
Event Based Scheduling of Real-Time Multicore Systems

An Elaboration of my talk for the KvBK Seminar

Frederik Völkel
Friedrich-Alexander-Universiät

Erlangen-Nürnberg

ABSTRACT
This elaboration of my talk for the ”Konzepte von Betriebssystem-
Komponenten”-Seminar provides an introduction to hard
real-time scheduling algorithms for homogeneous multipro-
cessor systems. It defines and introduces some real-time
scheduling specific terms and definitions. Especially the
classification of real-time scheduling algorithms, schedula-
bility, feasibility and optimality are covered. It gives an
overview over partitioned, global an approaches to real-time
scheduling and outlines their advantages and disadvantages.
In the end some performance metrics are mentioned and
some topics for further research are presented.

1. INTRODUCTION
Since single processors won’t become much faster these

days multiprocessor systems are essential. This development
requires research in scheduling algorithms for real-time multi
processor systems. Using more then one processors causes
new problems to scheduling algorithms. The main problem
is basically on witch processor should a task run, should is
be possible to migrate a task to another processor and in
witch case should the scheduler migrate, as migrating task
causes overhead on bus-systems and caches.

2. OVERVIEW
In this section different classes of Scheduling Algorithms

are introduced and some definitions are made some neces-
sary terms for talking about real-time scheduling.

2.1 Classification of Mulitprocessor Schedul-
ing Algorithms

In real-time multiprocessor systems there are two main is-
sues that a scheduling algorithm must tackle. Where should
a task be executed(allocation problem) and when(priority
problem) [6]? The allocation problem divides into three dif-
ferent approaches [9].

1. No migration. Tasks are assigned to one processor and

can not be migrated.

2. Task-level migration. Migration is allowed on task-
level.

3. Job-level migration. Migration is allowed on job-level.

Scheduling algorithms where migration is allowed are also
called global algorithms and algorithms with no migration
are called partitioned algorithms. A combinations of both
are hybrid algorithms.

1. Fixed task priority. Tasks have one static priority ap-
plied to all of there jobs.

2. Fixed job priority. Each job has one static priority.

3. Dynamic priority. Priorities of jobs may change during
execution time.

2.2 Schedulability
A task or a taskset can be schedulable. A task is called

schedulable if a scheduling algorithm can schedule the task
with its worst-case response time without missing the tasks
deadline. Furthermore a taskset is called schedulable when
the amount of its tasks are schedulable. You can proof
schedulability with schedulability tests. A sufficient test
only calls schedulable tasksets schedulable. A necessary test
don’t have to be sufficient but if a taskset does not pass the
test it is definitely not schdulable. A exact test is sufficient
and necessary [9].

2.3 Feasibility
A taskset is called feasible if there is an algorithm witch

can schedule any combination of tasks out of this taskset [9].
For example showing feasibility for implicit-deadline peri-

odic tasksets is quite is quite easy. Such a taskset is feasible
if the following condition is true [14].

usum ≤ m. (1)

usum is the sum of the utilization(4.1) of every task in that
taskset. And m is the number of processors. There are also
some tighter feasibility conditions but the formulas are a bit
more complex.

2.4 Optimality
A scheduling algorithm is called optimal when it can sched-

ule all of the feasible tasksets of a specific task model [9].
In other words an algorithm is optimal if it can schedule all
tasksets witch could be scheduled by any other algorithm [9].

Finding optimal algorithms for multiprocessor systems is
very difficult and if the jobs are arbitrary and there if there



Figure 1: Partitioned scheduling

is more the one deadline it is impossible [13]. But there
are optimal algorithms for periodic tasksets with implicit
deadlines; see section 4.2.

3. PARTITIONED SCHEDULING
This section provides an overview over Partitioned Schedul-

ing algorithms. It outlines advantages and disadvantages.
Partitioned scheduling algorithms doesn’t allow task or job
migration from one processor to another. This means you
need a strategy for assigning tasks to different processors
and a scheduling strategy on the CPUs.

Assigning tasks to processors is the so called allocation
problem. Witch in analogous to the bin packing problem,
witch means how to assign n objects(tasks) of a specific
weight(execution time) to m buckets(processors). Finding
an optimal solution for the problem is NP-hard as Garey
and Johnson showed in 1979 [11]. Witch means the problem
can not be solved in polynomial time assuming N 6= NP .

The second problem is simply how to set the priorities to
the various tasks and the one with the highest receives CPU
time.

Partitioned scheduling has the following benefits and dis-
advantages.

• Overstepping a deadline can only affect tasks on the
same CPU.

• Separated run queues are used for each processor; see
figure 1.

• No migration costs.

• CPUs are often idle. In the worst cases up to 50% of
the time [9].

• You need to find for every new taskset an new alloca-
tion to the processors.

The biggest advantage of partitioned scheduling is that af-
ter assigning the tasks to different processors you can simply
apply uniprocessor scheduling algorithms [9]. On these algo-
rithms is a lot of research done and often they are optimal.
The biggest problem is in fact the allocation problem as it
is NP-hard [11].

3.1 Allocation Problem
Next fit(NF) is the simplest bin packing algorithm it sim-

ply takes an object and puts it into a bin until it is full then
it takes the next bin an fills it. This goes until every object
is assigned to one bin. The complexity of NF is O(n).

A better but slower algorithm is the first fit algorithm(FF).
It is similar to NF but is checks before taking a new bin if
there is another bin that fits the object. Therefore it has

a complexity of O(n ∗ log(n)). The best fit algorithm(BF)
chooses the bin with the least capacity left that still fits the
object. It has also a complexity of O(n ∗ log(n)).

To improve these strategies you can sort the objects de-
ceasing or increasing by various attributes. This is often
used for constrained and arbitrary deadline tasksets.

There are a few more of those simple strategies for the bin
packing problem but these are the most important ones.

The small tasks algorithm(ST) allocates tasks with similar
harmonic periods to the same processor. This approach is
particularly good for tasks with small utilization(4.1).

An algorithm witch combines 2 allocation strategies is the
general task(GT) algorithm. It separates tasks into two
groups. One group with tasks with a utilization greater then
1/3 and one with utilization less or equal to 1/3. Tasks from
the first group are assigned with the ST algorithm and the
ones from the second group are assigned by a FF algorithm.
This algorithm has a complexity of O(n) and is used for a
more general tasksets [4].

3.2 Priority Assignment
There are three main strategies for priority assignment.

1. Rate monotonic (RM). The shortest period obtains the
highest priority and the longest period obtains the low-
est.

2. Deadline monotonic (DM). The shortest relative dead-
line obtains the highest priority and the longest obtains
the lowest.

3. Earliest deadline first(EDF). The earliest absolute Dead-
line obtains the highest priority and the latest the low-
est.

In the case of implicit tasksets(deadline = period) RM and
DM is the same. EDF is dynamic priority assignment and
RM and DM is fixed.

4. GLOBAL SCHEDULING
In this section I cover global scheduling algorithms with

job-level migration, since this is the major class of global al-
gorithms. I explicitly cover utilization based algorithms and
proportionate fair algorithms. Allowing migration form one
processor to another makes scheduling algorithms generally
a lot more versatile but also more complex. For instance
a global algorithm with dynamic priorities dominates 1 all
other classes of scheduling algorithms.

In general, global approaches to real-time scheduling have
the following advantages and disadvantages.

• Usually there are fewer context switches because a pre-
emption will only occur when no other processor is
idle [1].

• Effects of greater or less execution time then expected
can be distributed to all other processors.

• No need for allocation algorithms as described in sec-
tion 3.

• One single run queue for all processors; see figure 2.
This results in a queue with many tasks in it and with

1An algorithm A dominates B when A can schedule all
schedulable tasksets of B. But tasksets exists witch are
schedulable by A and not by B



Figure 2: Global scheduling

many processors synchronizing the queue becomes in-
effective.

The simplest way to do global scheduling is pick an al-
gorithm like EDF and assign the m tasks with the highest
priority to the m processor. But this approach doesn’t per-
form well due to overheads when modifying a long queue
with may processors. Brandenburg et al showed this on a
system with 32 logical cores in 2008 [3]. For this reason
better algorithms for multicore systems were developent as
shown below.

4.1 Scheduling Based on Utilization
The utilization of a task is simply the worst execution

time devided by the period of the task. Witch means how
mutch time of a period needs a task in the worst case.

Utilization based scheduling works by dividing task in two
groups based on their utilization. One group obtains the
highest priority and the priorities of the other groups are
determined by an algorithm such as EDF or RM priority
assignment.

The <any priority assignment>-US algorithms assign the
highest priority to tasks with a utilization greater then a
specific threshold.

The EDF(k) algorithm assigns the highest priority to the
k task with the highest utilization and uses EDF for the rest.

4.2 Proportionate Fair Algorithms
The proportionate fair algorithm(Pfair) splits time into

quanta’s of a specific length. Only at the beginning of each
quanta the scheduler assigns tasks to processors. Each task
obtains execution time in a quanta proportionate to its uti-
lization. For example if the quanta’s have a length of 2 and
the utilization of the task is 0.5 the task obtains an execu-
tion time of 1. This algorithm is optimal for for periodic
tasksets with implicit deadlines [2]. A special case of Pfair
is the boundary fair(BF) algorithm witch simply sets the
length of the quanta’s equal to the period. BF is also opti-
mal for periodic tasksets with implicit deadlines [15]. The
problem of Pfair algorithm is, that at every quanta all pro-
cessors must synchronize and scheduling decisions must be
made. There are also a lot more context switches in com-
parison to other algorithms. In practice this causes so much
overhead that a standard Pfair performs relatively poor [3].

For this reason a number of deviates of Pfair were devel-
oped. For example PD and PD2 witch improves the effi-
ciency of Pfair by dividing tasks into heavy and light tasks
based on their utilization.

Holman and Anderson found out that with normal Pfair
there is a lot of bus usage at the beginning of each time
quanta. So they came up with the solution to stagger the
quanta’s which means to to shift the time quanta’s between
processors. With this enhancement the time quanta’s begin
on different times on each processor and the bus load will be

Figure 3: Clustering

reduced [12]. That the staggered Pfair performs in practice
better then a normal Pfair is also shown by Brandenburg et
al [3].

5. HYBRID SCHEDULING
Due to the outlined disadvantages(section 3 and 4) of

global and partitioned scheduling it is nearby to combine
global and partitioned scheduling and eliminate some dis-
advantages. Hybrid algorithms approach in particular the
utilization problem of partitioned scheduling and the migra-
tion costs of global algorithms.

One interesting hybrid solution is to combine processors
to different clusters. This means to assign tasks to clusters
beforehand like in partitioned scheduling but in the clusters
a global algorithm is used; see figure 3. With such a solu-
tion it is possible to tackle for instance the migration cost
problem by using shared caches within the clusters.

On large scale multi processor platforms such an algo-
rithm performs better then any other algorithm as showed
by Calandrino et al [5].

An other approach is to use a partitioned algorithm but
allow one(usually the one with the highest priority) or a
small number of tasks to migrate between processors. This
approach is trying to improve the bad utilization of fully
partitioned algorithms. In practice it shows that such a
semi partitioned algorithm usually have better worst case
utilizations [9].

6. PERFORMANCE METRICS
There are a few methods to compare the performance of

real-time scheduling algorithms the following section will
briefly outline three of them. Utilization bounds, approx-
imation ratio and empirical measures.

6.1 Utilization Bounds
Utilization bounds are used for implicit-deadline tasksets.

There are worst-case utilization bounds and best-cast uti-
lization bounds. The first ones are usually the one of inter-
est. A worst-case utilization bound basically means to put
your system under full load but keeping the taskset schedu-
lable. And the worst utilization you get is the worst-case
utilization bound. In more formal words: “The worst-case
utilization bound UA for a scheduling algorithm A is defined
as the minimum utilization of any implicit-deadline taskset
that is only just schedulable according to algorithm A.” [9]

6.2 Approximation Ratio



With an approximation ratio you can compare an algo-
rithm with an optimal algorithm. In informal words the
approximation ratio is setting the minimal number of pro-
cessors needed to schedule a taskset with the optimal algo-
rithm, into relationship with the minimal number of pro-
cessors needed to schedule the same taskset with the other
algorithm. Therefor a algorithm with an approximation ra-
tio of one is optimal [9].

6.3 Resource Augmentation
Resource augmentation or also called speedup factor works

similar than the approximation ratio but it does not use the
number of processors to compare an algorithm with an opti-
mal one, instead it uses the processing speed. To calculate a
speedup factor of an algorithm A a optimal algorithm with
m processors of speed 1 is compared with the algorithm A.
The factor of witch to increase the speed of the processors to
schedule all feasible tasksets of the optimal algorithm, with
the algorithm A is the speedup factor [9].

6.4 Empirical Measures
To compare the effectiveness of various algorithms you can

generate an number of random tasksets and test how many
of them are schedulable with the different algorithms. This
technique is easy to do does not take much time to do and is
for the most cases sufficient enough. This makes this metric
very important for the industry [9].

Another empirical measure is simulation of the schedules
produced by various algorithms. A simulation enables to
count migration and preemptions of of different algorithms
and compare the algorithms in this aspect. Simulations
aren’t sufficient to show schedulability but they are good
enough to show unschedulability [9].

7. ACTUAL STATE OF RESEARCH
Energy aware scheduling of real-time systems seams to be

a topic these days as a few papers were published in 2015.
Also about fault-tolerant scheduling some papers were

published in the last two years.

8. OPEN ISSUES
As mentioned in section 3 processors are in the worst case

50% of the time idle in partitioned fixed-job-priority schedul-
ing. New ideas for algorithms witch increase utilization of
processors without creating much scheduling overhead [9].

More research is needed in algorithms that consider the
complex architecture of modern hardware, for their schedul-
ing decisions. To approach this problem algorithms can limit
the migration of task/jobs. In such algorithms further re-
search is needed.

A lot more research is needed in algorithms witch are not
based on uniprocessor algorithms. For example spitting task
into various phases [10] or considering the work-limited job
parallelism of each task defined by the rate at witch it can
execute on 1 to m processors [9, 7, 8].

Also schedulability tests for sporadic task models is a re-
search area with some problems to solve because there is a
big gap between what existing tests showing is possible to
schedule and what actually can be scheduled in practice [9].

9. REFERENCES

[1] B. Andersson and J. Jonsson. Fixed-priority
preemptive multiprocessor scheduling: to partition or
not to partition. In Real-Time Computing Systems and
Applications, 2000. Proceedings. Seventh International
Conference on, pages 337–346. IEEE, 2000.

[2] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel. Proportionate progress: A notion of fairness in
resource allocation. Algorithmica, 15(6):600–625, 1996.

[3] B. B. Brandenburg, J. M. Calandrino, and J. H.
Anderson. On the scalability of real-time scheduling
algorithms on multicore platforms: A case study. In
Real-Time Systems Symposium, 2008, pages 157–169.
IEEE, 2008.

[4] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. New
strategies for assigning real-time tasks to
multiprocessor systems. Computers, IEEE
Transactions on, 44(12):1429–1442, 1995.

[5] J. M. Calandrino, J. H. Anderson, and D. P.
Baumberger. A hybrid real-time scheduling approach
for large-scale multicore platforms. In Real-Time
Systems, 2007. ECRTS’07. 19th Euromicro
Conference on, pages 247–258. IEEE, 2007.

[6] J. Carpenter, S. Funk, P. Holman, A. Srinivasan,
J. Anderson, and S. Baruah. A categorization of
real-time multiprocessor scheduling problems and
algorithms. Handbook on scheduling algorithms,
methods, and models, pages 30–1, 2004.

[7] S. Collette, L. Cucu, and J. Goossens. Algorithm and
complexity for the global scheduling of sporadic tasks
on multiprocessors with work-limited parallelism.
RTNS’07, page 123, 2007.

[8] S. Collette, L. Cucu, and J. Goossens. Integrating job
parallelism in real-time scheduling theory. Information
Processing Letters, 106(5):180–187, 2008.

[9] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM
Computing Surveys (CSUR), 43(4):35, 2011.

[10] J. Edmonds and K. Pruhs. Scalably scheduling
processes with arbitrary speedup curves. ACM
Transactions on Algorithms (TALG), 8(3):28, 2012.

[11] M. R. Garey and D. S. Johnson. Computers and
intractability: a guide to the theory of
np-completeness. 1979. San Francisco, LA: Freeman,
1979.

[12] P. Holman and J. H. Anderson. Adapting pfair
scheduling for symmetric multiprocessors. Journal of
Embedded Computing, 1(4):543–564, 2005.

[13] K. S. Hong and J. Y. Leung. On-line scheduling of
real-time tasks. In Real-Time Systems Symposium,
1988., Proceedings., pages 244–250. IEEE, 1988.

[14] W. Horn. Some simple scheduling algorithms. Naval
Research Logistics Quarterly, 21(1):177–185, 1974.

[15] D. Zhu, D. Mossé, and R. Melhem. Multiple-resource
periodic scheduling problem: how much fairness is
necessary? In Real-Time Systems Symposium, 2003.
RTSS 2003. 24th IEEE, pages 142–151. IEEE, 2003.


