# Concurrent Systems

Nebenläufige Systeme

XIV. Pickings

Wolfgang Schröder-Preikschat

February 11, 2021

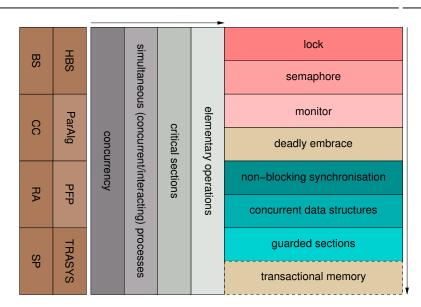


# Agenda

Recapitulation Concurrent Systems

Perspectives
Parallel Systems
Computing Equipment
Further Education




### Outline

# Recapitulation Concurrent Systems

Perspectives
Parallel Systems
Computing Equipment



### Content of Teaching and Cross-References





### Outline

Recapitulation
Concurrent Systems

Perspectives
Parallel Systems
Computing Equipment
Further Education



- **composability** and **configurability** 
  - application-oriented (varying, type-safe) system software
- specialisation
  - dedicated operating systems: integrated, adaptive, parallel



### reliability

gentle fault and intrusion tolerance

#### thriftiness

resource-aware operation of computing systems

#### timeliness

migration paths between time- and event-triggered real-time systems





• coordination of cooperation and competition between processes



- composability and configurability
  - application-oriented (varying, type-safe) system software
- specialisation
  - dedicated operating systems: integrated, adaptive, parallel
- reliability
  - gentle fault and intrusion tolerance
- thriftiness
  - resource-aware operation of computing systems
- timeliness
  - migration paths between time- and event-triggered real-time systems
- concurrency
  - coordination of cooperation and competition between processes







 $<sup>^1</sup>$ http://univis.uni-erlangen.de o Research projects o LAOS

### latency prevention

- lock- and wait-free synchronisation
- integrated generator-based approach

#### latency avoidance

- interference protection
- race-conflict containment

### latency hiding

- operating-system server cores
- asynchronous remote system operation





### latency prevention

- lock- and wait-free synchronisation
- integrated generator-based approach

#### latency avoidance

- interference protection
- race-conflict containment


### latency hiding

- operating-system server cores
- asynchronous remote system operation



- process-/event-based and hardware-centric operating-system kernels
- LAKE. Sloth







### latency prevention

- lock- and wait-free synchronisation
- integrated generator-based approach

#### latency avoidance

- interference protection
- race-conflict containment

### latency hiding

- operating-system server cores
- asynchronous remote system operation



- process-/event-based and hardware-centric operating-system kernels
- LAKE. Sloth
- DFG: 2 doctoral researchers, 2 student assistants



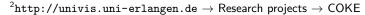






#### event-based minimal kernel

- cache-aware main-memory footprint
- hyper-threading of latent actions






- event-based minimal kernel
  - cache-aware main-memory footprint
  - hyper-threading of latent actions
- featherweight agreement protocols
  - overall kernel-level synchronisation
  - families of consistency kernels







- event-based minimal kernel
  - cache-aware main-memory footprint
  - hyper-threading of latent actions
- featherweight agreement protocols
  - overall kernel-level synchronisation
  - families of consistency kernels
- problem-oriented consistency
  - sequential, entry, release consistency
  - functional hierarchy of consistency domains
  - memory domains for NUMA architectures





- event-based minimal kernel
  - cache-aware main-memory footprint
  - hyper-threading of latent actions
- featherweight agreement protocols
  - overall kernel-level synchronisation
  - families of consistency kernels
- problem-oriented consistency
  - sequential, entry, release consistency
  - functional hierarchy of consistency domains
  - memory domains for NUMA architectures
- implementation as to different processor architectures
  - partial or total, resp. {in,}coherent shared memory





 $<sup>^2</sup>$ http://univis.uni-erlangen.de o Research projects o COKE

- event-based minimal kernel
  - cache-aware main-memory footprint
  - hyper-threading of latent actions
- featherweight agreement protocols
  - overall kernel-level synchronisation
  - families of consistency kernels
- problem-oriented consistency
  - sequential, entry, release consistency
  - functional hierarchy of consistency domains
  - memory domains for NUMA architectures
- implementation as to different processor architectures
  - partial or total, resp. {in,}coherent shared memory
- DFG: 2 doctoral researchers (1 FAU, 1 BTU)



 $<sup>{}^{2}\</sup>mathtt{http://univis.uni-erlangen.de} \rightarrow \mathsf{Research} \ \mathsf{projects} \rightarrow \mathsf{COKE}$ 





scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support preparation, characterisation, and capturing of declared critical sections





 $<sup>^3</sup>$ http://univis.uni-erlangen.de o Research projects o PAX

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
  - notation language for critical sections
  - program analysis and LLVM integration/adaptation





 $<sup>^3</sup>$ http://univis.uni-erlangen.de o Research projects o PAX

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
  - notation language for critical sections
  - program analysis and LLVM integration/adaptation
- power-aware system programming
  - mutual exclusion, guarded sections, transactions
  - dynamic dispatch of synchronisation protocols or critical sections, resp.



PAX

 $<sup>^3</sup>$ http://univis.uni-erlangen.de o Research projects o PAX

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support preparation, characterisation, and capturing of declared critical sections

- automated extraction of critical sections
  - notation language for critical sections
  - program analysis and LLVM integration/adaptation



- power-aware system programming
  - mutual exclusion, guarded sections, transactions
  - dynamic dispatch of synchronisation protocols or critical sections, resp.
- tamper-proof power-consumption measuring
  - instruction survey and statistics based on real and virtual machines
  - energy-consumption prediction or estimation, resp.



 $<sup>^3</sup>$ http://univis.uni-erlangen.de o Research projects o PAX

scalable synchronisation on the basis of agile critical sections

infrastructure • load-dependent and self-organised change of protection against race conditions

linguistic support preparation, characterisation, and capturing of declared critical sections

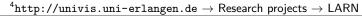
- automated extraction of critical sections
  - notation language for critical sections
  - program analysis and LLVM integration/adaptation



- power-aware system programming
  - mutual exclusion, guarded sections, transactions
  - dynamic dispatch of synchronisation protocols or critical sections, resp.
- tamper-proof power-consumption measuring
  - instruction survey and statistics based on real and virtual machines
  - energy-consumption prediction or estimation, resp.
- DFG: 2 doctoral researchers, 2 student assistants



 $^3$ http://univis.uni-erlangen.de o Research projects o PAX






- real-time capable network communication
  - transport channel for cyber-physical systems
  - predictable transmission latency
  - in a certain extent guaranteed quality criteria







- real-time capable network communication
  - transport channel for cyber-physical systems
  - predictable transmission latency
  - in a certain extent guaranteed quality criteria



#### deterministic run-time support

Auffassung von der kausalen [Vor]bestimmtheit allen Geschehens bzw. Handelns (Duden)

- latency-aware communication endpoints, optimised protocol stack
- specialised resource management, predictable run-time behaviour

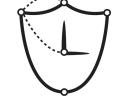


 $<sup>^4</sup>$ http://univis.uni-erlangen.de o Research projects o LARN

- real-time capable network communication
  - transport channel for cyber-physical systems
  - predictable transmission latency
  - in a certain extent guaranteed quality criteria



#### deterministic run-time support


Auffassung von der kausalen [Vor]bestimmtheit allen Geschehens bzw. Handelns (Duden)

- latency-aware communication endpoints, optimised protocol stack
- specialised resource management, predictable run-time behaviour
  - in time (phase 1) and energy (phase 2) respect



 $<sup>^4</sup>$ http://univis.uni-erlangen.de o Research projects o LARN

- real-time capable network communication
  - transport channel for cyber-physical systems
  - predictable transmission latency
  - in a certain extent guaranteed quality criteria



#### deterministic run-time support

Auffassung von der kausalen [Vor]bestimmtheit allen Geschehens bzw. Handelns (Duden)

- latency-aware communication endpoints, optimised protocol stack
- specialised resource management, predictable run-time behaviour
  - in time (phase 1) and energy (phase 2) respect
- DFG: doctoral researchers, 2 student assistants (1 FAU, 1 Uni SB)



 $<sup>^4</sup>$ http://univis.uni-erlangen.de o Research projects o LARN

# Run-Time Support System for Invasive Computing





# Run-Time Support System for Invasive Computing

#### Octo

- borrowed from the designation of a creature that:
   i is highly parallel in its actions and
   ii excellently can adapt oneself to its environment
  - the kraken (species *Octopoda*)
    - can operate in parallel by virtue of its eight tentacle
    - is able to do customisation through camouflage and deimatic displays and

6

- comes with a highly developed nervous system
  - in order to attune to dynamic ambient conditions and effects

#### POS

- abbrv. for parallel operating system
  - an operating system that not only supports parallel processes
  - but that also functions inherently parallel thereby



# Run-Time Support System for Invasive Computing

#### Octo

- borrowed from the designation of a creature that: i is highly parallel in its actions and ii excellently can adapt oneself to its environment
- the kraken (species Octopoda)
  - can operate in parallel by virtue of its eight tentacle
  - is able to do customisation through camouflage and deimatic displays and

6

- comes with a highly developed nervous system
  - in order to attune to dynamic ambient conditions and effects

#### POS

- abbrv. for parallel operating system
  - an operating system that not only supports parallel processes
  - but that also functions inherently parallel thereby
- DFG: 2.5 doctoral researchers, 1 research/3 student assistants



# Multi/Many-Core Processor Pool

| faui4*  | clock              | cores per domain |         | domain |      | #    |            |
|---------|--------------------|------------------|---------|--------|------|------|------------|
|         |                    | physical         | logical | NUMA   | tile | #    |            |
| *8e     | 2.9 GHz            | 8                | 16      | 2      | 1    | 32   | Xeon       |
| *8f     | 2.9 0112           |                  | 10      | _      | _    | 32   | Xeon       |
| *9big01 | 2.5 GHz            | 6                | 6       | 8      | 1    | 48   | Opteron    |
| *9big02 | 2.2 GHz            | 10               | 20      | 4      | 1    | 80   | Xeon       |
| *9big03 | 2.1 GHz            | 12               | 24      | 4      | 1    | 96   | Xeon       |
| *9big04 | 2 GHz <sup>6</sup> | 64               | 128     | 2      | 1    | 256  | Ерус       |
| *9big05 | 2.5 GHz            | 16               | 128     | 2      | 4    | 1024 | ThunderX2  |
| *9phi01 | 1.2 GHz            | 6                | 12      | 2      | 1    | 24   | Xeon       |
|         | 1.1 GHz            | 57               | 228     | 2      | 1    | 456  | Xeon Phi   |
| *scc    | 1.5 GHz            | 4                | 8       | 1      | 1    | 8    | Xeon       |
|         | 800 MHz            | 2                | _       | _      | 24   | 48   | Pentium    |
| fastbox | 3.5 GHz            | 4                | 8       | 1      | 1    | 8    | Xeon TSX   |
| InvasIC | 50 MHz             | 5                | 5       | 16     |      | 80   | LEON/SPARC |

2160



<sup>6</sup>mit boost 3.35 GHz

# Bachelor, Master, or Doctoral Thesis



