
connect(2) connect(2)

NAME
connect − initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd , const struct sockaddr *serv_addr, socklen_t addrlen);

DESCRIPTION
The file descriptor sockfd must refer to a socket. If the socket is of type SOCK_DGRAM then the
serv_addr address is the address to which datagrams are sent by default, and the only address from which
datagrams are received. If the socket is of type SOCK_STREAM or SOCK_SEQPACKET, this call
attempts to make a connection to another socket. The other socket is specified by serv_addr, which is an
address (of length addrlen) in the communications space of the socket. Each communications space inter-
prets the serv_addr parameter in its own way.

Generally, connection-based protocol sockets may successfully connect only once; connectionless protocol
sockets may use connect multiple times to change their association. Connectionless sockets may dissolve
the association by connecting to an address with the sa_family member of sockaddr set to AF_UNSPEC.

RETURN VALUE
If the connection or binding succeeds, zero is returned. On error, −1 is returned, and errno is set appropri-
ately.

ERRORS
The following are general socket errors only. There may be other domain-specific error codes.

EBADF
The file descriptor is not a valid index in the descriptor table.

EFAULT
The socket structure address is outside the user’s address space.

ENOTSOCK
The file descriptor is not associated with a socket.

EISCONN
The socket is already connected.

ECONNREFUSED
No one listening on the remote address.

ENETUNREACH
Network is unreachable.

EADDRINUSE
Local address is already in use.

EAFNOSUPPORT
The passed address didn’t hav e the correct address family in its sa_family field.

EACCES, EPERM
The user tried to connect to a broadcast address without having the socket broadcast flag enabled
or the connection request failed because of a local firewall rule.

SEE ALSO
accept(2), bind(2), listen(2), socket(2), getsockname(2)

SPI-Klausur Manual-Auszug 2004-03-16 1

opendir/readdir(3) opendir/readdir(3)

NAME
opendir − open a directory / readdir − read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR *dir);

DESCRIPTION opendir
The opendir() function opens a directory stream corresponding to the directory name, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
The opendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to by dir. It returns NULL on reaching the end-of-file or if an error occurred.

The data returned by readdir() is overwritten by subsequent calls to readdir() for the same directory
stream.

The dirent structure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned short d_reclen; /* length of this record */
unsigned char d_type; /* type of file */
char d_name[256]; /* filename */

};

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

ERRORS
EACCES

Permission denied.

EMFILE
Too many file descriptors in use by process.

ENFILE
Too many files are currently open in the system.

ENOENT
Directory does not exist, or name is an empty string.

ENOMEM
Insufficient memory to complete the operation.

ENOTDIR
name is not a directory.

SEE ALSO
open(2), readdir(3), closedir(3), rewinddir(3), seekdir(3), telldir(3), scandir(3)

SPI-Klausur Manual-Auszug 2003-02-12 1

fdopen(3S) fdopen(3S)

NAME
fdopen − associate a stream with a file descriptor

SYNOPSIS
#include <stdio.h>

FILE *fdopen(int fildes, const char *mode);

DESCRIPTION
The fdopen() function associates a stream with a file descriptor fildes, whose value must be less than 255.

The mode argument is a character string having one of the following values:

r or rb open a file for reading
w or wb open a file for writing
a or ab open a file for writing at end of file
r+ or rb+ or r+b open a file for update (reading and writing)
w+ or wb+ or w+b open a file for update (reading and writing)
a+ or ab+ or a+b open a file for update (reading and writing) at end of file

The meaning of these flags is exactly as specified in fopen(3S), except that modes beginning with w do not
cause truncation of the file.

The mode of the stream must be allowed by the file access mode of the open file. The file position indicator
associated with the new stream is set to the position indicated by the file offset associated with the file
descriptor.

fdopen() will preserve the offset maximum previously set for the open file description corresponding to
fildes.

The error and end-of-file indicators for the stream are cleared. The fdopen() function may cause the
st_atime field of the underlying file to be marked for update.

RETURN VALUES
Upon successful completion, fdopen() returns a pointer to a stream. Otherwise, a null pointer is returned
and errno is set to indicate the error.

fdopen() may fail and not set errno if there are no free stdio streams.

ERRORS
The fdopen() function may fail if:

EBADF The fildes argument is not a valid file descriptor.

EINVAL The mode argument is not a valid mode.

EMFILE FOPEN_MAX streams are currently open in the calling process.

EMFILE STREAM_MAX streams are currently open in the calling process.

ENOMEM Insufficient space to allocate a buffer.

USAGE
STREAM_MAX is the number of streams that one process can have open at one time. If defined, it has the
same value as FOPEN_MAX.

File descriptors are obtained from calls like open(2), dup(2), creat(2) or pipe(2), which open files but do
not return streams. Streams are necessary input for almost all of the Section 3S library routines.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fopen(3S), attributes(5)

SPI-Klausur Manual-Auszug 2003-07-23 1

gets(3S) gets(3S)

NAME
gets, fgets − get a string from a stream
fputs, puts − output of strings

SYNOPSIS
#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE *stream);

int fputs(const char *s, FILE *stream);

int puts(const char *s);

DESCRIPTION gets/fgets
The gets() function reads characters from the standard input stream (see intro(3)), stdin, into the array
pointed to by s, until a newline character is read or an end-of-file condition is encountered. The newline
character is discarded and the string is terminated with a null character.

The fgets() function reads characters from the stream into the array pointed to by s, until n−1 characters
are read, or a newline character is read and transferred to s, or an end-of-file condition is encountered. The
string is then terminated with a null character.

When using gets(), if the length of an input line exceeds the size of s, indeterminate behavior may result.
For this reason, it is strongly recommended that gets() be avoided in favor of fgets().

RETURN VALUES
If end-of-file is encountered and no characters have been read, no characters are transferred to s and a null
pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not been
opened for reading, a null pointer is returned and the error indicator for the stream is set. If end-of-file is
encountered, the EOF indicator for the stream is set. Otherwise s is returned.

ERRORS
The gets() and fgets() functions will fail if data needs to be read and:

EOVERFLOW The file is a regular file and an attempt was made to read at or beyond the offset maxi-
mum associated with the corresponding stream.

DESCRIPTION puts/fputs
fputs() writes the string s to stream, without its trailing ’\0’.

puts() writes the string s and a trailing newline to stdout.

Calls to the functions described here can be mixed with each other and with calls to other output functions
from the stdio library for the same output stream.

RETURN VALUE
puts() and fputs() return a non - negative number on success, or EOF on error.

SPI-Klausur Manual-Auszug 2003-02-12 1

ip(7) ip(7)

NAME
ip − Linux IPv4 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp_socket = socket(PF_INET, SOCK_STREAM, 0);
raw_socket = socket(PF_INET, SOCK_RAW, protocol);
udp_socket = socket(PF_INET, SOCK_DGRAM, protocol);

DESCRIPTION
The programmer’s interface is BSD sockets compatible. For more information on sockets, see socket(7).

An IP socket is created by calling the socket(2) function as socket(PF_INET, socket_type, protocol).
Valid socket types are SOCK_STREAM to open a tcp(7) socket, SOCK_DGRAM to open a udp(7)
socket, or SOCK_RAW to open a raw(7) socket to access the IP protocol directly. protocol is the IP proto-
col in the IP header to be received or sent. The only valid values for protocol are 0 and IPPROT O_TCP
for TCP sockets and 0 and IPPROT O_UDP for UDP sockets.

When a process wants to receive new incoming packets or connections, it should bind a socket to a local
interface address using bind(2). Only one IP socket may be bound to any giv en local (address, port) pair.
When INADDR_ANY is specified in the bind call the socket will be bound to all local interfaces. When
listen(2) or connect(2) are called on a unbound socket the socket is automatically bound to a random free
port with the local address set to INADDR_ANY.

ADDRESS FORMAT
An IP socket address is defined as a combination of an IP interface address and a port number. The basic IP
protocol does not supply port numbers, they are implemented by higher level protocols like tcp(7).

struct sockaddr_in {
sa_family_t sin_family; /* address family: AF_INET */
u_int16_t sin_port; /* port in network byte order */
struct in_addr sin_addr; /* internet address */

};
/* Internet address. */
struct in_addr {

u_int32_t s_addr; /* address in network byte order */
};

sin_family is always set to AF_INET. This is required; in Linux 2.2 most networking functions return
EINVAL when this setting is missing. sin_port contains the port in network byte order. The port numbers
below 1024 are called reserved ports. Only processes with effective user id 0 or the
CAP_NET_BIND_SERVICE capability may bind(2) to these sockets.

sin_addr is the IP host address. The addr member of struct in_addr contains the host interface address in
network order. in_addr should be only accessed using the inet_aton(3), inet_addr(3), inet_makeaddr(3)
library functions or directly with the name resolver (see gethostbyname(3)).

Note that the address and the port are always stored in network order. In particular, this means that you
need to call htons(3) on the number that is assigned to a port. All address/port manipulation functions in
the standard library work in network order.

SEE ALSO
sendmsg(2), recvmsg(2), socket(7), netlink(7), tcp(7), udp(7), raw(7), ipfw(7)

SPI-Klausur Manual-Auszug 2003-07-23 1

sigaction(2) sigaction(2)

NAME
sigaction − POSIX signal handling functions.

SYNOPSIS
#include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

DESCRIPTION
The sigaction system call is used to change the action taken by a process on receipt of a specific signal.

signum specifies the signal and can be any valid signal except SIGKILL and SIGSTOP.

If act is non−null, the new action for signal signum is installed from act. If oldact is non−null, the previous
action is saved in oldact.

The sigaction structure is defined as something like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

}

On some architectures a union is involved - do not assign to both sa_handler and sa_sigaction.

The sa_restorer element is obsolete and should not be used. POSIX does not specify a sa_restorer ele-
ment.

sa_handler specifies the action to be associated with signum and may be SIG_DFL for the default action,
SIG_IGN to ignore this signal, or a pointer to a signal handling function.

sa_mask gives a mask of signals which should be blocked during execution of the signal handler. In addi-
tion, the signal which triggered the handler will be blocked, unless the SA_NODEFER or SA_NOMASK
flags are used.

sa_flags specifies a set of flags which modify the behaviour of the signal handling process. It is formed by
the bitwise OR of zero or more of the following:

SA_NOCLDSTOP
If signum is SIGCHLD, do not receive notification when child processes stop (i.e., when
child processes receive one of SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU).

SA_RESTART
Provide behaviour compatible with BSD signal semantics by making certain system calls
restartable across signals.

RETURN VALUES
sigaction returns 0 on success and -1 on error.

ERRORS
EINVAL

An invalid signal was specified. This will also be generated if an attempt is made to change the
action for SIGKILL or SIGSTOP, which cannot be caught.

SEE ALSO
kill(1), kill(2), killpg(2), pause(2), sigsetops(3),

SPI-Klausur Manual-Auszug 2003-07-23 1

sigsuspend/sigprocmask(2) sigsuspend/sigprocmask(2)

NAME
sigprocmask − change and/or examine caller’s signal mask
sigsuspend − install a signal mask and suspend caller until signal

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

int sigsuspend(const sigset_t *set);

DESCRIPTION sigprocmask
The sigprocmask() function is used to examine and/or change the caller’s signal mask. If the value is
SIG_BLOCK, the set pointed to by the argument set is added to the current signal mask. If the value is
SIG_UNBLOCK, the set pointed by the argument set is removed from the current signal mask. If the value
is SIG_SETMASK, the current signal mask is replaced by the set pointed to by the argument set. If the
argument oset is not NULL, the previous mask is stored in the space pointed to by oset. If the value of the
argument set is NULL, the value how is not significant and the caller’s signal mask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask(), at least one of those signals will
be delivered before the call to sigprocmask() returns.

It is not possible to block those signals that cannot be ignored this restriction is silently imposed by the sys-
tem. See sigaction(2).

If sigprocmask() fails, the caller’s signal mask is not changed.

RETURN VALUES
On success, sigprocmask() returns 0. On failure, it returns −1 and sets errno to indicate the error.

ERRORS
sigprocmask() fails if any of the following is true:

EFAULT set or oset points to an illegal address.

EINVAL The value of the how argument is not equal to one of the defined values.

DESCRIPTION sigsuspend
sigsuspend() replaces the caller’s signal mask with the set of signals pointed to by the argument set and
then suspends the caller until delivery of a signal whose action is either to execute a signal catching func-
tion or to terminate the process.

If the action is to terminate the process, sigsuspend() does not return. If the action is to execute a signal
catching function, sigsuspend() returns after the signal catching function returns. On return, the signal
mask is restored to the set that existed before the call to sigsuspend().

It is not possible to block those signals that cannot be ignored (see signal(5)); this restriction is silently
imposed by the system.

RETURN VALUES
Since sigsuspend() suspends process execution indefinitely, there is no successful completion return value.
On failure, it returns −1 and sets errno to indicate the error.

ERRORS
sigsuspend() fails if either of the following is true:

EFAULT set points to an illegal address.

EINTR A signal is caught by the calling process and control is returned from the signal catching
function.

SEE ALSO
sigaction(2), sigsetops(3C),

SPI-Klausur Manual-Auszug 2003-02-12 1

sigsetops(3C) sigsetops(3C)

NAME
sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember − manipulate sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int signo);

DESCRIPTION
These functions manipulate sigset_t data types, representing the set of signals supported by the implemen-
tation.

sigemptyset() initializes the set pointed to by set to exclude all signals defined by the system.

sigfillset() initializes the set pointed to by set to include all signals defined by the system.

sigaddset() adds the individual signal specified by the value of signo to the set pointed to by set.

sigdelset() deletes the individual signal specified by the value of signo from the set pointed to by set.

sigismember() checks whether the signal specified by the value of signo is a member of the set pointed to
by set.

Any object of type sigset_t must be initialized by applying either sigemptyset() or sigfillset() before
applying any other operation.

RETURN VALUES
Upon successful completion, the sigismember() function returns a value of one if the specified signal is a
member of the specified set, or a value of 0 if it is not. Upon successful completion, the other functions
return a value of 0. Otherwise a value of −1 is returned and errno is set to indicate the error.

ERRORS
sigaddset(), sigdelset(), and sigismember() will fail if the following is true:

EINVAL The value of the signo argument is not a valid signal number.

sigfillset() will fail if the following is true:

EFAULT The set argument specifies an invalid address.

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), attributes(5), signal(5)

SPI-Klausur Manual-Auszug 2003-07-23 1

socket(3) socket(3)

NAME
socket − create an endpoint for communication

SYNOPSIS
cc [flag . . .] file . . . −lsocket −lnsl [library . . .]

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communication will take place;
this selects the protocol family which should be used. The protocol family generally is the same as the
address family for the addresses supplied in later operations on the socket. These families are defined in
the include file <sys/socket.h>. There must be an entry in the netconfig(4) file for at least each protocol
family and type required. If protocol has been specified, but no exact match for the tuplet family, type, pro-
tocol is found, then the first entry containing the specified family and type with zero for protocol will be
used. The currently understood formats are:

PF_UNIX UNIX system internal protocols

PF_INET ARPA Internet protocols

The socket has the indicated type, which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte streams. An out-of-
band data transmission mechanism may be supported. A SOCK_DGRAM socket supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum length). A SOCK_SEQPACKET
socket may provide a sequenced, reliable, two-way connection-based data transmission path for datagrams
of fixed maximum length; a consumer may be required to read an entire packet with each read system call.
This facility is protocol specific, and presently not implemented for any protocol family. SOCK_RAW
sockets provide access to internal network interfaces. The types SOCK_RAW, which is available only to
the super-user, and SOCK_RDM, for which no implementation currently exists, are not described here.

protocol specifies a particular protocol to be used with the socket. Normally only a single protocol exists to
support a particular socket type within a given protocol family. Howev er, multiple protocols may exist, in
which case a particular protocol must be specified in this manner. The protocol number to use is particular
to the “communication domain” in which communication is to take place. If a protocol is specified by the
caller, then it will be packaged into a socket level option request and sent to the underlying protocol layers.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be in
a connected state before any data may be sent or received on it. A connection to another socket is created
with a connect(3N) call. Once connected, data may be transferred using read(2) and write(2) calls or
some variant of the send(3N) and recv(3N) calls. When a session has been completed, a close(2) may be
performed. Out-of-band data may also be transmitted as described on the send(3N) manual page and
received as described on the recv(3N) manual page.

The communications protocols used to implement a SOCK_STREAM insure that data is not lost or dupli-
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with −1 returns and with ETIMEDOUT as the specific code in the global variable errno. The protocols
optionally keep sockets “warm” by forcing transmissions roughly every minute in the absence of other

SPI-Klausur Manual-Auszug 2003-07-23 1

socket(3) socket(3)

activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (for instance 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream;
this causes naive processes, which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only differ-
ence is that read(2) calls will return only the amount of data requested, and any remaining in the arriving
packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow datagrams to be sent to correspondents named in
sendto(3N) calls. Datagrams are generally received with recvfrom(3N), which returns the next datagram
with its return address.

An fcntl(2) call can be used to specify a process group to receive a SIGURG signal when the out-of-band
data arrives. It may also enable non-blocking I/O and asynchronous notification of I/O events with SIGIO
signals.

The operation of sockets is controlled by socket level options. These options are defined in the file
<sys/socket.h>. setsockopt(3N) and getsockopt(3N) are used to set and get options, respectively.

RETURN VALUES
A −1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

ERRORS
The socket() call fails if:

EACCES Permission to create a socket of the specified type and/or protocol is denied.

EMFILE The per-process descriptor table is full.

ENOMEM Insufficient user memory is available.

ENOSR There were insufficient STREAMS resources available to complete the opera-
tion.

EPROT ONOSUPPORT The protocol type or the specified protocol is not supported within this
domain.

SEE ALSO
close(2), fcntl(2), ioctl(2), read(2), write(2), accept(3N), bind(3N), connect(3N), getsockname(3N), get-
sockopt(3N), listen(3N), recv(3N), setsockopt(3N), send(3N), shutdown(3N), socketpair(3N),
attributes(5), in(5), socket(5)

SPI-Klausur Manual-Auszug 2003-07-23 2

unlink(2) unlink(2)

NAME
unlink − remove directory entry

SYNOPSIS
#include <unistd.h>

int unlink(const char * path);

DESCRIPTION
The unlink() function removes a link to a file. It removes the link named by the pathname pointed to by
path and decrements the link count of the file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space occupied by the file will be
freed and the file will no longer be accessible. If one or more processes have the file open when the last
link is removed, the link will be removed before unlink() returns, but the removal of the file contents will
be postponed until all references to the file are closed.

RETURN VALUES
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS
The unlink() function will fail and not unlink the file if:

EACCES Search permission is denied for a component of the path prefix.

EACCES Write permission is denied on the directory containing the link to be removed.

ENOENT The named file does not exist or is a null pathname.

ENOTDIR A component of the path prefix is not a directory.

EPERM The named file is a directory and the effective user of the calling process is not super-
user.

SEE ALSO
rm(1), close(2), link(2), open(2), rmdir(2),

SPI-Klausur Manual-Auszug 2003-02-12 1

waitpid(2) waitpid(2)

NAME
waitpid − wait for child process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid , int *stat_loc, int options);

DESCRIPTION
waitpid() suspends the calling process until one of its children changes state; if a child process changed
state prior to the call to waitpid(), return is immediate. pid specifies a set of child processes for which sta-
tus is requested.

If pid is equal to (pid_t)−1, status is requested for any child process.

If pid is greater than (pid_t)0, it specifies the process ID of the child process for which status is
requested.

If pid is equal to (pid_t)0 status is requested for any child process whose process group ID is equal
to that of the calling process.

If pid is less than (pid_t)−1, status is requested for any child process whose process group ID is
equal to the absolute value of pid .

If waitpid() returns because the status of a child process is available, then that status may be evaluated with
the macros defined by wstat(5). If the calling process had specified a non-zero value of stat_loc, the status
of the child process will be stored in the location pointed to by stat_loc.

The options argument is constructed from the bitwise inclusive OR of zero or more of the following flags,
defined in the header <sys/wait.h>:

WCONTINUED The status of any continued child process specified by pid, whose status has not
been reported since it continued, is also reported to the calling process.

WNOHANG waitpid() will not suspend execution of the calling process if status is not imme-
diately available for one of the child processes specified by pid .

WNOWAIT Keep the process whose status is returned in stat_loc in a waitable state. The pro-
cess may be waited for again with identical results.

RETURN VALUES
If waitpid() returns because the status of a child process is available, this function returns a value equal to
the process ID of the child process for which status is reported. If waitpid() returns due to the delivery of a
signal to the calling process, −1 is returned and errno is set to EINTR. If this function was invoked with
WNOHANG set in options, it has at least one child process specified by pid for which status is not available,
and status is not available for any process specified by pid, 0 is returned. Otherwise, −1 is returned, and
errno is set to indicate the error.

ERRORS
waitpid() will fail if one or more of the following is true:

ECHILD The process or process group specified by pid does not exist or is not a child of the call-
ing process or can never be in the states specified by options.

EINTR waitpid() was interrupted due to the receipt of a signal sent by the calling process.

EINVAL An invalid value was specified for options.

SEE ALSO
exec(2), exit(2), fork(2), sigaction(2), wstat(5)

SPI-Klausur Manual-Auszug 2003-07-23 1

