
Concurrent Systems
Exercise 04 – Deadlocks

Stefan Reif

December 19, 2016

sr cs-ex4 (December 19, 2016) 1 – 8



Deadlock and Livelock

Deadlocks

Situation where resource requests can never be fulfilled [1, 2]
Multiple requests depend on each other

“depend on” → delay
Wanted: “worst-case blocking time” [3]

Livelock

Threads hold processor while waiting
Hard to detect for the OS

Strategies

Prevention
Detection
Crash

sr cs-ex4 (December 19, 2016) 2 – 8



Countermeasures

Mutual exclusion

Write lock-free code
...

Iterative resource requests

Atomic multi-resource requests
Use only a single resource?
...

No preemption

Temporarily de-allocate resources (e.g. during resource request)
Virtualization
...

sr cs-ex4 (December 19, 2016) 3 – 8



Recursive Mutexes

Re-allocation is allowed for the owner
Nested critical sections can be hidden

Function calls
Interfaces
...

Recursive functions
Interrupt transparency

The critical section must tolerate interrupts
The interrupt handler must tolerate surrounding critical sections
Other solutions are often better suited

De-allocation becomes more complex

Nested leave operations must keep the mutex
Top-level leave operation releases the mutex

sr cs-ex4 (December 19, 2016) 4 – 8



Global Mutex ordering

“lower” mutex must be acquired first

Requires resource ranking function
Problems with condition variables, join() function, ...

No cyclic waiting

Holder of m1 waits on m2 ⇒ rank(m1) < rank(m2)
Waiting-for graph is directed and acyclic

Requires thread cooperation

Detection of ordering violations is possible ...
... but how to handle such a situation?
Applications can deadlock if unchecked allocations exist

Under-approximation of allowed resource allocations

Applications can be deadlock-free despite ordering violations

sr cs-ex4 (December 19, 2016) 5 – 8



Deadlock detection

Deadlock ⇒ cycle in waiting-for graph

Such a cycle can be detected
Algorithm for cycle detection in graphs?

Explicitly create the waiting-for graph

Bookkeeping overhead (memory, time, energy, ...)
Overhead even in best-case scenario

Occasionally search for cycles

Too often → unnecessary overhead
Not often enough → Deadlock potentially not detected

sr cs-ex4 (December 19, 2016) 6 – 8



Assignment 4

Improve your LWT library

This assignment focuses on mutexes

Implement recursive mutexes

Use a counter for nesting depth

Implement ordered mutexes

Check every mutex acquisition
Terminate the process in the case of an invalid request

Implement deadlock detection

Check all failed allocations
Terminate the process in the case of a deadlock

sr cs-ex4 (December 19, 2016) 7 – 8



Reference List I

[1] Coffman, E. G. ; Elphick, M. ; Shoshani, A. :
System Deadlocks.
In: ACM Computer Survey 3 (1971), Nr. 2, S. 67–78

[2] Holt, R. C.:
Some Deadlock Properties of Computer Systems.
In: ACM Computer Survey 4, Nr. 3, S. 179–196

[3] Ward, B. C. ; Anderson, J. H.:
Supporting Nested Locking in Multiprocessor Real-Time Systems.
In: Proceedings of the 24th Euromicro Conference on Real-Time Systems (ECRS
2012), 2012, S. 223–232

sr cs-ex4 (December 19, 2016) 8 – 8


