Concurrent Systems

Exercise 04 — Deadlocks

Stefan Reif

December 19, 2016

cs-ex4 (December 19, 2016)




Deadlock and Livelock

Deadlocks

= Situation where resource requests can never be fulfilled [1, 2]
= Multiple requests depend on each other

- ‘“depend on” — delay
- Wanted: “worst-case blocking time” [3]

Livelock

= Threads hold processor while waiting
= Hard to detect for the OS

Strategies
= Prevention

m Detection
m Crash

sr cs-ex4 (December 19, 2016)




Countermeasures

Mutual exclusion

m Write lock-free code
" ...

Iterative resource requests

= Atomic multi-resource requests
= Use only a single resource?
...

No preemption

m Temporarily de-allocate resources (e.g. during resource request)
= Virtualization
LI

sr cs-ex4 (December 19, 2016) 3-8




Recursive Mutexes

Re-allocation is allowed for the owner
= Nested critical sections can be hidden

- Function calls
- Interfaces
= Recursive functions
= Interrupt transparency
— The critical section must tolerate interrupts
— The interrupt handler must tolerate surrounding critical sections
— Other solutions are often better suited

De-allocation becomes more complex

= Nested leave operations must keep the mutex
= Top-level leave operation releases the mutex

O sr cs-ex4 (December 19, 2016)




Global Mutex ordering

“lower” mutex must be acquired first

= Requires resource ranking function
= Problems with condition variables, join() function, ...

No cyclic waiting
= Holder of my waits on my = rank(m) < rank(my)
= Waiting-for graph is directed and acyclic

Requires thread cooperation

m Detection of ordering violations is possible ...
m ... but how to handle such a situation?
= Applications can deadlock if unchecked allocations exist

Under-approximation of allowed resource allocations
= Applications can be deadlock-free despite ordering violations

O sr cs-ex4 (December 19, 2016)




Deadlock detection

Deadlock = cycle in waiting-for graph

= Such a cycle can be detected
= Algorithm for cycle detection in graphs?

Explicitly create the waiting-for graph
m Bookkeeping overhead (memory, time, energy, ...)
= Overhead even in best-case scenario

Occasionally search for cycles

= Too often — unnecessary overhead
= Not often enough — Deadlock potentially not detected

sr cs-ex4 (December 19, 2016) 6-8




Assignment 4

Improve your LWT library
= This assignment focuses on mutexes

Implement recursive mutexes
= Use a counter for nesting depth

Implement ordered mutexes

= Check every mutex acquisition
m Terminate the process in the case of an invalid request

Implement deadlock detection

m Check all failed allocations
= Terminate the process in the case of a deadlock

sr cs-ex4 (December 19, 2016)




Reference List |

[1] CorrmaN, E. G. ; ELPHICK, M. ; SHOSHANI, A. :
System Deadlocks.
In: ACM Computer Survey 3 (1971), Nr. 2, S. 67-78

[2] Horr, R. C.:
Some Deadlock Properties of Computer Systems.
In: ACM Computer Survey 4, Nr. 3, S. 179-196

[3] WaRrD, B. C. ; ANDERSON, J. H.:
Supporting Nested Locking in Multiprocessor Real-Time Systems.
In: Proceedings of the 24th Euromicro Conference on Real-Time Systems (ECRS
2012), 2012, S. 223-232

O sr cs-ex4 (December 19, 2016) 8-8




