Concurrent Systems

Exercise 02 – Processes, Threads, Coroutines

Stefan Reif

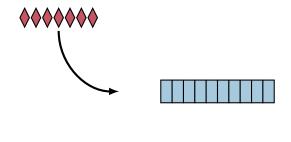
2019-11-07

Agenda

Control Flows

Coroutines

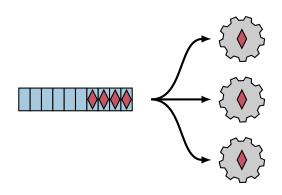
Threads


Assignment 2

Review: Executor Service

- Executor Service (⇒ Assignment 1)
 - Jobs have run-to-completion semantics
 - No inter-job coordination
 - No inter-job dependencies

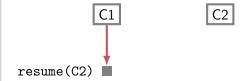
Example



Review: Executor Service

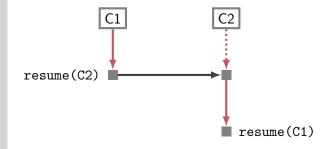
- Executor Service (⇒ Assignment 1)
 - Jobs have run-to-completion semantics
 - No inter-job coordination
 - No inter-job dependencies

Example

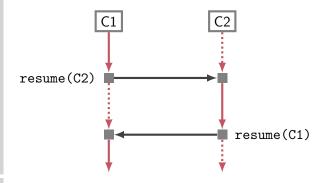


Control Flows

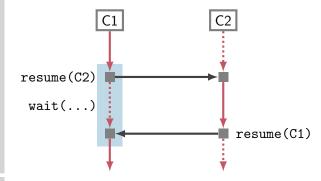
- Examples
 - ⇒ Instruction sequence, function call, interrupts, coroutines, threads, ...
- Overlapping patterns
 - ⇒ Sequential, stack-like, pseudo-parallel, arbitrary, ...
- Associated resources
 - ⇒ Stack space, address space, file descriptors, ...
- Synchronization
 - Manage concurrent control flows
 - Consider application dependencies and overlapping patterns



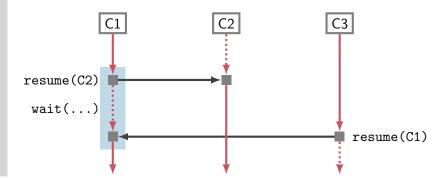
- Voluntarily release the processor
 - create(), resume(), destroy()
 - Switch to another coroutine explicitly
- Symmetric relation
- Example



- Voluntarily release the processor
 - create(), resume(), destroy()
 - Switch to another coroutine explicitly
- Symmetric relation
- Example



- Voluntarily release the processor
 - create(), resume(), destroy()
 - Switch to another coroutine explicitly
- Symmetric relation
- Example



- Voluntarily release the processor
 - create(), resume(), destroy()
 - Switch to another coroutine explicitly
- Symmetric relation
- Example

- Voluntarily release the processor
 - create(), resume(), destroy()
 - Switch to another coroutine explicitly
- Symmetric relation
- Example

Continuations

- Context Switches
 - How can a processor switch between coroutines?
 - How can a coroutine be continued?

Continuations

- Context Switches
 - How can a processor switch between coroutines?
 - How can a coroutine be continued?
- Language Considerations
 - Typical high-level programming languages cannot implement resume
 - Some languages offer "coroutines" to programmers
 - \rightarrow e.g. Python yield
 - Context switches need assembler language support

Continuations

Context Switches

- How can a processor switch between coroutines?
- How can a coroutine be continued?

Language Considerations

- Typical high-level programming languages cannot implement resume
- Some languages offer "coroutines" to programmers
 - \rightarrow e.g. Python yield
- Context switches need assembler language support

Continuation

- Data structure for the Context of a coroutine
- Stopped control flow can proceed later
- Stores at least an address of the next instruction
- Typically associated with an individual stack

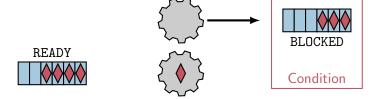
Threads

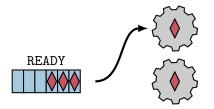
- Problems with Coroutines
 - Unstructured resume() calls
 - How to choose a successor?
- Threads extend Coroutines
 - Structured synchronization primitives
 - → Mutex, Condition Variable, Semaphor, Monitor, Signal, ...
 - Thread states
 - ightarrow READY, RUNNING, BLOCKED, TERMINATED, ...
 - Scheduling
 - → Manage control flows explicitly
 - → Implement a strategy for idle processors

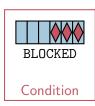
Assignment 2

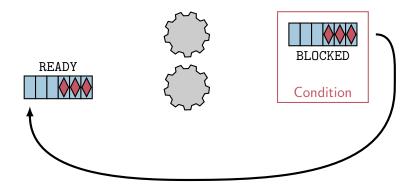
- Implement a Light-weight Threading Library (LWT)
 - Extend jobs to coroutines/threads
 - Implement synchronization primitives
- Scheduling
 - Cooperative, non-preemptive
 - One shared ready list
- Use a thread library as back-end
 - Pthreads represent "logical processor cores"
 - Pthread synchronization mechanisms are available
- Simplifications
 - No graceful termination
 - No dynamic adaption of parallelism
 - Simple scheduler

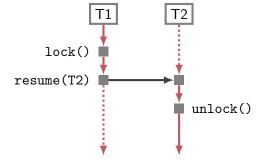
- Blocking synchronization
 - Set thread state to BLOCKED
 - Add thread to condition-specific waiting queue
- Thread notification
 - Set thread state to READY
 - Add thread to ready list

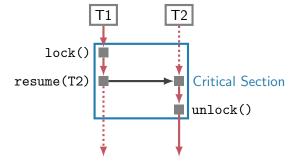




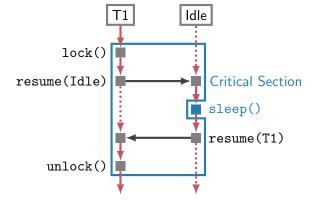

- Blocking synchronization
 - Set thread state to BLOCKED
 - Add thread to condition-specific waiting queue
- Thread notification
 - Set thread state to READY
 - Add thread to ready list


- Blocking synchronization
 - Set thread state to BLOCKED
 - Add thread to condition-specific waiting queue
- Thread notification
 - Set thread state to READY
 - Add thread to ready list


- Blocking synchronization
 - Set thread state to BLOCKED
 - Add thread to condition-specific waiting queue
- Thread notification
 - Set thread state to READY
 - Add thread to ready list


Waiting

- Scheduler data structures need protection
 - We can use a pthread mutex
 - We will use non-blocking synchronization in later assignment
- What to do in idle state?
 - We can use pthread condition variables to wait passively



- Scheduler data structures need protection
 - We can use a pthread mutex
 - We will use non-blocking synchronization in later assignment
- What to do in idle state?
 - We can use pthread condition variables to wait passively

- Scheduler data structures need protection
 - We can use a pthread mutex
 - We will use non-blocking synchronization in later assignment
- What to do in idle state?
 - We can use pthread condition variables to wait passively

