Concurrent Systems

Nebenläufige Systeme

XIV. Pickings

Wolfgang Schröder-Preikschat

February 5, 2019

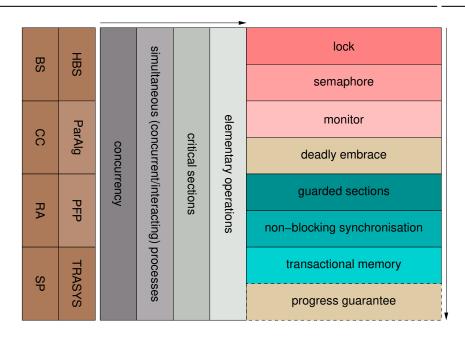
Outline

Recapitulation Concurrent Systems

Perspectives Parallel Systems Computing Equipment Further Education

Recapitulation Concurrent Systems

Perspectives Parallel Systems Computing Equipment Further Education



CS (WS 2018/19, LEC 14)

CS (WS 2018/19, LEC 14)

Recapitulation

Content of Teaching and Cross-References

Outline

Recapitulation Concurrent Systems

Perspectives

Parallel Systems

Computing Equipment

Further Education

CS (WS 2018/19, LEC 14)

Latency Awareness in Operating Systems

latency prevention

- lock- and wait-free synchronisation
- integrated generator-based approach

latency avoidance

- interference protection
- race-conflict containment

latency hiding

- operating-system server cores
- asynchronous remote system operation
- experiments with different operating-system architectures
 - process-/event-based and hardware-centric operating-system kernels
 - LAKE, Sloth
- DFG: 2 doctoral researchers, 2 student assistants

 1 http://univis.uni-erlangen.de o Research projects o LAOS

CS (WS 2018/19, LEC 14) Perspectives – Parallel Systems

Main Research at the Chair

composability and configurability

application-oriented (varying, type-safe) system software

specialisation

dedicated operating systems: integrated, adaptive, parallel

reliability

gentle fault and intrusion tolerance

thriftiness

resource-aware operation of computing systems

timeliness

migration paths between time- and event-triggered real-time systems

concurrency

coordination of cooperation and competition between processes

"concurrent systems" is more or less **cross-cutting** thereto...

CS (WS 2018/19, LEC 14)

Coherency Kernel

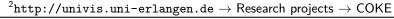
event-based minimal kernel

- cache-aware main-memory footprint
- hyper-threading of latent actions

featherweight agreement protocols

- overall kernel-level synchronisation
- families of consistency kernels

problem-oriented consistency


- sequential, entry, release consistency
- functional hierarchy of consistency domains
- memory domains for NUMA architectures

implementation as to different processor architectures

partial or total, resp. {in,}coherent shared memory

DFG: 2 doctoral researchers (1 FAU, 1 BTU)

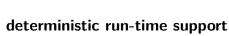
Run-Time Support System for Invasive Computing

Octo

- borrowed from the designation of a creature that:
 - i is highly parallel in its actions and
 - ii excellently can adapt oneself to its environment
- the kraken (species *Octopoda*)
 - can operate in parallel by virtue of its eight tentacle
 - is able to do customisation through camouflage and deimatic displays and
 - comes with a highly developed nervous system
 - in order to attune to dynamic ambient conditions and effects

POS

- abbrv. for parallel operating system
 - an operating system that not only supports parallel processes
 - but that also functions inherently parallel thereby
- DFG: 2.5 doctoral researchers, 1 research/3 student assistants


 3 http://univis.uni-erlangen.de o Research projects o iRTSS

CS (WS 2018/19, LEC 14)

Perspectives – Parallel Systems

Latency- and Resilience-Aware Networking

- real-time capable network communication
 - transport channel for cyber-physical systems
 - predictable transmission latency
 - in a certain extent guaranteed quality criteria

Auffassung von der kausalen [Vor]bestimmtheit allen Geschehens bzw. Handelns (Duden)

- latency-aware communication endpoints, optimised protocol stack
- specialised resource management, predictable run-time behaviour
 - in time (phase 1) and energy (phase 2) respect
- DFG: doctoral researchers, 2 student assistants (1 FAU, 1 Uni SB)

 5 http://univis.uni-erlangen.de o Research projects o LARN

Perspectives - Parallel Systems

Power-Aware Critical Sections

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support • preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
 - notation language for critical sections
 - program analysis and LLVM integration/adaptation

- power-aware system programming
 - mutual exclusion, guarded sections, transactions
 - dynamic dispatch of synchronisation protocols or critical sections, resp.
- tamper-proof power-consumption measuring
 - instruction survey and statistics based on real and virtual machines
 - energy-consumption prediction or estimation, resp.
- DFG: 2 doctoral researchers, 2 student assistants

 4 http://univis.uni-erlangen.de o Research projects o PAX

CS (WS 2018/19, LEC 14)

Perspectives – Parallel Systems

10

Multi/Many-Core Processor Pool

faui4*	clock	cores per domain		domain		
		physical	logical	NUMA	tile	
8e	2.9 GHz	8	16	2	_	Xeon
8f	2.9 0112		10			Xeon
9big01	2.5 GHz	6	_	8	_	Opteron
9big02	2.2 GHz	10	20	4	_	Xeon
9phi01	1.2 GHz	6	12	2	_	Xeon
	1.1 GHz	57	228	2	_	Xeon Phi
scc	1.5 GHz	4	2	1	_	Xeon
	800 MHz	2	_	_	24	Pentium
InvasIC	3.5 GHz	8	16	2	_	Xeon
	25 MHz	4	_	6	•	LEON/SPARC

budgeted acquisition: further *n*-core systems, transactional memory OctoPOS n > 64

PAX n > 16, plus several multi-core micro-controllers

Bachelor, Master, or Doctoral Thesis

Perspectives – Further Education