-
ten before the node that had received the item was written. This is necessary as it will pre-
vent a system crash causing the loss of an item that might not be recently created. This
tracking approach worked, and the overhead it imposed was not measurable by our
benchmarks. When, in the next version, we changed to partially shifting items and in-
creased the number of item types, this code grew out of control in its complexity. I de-
cided to replace it with a scheme that was far simpler to code and was also more effective
in typical usage patterns. This scheme is as follows.

If an item is shifted from a node, change the block that its buffer will be written to.
Change it to the nearest free block to the old block’s left neighbor, and rather than freeing
it, place the old block number on a “preserve list’’. (Saying nearest is slightly simplistic, in
that the blocknr assignment function moves from the left neighbor in the direction of in-
creasing block numbers.) When a “moment of consistency’’ is achieved, free all of the
blocks on the preserve list. A moment of consistency occurs when there are no nodes in
memory into which objects have been shifted. If disk space runs out, force a moment of
consistency to occur. This is sufficient to ensure that the file system is recoverable. Note
that during the large file benchmarks, the preserve list was freed several times in the mid-
dle of the benchmark. The percentage of buffers preserved is small in practice except dur-
ing deletes, and you can arrange for moments of consistency to occur as frequently as
necessary.

This approach may not be better than the Soft Updates approach of BSD or by
ReiserFS in version 0.2. However, those tracking orders of writes are more complex than
this approach for balanced trees, which partially shifts items. ReiserFS might shift back to
the old algorithm in the future, however, as preserve lists substantially hamper perfor-
mance for files in the 1-10K size range.

ReiserFS Structures
The ReiserFS tree has a maxmum tree hight, called Max_Height = N (current default
value for N = 5). The tree resides in the disk blocks. Each disk block that belongs to the
ReiserFS tree has a block head.

Everything in the file system is stored as a set of items. Each item has its item_head.
The item_head contains the key of the item, its free space (for indirect items), and speci-
fies the location of the item itself within the block.

The disk block containing the (internal node of the tree is the place for keys and point-
ers to disk blocks looks like this:

Block_Head Key
0

Key
1

Key
2

- - Key
N

Pointer
0

Pointer
1

Pointer
2

- - Pointer
N

Pointer
N+1

……..Free
Space……..

Chapter 9: ReiserFS for Linux 9

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Within the tree, each leaf—each with n items and their corresponding headers, has a
corresponding disk block with the following:

Block_Head IHead
0

IHead
1

IHead
2

- - IHead
N

Pointer
0

……..Free
Space……..

Item
N

- - Item
2

Item
1

Item
0

There are also disk blocks containing an unformatted node of the above-mentioned
tree. These kinds of disk blocks contain data and thus look structurally empty from the
outside (although they may contain data):

…………………………………………………………………………………………...

The maximum number of objects in a ReiserFS namespace (including files and direc-
tories) are calculated this way:

2^32-4

which equals the maximum number of 4,294,967,292.

Internal Node Structures In the following table, you can find the structure of the inode
block as stored on disk. The ReiserFS inode is just one node of the ReiserFS tree, storing
keys and pointers to disks data blocks:

Block_Head Key
0

Key
1

Key
2

- - Key
N

Pointer
0

Pointer
1

Pointer
2

- - Pointer
N

Pointer
N+1

……..Free
Space……..

Here you get the description of the key structure; notice how all variable are 32bit in size:

Field Name Type Size (in bytes) Description

k_dir_id __u32 4 ID of the parent directory

k_object_id __u32 4 ID of the object (also it is the number of inode)

k_offset __u32 4 Offset from beginning of the object to the current byte
of the object

k_uniqueness __u32 4 Type of the item (Stat Data = 0, direct = -1, InDirect = -2,
Directory = 500)

total 16 (6) 8 bytes for internal nodes; (22) 24 bytes for leaf
nodes

Finally, here is the disk_child structure, which is the actual pointer to the disk block:

Field Name Type Size (in bytes) Description

dc_block_number unsigned long 4 Disk child’s block number.

dc_size unsigned short 2 Disk child’s used space.

total 6 (6) 8 bytes

10 Linux Fi le Systems

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Leaf Node Structures Now, we continue analyzing the disk block, which is a node of the
ReiserFS tree and stores items and their headers, as shown in the following table. There
are four types of items: stat data item, directory item, indirect item, and direct item, which
are in this case self-explanatory.

Block_Head IHead
0

IHead
1

IHead
2

- - IHead
N

Pointer
0

……..Free
Space……..

Item
N

- - Item
2

Item
1

Item
0

Again, we go through the individual objects, starting with the block_head structure in
the disk block:

Type Size (in bytes) Description

blk_level unsigned short 2 Level of block in the tree (1-leaf;
2,3, 4,…-internal

blk_nr_item unsigned short 2 Number of keys in an Internal
block. Or number of items in a leaf
block

blk_free_space unsigned short 2 Block free space in bytes

blk_right_delim_key struct key 16 Right delimiting key for this block
(for Leaf nodes only)

total 22 (22) 24 bytes for leaf nodes

Each item head contains various variables that allow the item to know its exact posi-
tion in the item tree and get some information about the space used, as well as free space
left in the item.

Field Name Type Size (in bytes) Description

ih_key struct key 16 Key to search the item. All item headers is
sorted by this key

u.ih_free_space
u.ih_entry_count

__u16 2 Free space in the last unformatted node for
an indirect item; 0xFFFF for a sirect item;
0xFFFF for a stat data item.
The number of directory entries for a
directory item.

ih_item_len __u16 2 Total size of the item body

ih_item_location __u16 2 An offset to the item body within the block

ih_reserved __u16 2 Used by reiserfsck

total 24 24 bytes

sd_mode __u16 2 File type, permissions

sd_nlink __u16 2 Number of hard links

sd_uid __u16 2 Owner id

sd_gid __u16 2 Group id

Chapter 9: ReiserFS for Linux 11

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Field Name Type Size (in bytes) Description

sd_size __u32 4 File size

sd_atime __u32 4 Time of last access

sd_mtime __u32 4 Time file was last modified

sd_ctime __u32 4 Time inode (stat data) was last changed
(except changes to sd_atime and sd_mtime)

sd_rdev __u32 4 Device

sd_first_direct_byte __u32 4 Offset from the beginning of the file to the
first byte of direct item of the file. (-1) for
directory (1) for small files (file has direct
items only) (>1) for big files (file has
indirect and direct items) (-1) for big files
(file has indirect, but has not direct item)

total 32 32 bytes

The directory object just contains filenames, which can be either small files or big files:

deHead
0

deHead
1

deHead
2

–- deHead
N

filename
N

–- filename
2

filename
1

filename
0

The small file is called the direct item, because it is addressable by just one pointer:

……………………Small File Body……………………

Bigger files (those that require more than one disk block), need some pointer acrobat-
ics to find all the subsequent blocks, and are therefore called indirect items:

unfPointer 0 unfPointer 1 unfPointer 2 –- unfPointer N

This needs some
explanation. The
unfPointer is a
pointer (32bits) to an
unformatted block
containing the body
of a big file. In the
following table you
see how the pointers
find that
unformatted
block:Field Name

Type Size (in bytes) Description

deh_offset __u32 4 Third component of the
directory entry key (all
reiserfs_de_head sorted by this
value)

12 Linux Fi le Systems

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

deh_dir_id __u32 4 Object_id of the parent directory
of the object, that is referenced
by directory entry

deh_objectid __u32 4 Object_id of the object that is
referenced by directory entry

deh_location __u16 2 Offset of name in the whole item

deh_state __u16 2 1) Entry contains stat data (for
future)
2) Entry is hidden (unlinked)

total 16 16 bytes

Filename here represents the name of the file (array of bytes of variable length). The
maximum length of filename = blocksize - 64 (for a 4K blocksize, the maximum name
length is 4032 bytes).

USING THE TREE TO OPTIMIZE LAYOUT OF FILES
There are four levels at which layout optimization is performed:

▼ The mapping of logical block numbers to physical locations on disk.

■ The assigning of nodes to logical block numbers.

■ The ordering of objects within the tree.

▲ The balancing of the objects across the nodes they are packed into.

Physical Layout
The mapping of logical block numbers to physical locations on the disk is performed by
the disk drive manufacturer for SCSI, and by the device driver for IDE drives. There can,
of course, be a higher level of software like LVM, discussed in a previous chapter, which
abstracts that mapping further. The logical block number to physical location mapping
by the drive manufacturer is usually done using cylinders. The ReiserFS developers
found that minimizing the distance in logical blocks of semantically adjacent nodes with-
out tracking cylinder boundaries accomplishes an excellent approximation of optimizing
according to actual cylinder boundaries. That simplicity also makes for a more elegant
implementation.

Node Layout
When ReiserFS places nodes of the tree on the disk, it searches for the first empty block in the
bitmap of used block numbers, which it finds by starting at the location of the left neighbour
of the node in the tree ordering, and then moves in the direction it last moved in.

Chapter 9: ReiserFS for Linux 13

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This was found, by experimentation, to be better than the following alternatives for
the benchmarks:

1. Taking the first non-zero entry in the bitmap.

2. Taking the entry after the last one that was assigned in the direction last moved in
(this was three percent faster for writes and 10-20% slower for subsequent reads).

3. Starting at the left neighbor and moving in the direction of the right neighbor.
When changing block numbers for the purpose of avoiding the overwriting of
sending nodes before shifted items reach the disk in their new recipient node
(see description of preserve lists), the benchmarks employed were
approximately ten percent faster than when starting the search from the left
neighbor rather than the node’s current block number, even though it adds
significant overhead to determine the left neighbor (the current
implementation risks I/O to read the parent of the left neighbor).

It used to be that ReiserFS could reverse direction when the end of the disk drive was
reached. The developers checked to see if it mada a difference which direction one moves
in when allocating blocks to a file, and found it made a significant difference to always al-
locate in the increasing block number direction. This may be due to matching disk spin
direction by allocating increasing block numbers.

Write-Ahead Logging
Most meta-data operations involve more than one block, and meta-data will usually be
corrupted if only some of the blocks involved in an operation get updated. With
write-ahead logging, blocks are written to a log before they are allowed to hit their real lo-
cations. After a crash, the log is replayed to bring the file system back to a consistent state.
This replay is much faster than an fsck, and its time is bounded by the size of the log area
instead of the size of the file system.

ReiserFS Journaling Features
Journaling requires some kind of logging and the serialization of that locking. That is
why a journaled file system is necessarily slower than a nonlogging counterpart. There-
fore, the journaling requires some kind of fundamental operation to perform that logging
and serialization. Let’s look at what these are in ReiserFS.

Transactions Each transaction in the journal consists of a description block, followed by
a number of data blocks and a commit block. The description and commit blocks contain
a sequential list of the real disk locations for each log block. The log must preserve the or-
der of updates, so if a writer logs blocks A, B, C, and D, and then A again, they will be or-
dered in the log as B, C, D, A.

While a block is in an uncommitted transaction, it must remain clean, and must have a
reference count of at least one. Once a transaction has all its log blocks on disk, the real
buffers are dirtied and released.

14 Linux Fi le Systems

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Batched Transactions I allow multiple transactions to be combined into a single atomic
unit. So if transaction one logs blocks A, B, C and transaction two logs blocks A, C, and D,
the resulting joined transaction would write a description block, then blocks B, A, C, and
D, and then a commit block. This allows fewer total blocks to be written to the log, but in-
creases the chance of file system changes being undone by a crash. There are a number of
tuning parameters to control how and when transactions are batched together. Take a
look at the tuning section for the details.

Asynchronous Commits This is an extension of the batched transactions. I allow a transac-
tion to end without flushing all of its log blocks to disk. This adds a great deal of complex-
ity, but makes it possible for operations to return faster, and release any locks they might
hold. Bdflush takes care of forcing old asynchronous log blocks to disk.

New Blocks Can Die in the Cache If a block is allocated and then freed before being written
to disk, or logged and then freed before its transaction is completed, the block is never
written to the log or its real disk location. This is inherent in many file systems, but took a
little work to get right in ReiserFS.

Selective Flushing This is actually more of a requirement than a feature. Many blocks
(bitmaps, super-blocks, etc) tend to get logged over and over again. When a block is in an
uncommitted transaction, it can’t be dirtied, and can’t be sent to disk. But before a log
area can be reused, any transactions contained in it must have all their blocks flushed to
their real locations.

Even if a multiple logged block could be flushed somehow, it has changed in relation
to all the other blocks in the older transaction, and the meta-data could be corrupted after
a crash. Instead of trying to flush blocks that will also be in future transactions, I force the
future transaction’s’ log blocks to disk. After a crash, log replay should make everything
consistent.

This means that frequently logged blocks might only get written once per transaction
to the log, and then once to their real location on file system unmount.

Data Block Logging ‘Data blocks are logged when they are part of a direct to indirect item
conversion. These conversions are done when small files grow beyond what can fit in a
direct item, and on the mmap of files that contains direct items. Since the conversion is
sometimes done to old data, I want to make sure the data won’t be lost after a crash.

The problem is that once a block is in the log, you must continue logging it while there
is any chance log replay will overwrite the block after a crash. So, mark_buffer_dirty is
never called directly. Instead, a journal call exists to only log a block if it is in the current
transaction, or in a transaction that might be replayed.

This is a performance hit on average size files with tails enabled, because many of the
data blocks will be logged. Possible solutions include implementing packing on file close,
or mounting without tails enabled. The ReiserFS team will probably be looking into these
and other ideas over the next few months.

Chapter 9: ReiserFS for Linux 15

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

16 Linux Fi le Systems

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

Tuning
The size of the log area has the biggest effect on your performance. Make it too small, and
you will have to flush blocks to their real locations too frequently. Make it too large and
your replay times will be much too long.

How do you find the right size? Well, in beta1, you need to try a many different ones
until your benchmark gets as fast as it’s going to get. Beta2 will have a mount option to
add informational statements while flushing the real blocks. These should make tuning
much easier.

The max transaction size, max batch size, and various time limits for how old things can
get are also very important. It will be a while before I really have the chance to explore these.

ReiserFS Drops
Consider dividing a file or directory into drops, with each drop having a separate key,
and no two drops from one file or directory occupying the same node without being com-
pressed into one drop. The key for each drop is set to the key for the object (file or direc-
tory) plus the offset of the drop within the object. For directories the offset is
lexicographic and by filename, for files it is numeric and in bytes. In the course of several
file system versions we have experimented with and implemented solid, liquid, and air
drops. Solid drops were never shifted, and drops would only solidify when they occu-
pied the entirety of a formatted node. Liquid drops are shifted in such a way that any liquid
drop which spans a node fully occupies the space in its node. Like a physical liquid it is
shiftable, but not compressible. Air drops merely meet the balancing condition of the tree.

ReiserFS 0.2 implemented solid drops for all but the tail of files. If a file was at least
one node in size it would align the start of the file with the start of a node, block-aligning
the file. This block alignment of the start of multi-drop files was a design error that
wasted space. Even if the locality of reference is so poor as to make one not want to read
parts of semantically adjacent files, if the nodes are near to each other then the cost of
reading an extra block is thoroughly dwarfed by the cost of the seek and rotation to reach
the first node of the file. As a result the block alignment saves little in time, though the
cost is significant space for 4-20K files.

ReiserFS with block alignment of multi-drop files and no indirect items experienced
the following rather interesting behavior that was partially responsible for making it only
88% space-efficient for files that averaged 13K (the Linux kernel) in size. When the tail of a
larger than 4K file was followed in the tree ordering by another file larger than 4K, since
the drop before was solid and aligned, and the drop afterwards was solid and aligned, no
matter what size the tail was, it occupied an entire node.

In the current version we place all but the tail of large files into a level of the tree re-
served for full unformatted nodes, and create indirect items in the formatted nodes which
point to the unformatted nodes. This is known in the database literature as the approach.
This extra level added to the tree comes at the cost of making the tree less balanced (I con-
sider the unformatted nodes pointed to as part of the tree) and increasing the maximum
depth of the tree by one. For medium-sized files, the use of indirect items increases the

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cost of caching pointers by mixing data with them. The reduction in fanout often causes
the read algorithms to fetch only one node at a time, as one waits to read the uncached in-
direct item before reading the node with the file data. There are more parents per file read
with the use of indirect items than with internal nodes, as a direct result of reduced fanout
due to mixing tails and indirect items in the node. The most serious flaw is that these
reads of various nodes, necessary to the reading of the file, have additional rotations and
seeks compared to drops. With my initial drop approach they are usually sequential in
their disk layout, even the tail, and the internal node parent points to all of them in such a
way that all of them that are contained by that parent or another internal node in cache
can be requested at once in one sequential read. Non-sequential reads of nodes are more
costly than sequential reads, and this single consideration dominates effective read opti-
mization.

Unformatted nodes make file system recovery faster and less robust, in that one reads
their indirect item rather than insert them into the recovered tree, and one cannot read
them to confirm that their contents are from the file that an indirect item says they are
from. In this, they make ReiserFS similar to an inode-based system without logging.

A moderately better solution would have simply eliminated the requirement for
placement of the start of multi-node files at the start of nodes, rather than introducing
BLOBs, and to have depended on the use of a file system cleaner to optimally pack the
80% of files that don’t move frequently, using algorithms that move even solid drops. Yet
that still leaves the problem of formatted nodes not being efficient for mmap() purposes
(one must copy them before writing rather than merely modifying their page table en-
tries, and memory bandwidth is expensive even if the CPU is cheap).

For this reason I have the following plan for the next version. I will have three trees:
one tree maps keys to unformatted nodes, one tree maps keys to formatted nodes, and
one tree maps keys to directory entries and stat data. This would seem to mean that to
read a file and first access the directory entry and stat data, the unformatted node, and
then the tail, one must hop long distances across the disk, going first to one tree and then
the other It took me two years to realize that it could be made to work. My plan is to inter-
leave the nodes of the three trees according to the following algorithm:

Block numbers are assigned to nodes when the nodes are created, or preserved, and
someday will be assigned when the cleaner runs. The choice of block number is based on
first determining what other node it should be placed near, and then finding the nearest
free block t in the elevator’s current direction. Currently we use the left neighbor of the
node in the tree as the node it should be placed near.

The new scheme will continue to first determine the node it should be placed near,
and then start the search for an empty block from that spot, but it will use a more compli-
cated determination of what node to place it near. This new method will cause all nodes
from the same packing locality to be near each other, will cause all directory entries and
stat data to be grouped together within that packing locality, and will interleave format-
ted and unformatted nodes from the same packing locality. Pseudo-code is best for de-
scribing this:

Chapter 9: ReiserFS for Linux 17

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

/* for use by reiserfs_get_new_blocknrs when determining where in the bitmap to

start the search for a free block, and for use by read-ahead algorithm when

there are not enough nodes to the right and in the same packing locality for

packing locality reading ahead purposes */

get_logical_layout_left_neighbors_blocknr(key of current node)

{

/* Based on examination of current node key and type, find the virtual neighbor

of that node. */

If body node

if first body node of file

if (node in tail tree whose key is less but is in same packing

locality exists)

return blocknr of such node with largest key

else

find node with largest key less than key of current node in

stat_data tree

return its blocknr

else

return blocknr of node in body tree with largest key less than key

of current node

else

if tail node

if (node in body tree belonging to same file as first tail of

current node exists)

return its blocknr

else if (node in tail tree with lesser delimiting key but same

packing locality exists)

return blocknr of such node with largest delimiting key

else

return blocknr of node with largest key less than key of

current node in stat_data tree

else /* is stat_data tree node */

if stat_data node with lesser key from same packing locality exists

return blocknr of such node with largest key

else /* no node from same packing locality with lesser key exists */

}

/* for use by packing locality read-ahead */

get_logical_layout_right_neighbors_blocknr(key of current node)

{

right-handed version of get_logical_layout_left_neighbors_blocknr logic

}

Code Complexity
I thought it appropriate to mention some of the notable effects of simple design decisions
on our implementation’s code length. When we changed our balancing algorithms to
shift parts of items rather than only whole items, so as to pack nodes tighter, this had an
impact on code complexity. Another multiplicative determinant of balancing code com-
plexity was the number of item types. Introducing indirect items doubled this, and

18 Linux Fi le Systems

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

changing directory items from liquid drops to air drops also increased it. Storing stat data
in the first direct or indirect item of the file complicated the code for processing those
items more than if I had made stat data its own item type.

When one finds oneself with an NxN coding complexity issue, it usually indicates the
need for adding a layer of abstraction. The NxN effect of the number of items on balanc-
ing code complexity is an instance of that design principle, and we will address it in the
next major rewrite. The balancing code will employ a set of item operations which all
item types must support. The balancing code will then invoke those operations without
needing to understand any more of the meaning of an item’s type than it determines
which item-specific item operation handler is called. Adding a new item type, e.g., a com-
pressed item, will then merely require writing a set of item operations for that item rather
than requiring a modicication of most parts of the balancing code as it does now.

We now feel that the function to determine what resources are needed to perform a
balancing operation, fix_nodes(), might as well be written to decide what operations will
be performed during balancing since it pretty much has to do so anyway. That way, the
function that performs the balancing with the nodes locked, do_balance(), can be gutted
of most of its complexity.

INSTALLING AND CONFIGURING REISERFS ON A LINUX
KERNEL

The ReiserFS file system is quite easy to install. From Linux kernel 2.4.3, Linus Torvalds
included ReiserFS in the standard Linux source. This means for newer kernels you don’t
need to do anything to the kernel source; it is ready to be compiled with ReiserFS turned
on. For older kernels there is a somewhat tedious procedure to follow to obtain a patch
from the www.namesys.com Web site and then apply the patch to the standard Linux
source code.

Linux-2.2.X Kernels
For Linux-2.2.X kernels, follow these steps:

1. Get the latest ReiserFS patch from one of our mirrors.
Suppose you get linux-2.2.19-reiserfs-3.5.32-patch.bz2,
put it somewhere, for example: /usr/src/2.2.19/

2. Get the kernel sources of 2.2.19 on http://www.kernel.org.
Put it somewhere, for example: /usr/src/2.2.19/linux.
Now if you perform “ls” in /usr/src/2.2.19/,
the result will look like:
ls
linux linux-2.2.19-reiserfs-3.5.32-patch.bz2

Chapter 9: ReiserFS for Linux 19

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

20 Linux Fi le Systems

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

3. Apply ReiserFS patch to it:
cd /usr/src/2.2.19
bzcat linux-2.2.19-reiserfs-3.5.32-patch.bz2 | patch -p0

4. Compile the linux-kernel, set rReiserFS support:
cd /usr/src/2.2.19/linux
make mrproper; make menuconfig

5. Set rReiserFS support here.You might need to turn on experimental features,
depending on the exact kernel you are using:
make dep; make bzImage

6. When configuring, say y or n on ReiserFS support question. Read our
Configuration Web page. If you set rReiserFS as a module, please also do the
following:
make modules
make modules_install

If you upgrade rReiserFS sometime later, don’t think that you only have to
recompile the module. It is a nice theory t, but not a reality, mainly because
interfaces to the file system are rapidly changing all of the time.

Bugs due to recompiling only the module tend to be completely cryptic, and
the developers know it is because you didn’t recompile the whole because
somebody else already made that error.

The kernel image will be in:
/usr/src/2.2.19/linux/arch/i386/boot/bzImage

7. Compile and install the ReiserFS utils:
cd /usr/src/2.2.19/linux/fs/reiserfs/utils
make ; make install

8. Copy a new Linux kernel image with ReiserFS support to its proper place:
(it is “/boot” directory usually.)

9. Change the /etc/lilo.conf file, so that you can boot with new kernel. Perform
lilo command, please use lilo-21.6 or newer:
Lilo-21.6-or-newer

10. Boot with the built kernel, mkreiserfs spare partition, and mount it:
mkreiserfs /dev/xxxx
mount /dev/xxxx /mount-point-dir
or
mount -t reiserfs /dev/xxxx /mount-point-dir

11. Have fun.

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Linux-2.4.0 to 2.4.2
ReiserFS code is inside Linux kernel from Linux 2.4.1-pre4.

1. Get Linux 2.4.2: http://www.kernel.org.

2. Get the latest ReiserFS-3.6.x patch.

3. Apply it:
zcat linux-2.4.2-reiserfs-20010327-full.patch.gz | patch -p0

4. Compile the kernel (as previously described, and turn on experimental
features).

5. Get the ReiserFS utils: reiserfsprogs.

6. Untar in any dir, then compile and install rReiserFS utils:
tar -xzvf reiserfsprogs-3.x.0i-1.tar.gz
cd reiserfsprogs-3.x.0i-1
./configure
make; make install

7. Boot with the built kernel, mkreiserfs spare partition.

Configuration There are compile-time options that affect ReiserFS functionality. You can
set them up during the configuration stage of a Linux kernel build:

make config

make menuconfig

make xconfig

Turn on the ReiserFS option in the kernel configurator. This will build the ReiserFS
external module.

Build ReiserFS. It will be either built into the kernel or as a stand-alone kernel module.

Option Description

CONFIG
REISERFS
CHECK

If you set this to yes during the kernel configuration , then ReiserFS
will perform every check possible of its internal consistency
throughout its operation. It will also go substantially slower. Use of
this option allows our team to check for consistency when
debugging without fear of its effect on end-users. If you are on the
verge of sending in a bug report, say yes and you might get a useful
error message. Almost everyone should say no.

Chapter 9: ReiserFS for Linux 21

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Option Description

CONFIG
REISERFS
RAW

Setting this to yes will enable a set of ioctls that provide raw
interface to ReiserFS tree, bypassing directories, and automatically
removing aged files. This is an experimental feature designed for
squid cache directories. See
Documentation/filesystems/reiserfs_raw.txt. This was designed
specifically to use ReiserFS as a back-end for the Squid. The general
idea is that it is possible to bypass all file system overhead and
address the ReiserFS internal tree directly. This is not in the stock
kernels.

USEINODE
GENERATION
COUNTER

Use s_inode_generation field in the 3.6 super-block to keep
track of inode generations. If not defined, use global event counter
for this purpose (as do ext2 and most other file systems). The
behavior of inode generations is important for NFS. This variable is
unavailable through kernel configuration procedures, edit
include/linux/reiserfs_fs.h manually.

REISERFS
HANDLE
BADBLOCKS

Enable ioctl for manipulating the bitmap. This can be used as crude
form of bad block handling, but a real solution is underway. This
variable is unavailable through kernel configuration procedures,
edit include/linux/reiserfs_fs.h manually. Then, take a look at the
available mount options.

22 Linux Fi le Systems

ProLib8 / Linux File Systems / Moshe Bar / 2955-7 / Chapter 9

C:\OMH\ProLib8\955-7\ch09.vp
Monday, June 25, 2001 2:52:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

