Concurrent Systems

Nebenläufige Systeme

XIV. Pickings

Wolfgang Schröder-Preikschat

February 5, 2019

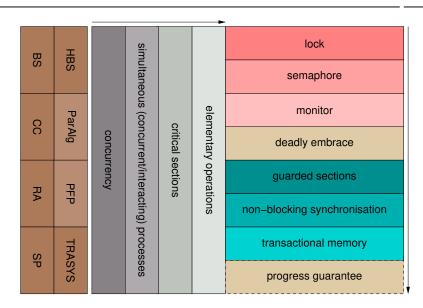
Agenda

Recapitulation Concurrent Systems

Perspectives
Parallel Systems
Computing Equipment
Further Education

© wosch, thoenig

2


Outline

Recapitulation Concurrent Systems

Perspectives
Parallel Systems
Computing Equipment

Content of Teaching and Cross-References

Outline

Recapitulation
Concurrent Systems

Perspectives
Parallel Systems
Computing Equipment
Further Education

- composability and configurability
 - application-oriented (varying, type-safe) system software
- specialisation
 - dedicated operating systems: integrated, adaptive, parallel

- composability and configurability
 - application-oriented (varying, type-safe) system software
- specialisation
 - dedicated operating systems: integrated, adaptive, parallel
- reliability
 - gentle fault and intrusion tolerance
- thriftiness
 - resource-aware operation of computing systems
- timeliness
 - migration paths between time- and event-triggered real-time systems

- composability and configurability
 - application-oriented (varying, type-safe) system software
- specialisation
 - dedicated operating systems: integrated, adaptive, parallel
- reliability
 - gentle fault and intrusion tolerance
- thriftiness
 - resource-aware operation of computing systems
- timeliness
 - migration paths between time- and event-triggered real-time systems
- concurrency
 - coordination of cooperation and competition between processes

- composability and configurability
 - application-oriented (varying, type-safe) system software
- specialisation
 - dedicated operating systems: integrated, adaptive, parallel
- reliability
 - gentle fault and intrusion tolerance
- thriftiness
 - resource-aware operation of computing systems
- timeliness
 - migration paths between time- and event-triggered real-time systems
- concurrency
 - coordination of cooperation and competition between processes

 $^{^1}$ http://univis.uni-erlangen.de o Research projects o LAOS

latency prevention

- lock- and wait-free synchronisation
- integrated generator-based approach

latency avoidance

- interference protection
- race-conflict containment

latency hiding

- operating-system server cores
- asynchronous remote system operation

 $^{^1}$ http://univis.uni-erlangen.de o Research projects o LAOS

latency prevention

- lock- and wait-free synchronisation
- integrated generator-based approach

latency avoidance

- interference protection
- race-conflict containment

latency hiding

- operating-system server cores
- asynchronous remote system operation

- experiments with different operating-system architectures
 - process-/event-based and hardware-centric operating-system kernels
 - LAKE. Sloth

 $^{^1}$ http://univis.uni-erlangen.de o Research projects o LAOS

latency prevention

- lock- and wait-free synchronisation
- integrated generator-based approach

latency avoidance

- interference protection
- race-conflict containment.

latency hiding

- operating-system server cores
- asynchronous remote system operation

- experiments with different operating-system architectures
 - process-/event-based and hardware-centric operating-system kernels
 - LAKE, Sloth
- DFG: 2 doctoral researchers, 2 student assistants

 $^{^2}$ http://univis.uni-erlangen.de o Research projects o COKE

event-based minimal kernel

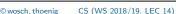
- cache-aware main-memory footprint
- hyper-threading of latent actions

 $^{^2}$ http://univis.uni-erlangen.de o Research projects o COKE

- event-based minimal kernel
 - cache-aware main-memory footprint
 - hyper-threading of latent actions
- featherweight agreement protocols
 - overall kernel-level synchronisation
 - families of consistency kernels

 $^{^2}$ http://univis.uni-erlangen.de o Research projects o COKE

- event-based minimal kernel
 - cache-aware main-memory footprint
 - hyper-threading of latent actions
- featherweight agreement protocols
 - overall kernel-level synchronisation
 - families of consistency kernels
- problem-oriented consistency
 - sequential, entry, release consistency
 - functional hierarchy of consistency domains
 - memory domains for NUMA architectures



- event-based minimal kernel
 - cache-aware main-memory footprint
 - hyper-threading of latent actions
- featherweight agreement protocols
 - overall kernel-level synchronisation
 - families of consistency kernels
- problem-oriented consistency
 - sequential, entry, release consistency
 - functional hierarchy of consistency domains
 - memory domains for NUMA architectures
- implementation as to different processor architectures
 - partial or total, resp. {in,}coherent shared memory

 $^{^2}$ http://univis.uni-erlangen.de o Research projects o COKE

- event-based minimal kernel
 - cache-aware main-memory footprint
 - hyper-threading of latent actions
- featherweight agreement protocols
 - overall kernel-level synchronisation
 - families of consistency kernels
- problem-oriented consistency
 - sequential, entry, release consistency
 - functional hierarchy of consistency domains
 - memory domains for NUMA architectures

- partial or total, resp. {in,}coherent shared memory
- DFG: 2 doctoral researchers (1 FAU, 1 BTU)

Run-Time Support System for Invasive Computing

Run-Time Support System for Invasive Computing

Octo

- borrowed from the designation of a creature that:
 - i is highly parallel in its actions and
 - ii excellently can adapt oneself to its environment
- the kraken (species Octopoda)
 - can operate in parallel by virtue of its eight tentacle
 - ullet is able to do customisation through camouflage and deimatic displays and
 - comes with a highly developed nervous system
 - in order to attune to dynamic ambient conditions and effects

POS

- abbrv. for parallel operating system
 - an operating system that not only supports parallel processes
 - but that also functions inherently parallel thereby

Run-Time Support System for Invasive Computing

Octo

- borrowed from the designation of a creature that:
 - i is highly parallel in its actions andii excellently can adapt oneself to its environment
- the kraken (species Octopoda)
 - can operate in parallel by virtue of its eight tentacle
 - ullet is able to do customisation through camouflage and deimatic displays and
 - comes with a highly developed nervous system
 - in order to attune to dynamic ambient conditions and effects

POS

- abbrv. for parallel operating system
 - an operating system that not only supports parallel processes
 - but that also functions inherently parallel thereby
- DFG: 2.5 doctoral researchers, 1 research/3 student assistants

 $^{^3}$ http://univis.uni-erlangen.de ightarrow Research projects ightarrow iRTSS

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support ■ preparation, characterisation, and capturing of declared critical sections

 $^{^4}$ http://univis.uni-erlangen.de o Research projects o PAX

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support • preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
 - notation language for critical sections
 - program analysis and LLVM integration/adaptation

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support • preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
 - notation language for critical sections
 - program analysis and LLVM integration/adaptation

- power-aware system programming
 - mutual exclusion, guarded sections, transactions
 - dynamic dispatch of synchronisation protocols or critical sections, resp.

 $^{^4}$ http://univis.uni-erlangen.de o Research projects o PAX

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support ■ preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
 - notation language for critical sections
 - program analysis and LLVM integration/adaptation

- power-aware system programming
 - mutual exclusion, guarded sections, transactions
 - dynamic dispatch of synchronisation protocols or critical sections, resp.
- tamper-proof power-consumption measuring
 - instruction survey and statistics based on real and virtual machines
 - energy-consumption prediction or estimation, resp.

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support ■ preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
 - notation language for critical sections
 - program analysis and LLVM integration/adaptation

- power-aware system programming
 - mutual exclusion, guarded sections, transactions
 - dynamic dispatch of synchronisation protocols or critical sections, resp.
- tamper-proof power-consumption measuring
 - instruction survey and statistics based on real and virtual machines
 - energy-consumption prediction or estimation, resp.
- DFG: 2 doctoral researchers, 2 student assistants

- real-time capable network communication
 - transport channel for cyber-physical systems
 - predictable transmission latency
 - in a certain extent guaranteed quality criteria

 $^{^5}$ http://univis.uni-erlangen.de o Research projects o LARN

real-time capable network communication

- transport channel for cyber-physical systems
- predictable transmission latency
- in a certain extent guaranteed quality criteria

deterministic run-time support

Auffassung von der kausalen [Vor]bestimmtheit allen Geschehens bzw. Handelns (Duden)

- latency-aware communication endpoints, optimised protocol stack
- specialised resource management, predictable run-time behaviour

 $^{^{5}}$ http://univis.uni-erlangen.de ightarrow Research projects ightarrow LARN

real-time capable network communication

- transport channel for cyber-physical systems
- predictable transmission latency
- in a certain extent guaranteed quality criteria

deterministic run-time support

Auffassung von der kausalen [Vor]bestimmtheit allen Geschehens bzw. Handelns (Duden)

- latency-aware communication endpoints, optimised protocol stack
- specialised resource management, predictable run-time behaviour
 - in time (phase 1) and energy (phase 2) respect

 $^{^{5}}$ http://univis.uni-erlangen.de o Research projects o LARN

- real-time capable network communication
 - transport channel for cyber-physical systems
 - predictable transmission latency
 - in a certain extent guaranteed quality criteria

deterministic run-time support

Auffassung von der kausalen [Vor]bestimmtheit allen Geschehens bzw. Handelns (Duden)

- latency-aware communication endpoints, optimised protocol stack
- specialised resource management, predictable run-time behaviour
 - in time (phase 1) and energy (phase 2) respect
- DFG: doctoral researchers, 2 student assistants (1 FAU, 1 Uni SB)

Multi/Many-Core Processor Pool

						_
faui4*	clock	cores per domain		domain		
		physical	logical	NUMA	tile	
8e 8f	2.9 GHz	8	16	2	_	Xeon
9big01	2.5 GHz	6	_	8	_	Opteron
9big02	2.2 GHz	10	20	4	_	Xeon
9phi01	1.2 GHz	6	12	2	_	Xeon
	1.1 GHz	57	228	2	_	Xeon Phi
scc	1.5 GHz	4	2	1	_	Xeon
	800 MHz	2	_	_	24	Pentium
InvasIC	3.5 GHz	8	16	2	_	Xeon
	25 MHz	4	_	6		LEON/SPARC

Multi/Many-Core Processor Pool

faui4*	clock	cores per domain		domain		
		physical	logical	NUMA	tile	
8e 8f	2.9 GHz	8	16	2	_	Xeon
9big01	2.5 GHz	6	_	8	_	Opteron
9big02	2.2 GHz	10	20	4	_	Xeon
9phi01	1.2 GHz	6	12	2	_	Xeon
	1.1 GHz	57	228	2		Xeon Phi
scc	1.5 GHz	4	2	1	_	Xeon
	800 MHz	2	_	_	24	Pentium
InvasIC	3.5 GHz	8	16	2	_	Xeon
	25 MHz	4	_	6		LEON/SPARC

budgeted acquisition: further *n*-core systems, transactional memory
 OctoPOS ■ n > 64

PAX • $n \ge 16$, plus several multi-core micro-controllers

Bachelor, Master, or Doctoral Thesis

