Concurrent Systems

Nebenläufige Systeme

III. Processes

Wolfgang Schröder-Preikschat

November 19, 2020

Agenda

Preface

Fundamentals

Program

Process

Characteristics

Physical

Logical

Summary

Outline

Preface

Fundamentals
Program
Process

Characteristics
Physical
Logical

Summary

Subject Matter

discussion on abstract concepts as to multiplexing machines:

program • concretized form of an algorithm

static sequence of actions to be conducted by a processor

of sequential or non-sequential structure

process • a program in execution

dynamic sequence of actions conducted by a processor

• of parallel, concurrent, simultaneous, or interacting nature

explanation of process characteristics in physical and logical terms

appearance of a process as kernel thread and/or user thread

sequencing of processes, process states, and state transitions

a **bridging** of concurrency/simultaneity concepts and mechanisms

on the one hand, program as the means of specifying a process

on the other hand, process as medium to reflect simultaneous flows

Operating systems bring programs to execution by creation, releasing, controlling and timing of processes

- in computer sciences, a process is unimaginable without a program
 - as coded representation of an algorithm, the program specifies a process
 - thereby, the program manifests and dictates a specific process
 - if so, it even causes, controls, or terminates other processes¹
- a program (also) describes the kind of flow (Ger. *Ablauf*) of a process
 - sequential a sequence of temporally non-overlapping actions
 - proceeds deterministically, the result is determinate
 - parallel non-sequential
- in both kinds does the program flow consist of actions (p. 7 ff.)

Consider: Program Flow and Level of Abstraction

One and the same program flow may be sequential on one level of abstraction and parallel on another. [8, 10]

¹Provided that the operating system offers all necessary commands.

Outline

Preface

Fundamentals Program Process

Characteristics
Physical
Logical

Summary

6

Definition

For a certain machine concretised form of an algorithm.

- virtual machine C
 - after editing and
 - before compilation

```
#include <stdint.h>
void inc64(int64_t *i) {
  (*i)++;
```

one action (line 4)

- virtual machine ASM (x86)
 - after compilation² and
 - before assembly

```
6 inc64:
     movl 4(%esp), %eax
     addl $1, (%eax)
     adcl $0, 4(%eax)
10
     ret.
```

three actions (lines 7–9)

Definition (Action)

The execution of an instruction of a (virtual/real) machine.

2

3

4

²gcc -04 -m32 -static -fomit-frame-pointer -S, also below

address space and virtual machine SMC³

- text segment
- after linking/binding and

Linux before loading

 $0 \times 080482 f0$: mov 0x4(%esp),%eax 1 $0 \times 080482f4$: add \$0x1,(%eax) 2

adc \$0x0,0x4(%eax) 3 $0 \times 080482 f7$:

 $0 \times 080482 fb$: 4

ret.

real machine

after loading executable

8b 44 24 04 83 00 01

83 50 04 00 c.3

same number of actions (lines 1–3, resp.), but different forms of representation

Hint (ret or c3, resp.)

The action for a subroutine return corresponds to the action of the corresponding subroutine call (qdb, disas /rm main):

0x080481c9: c7 04 24 b0 37 0d 08 movl \$0x80d37b0,(%esp)

0x080481d0: e8 1b 01 00 00 call 0x80482f0 <inc64>

³symbolic machine code: x86 + Linux.

Non-Sequential Program I

Definition

A program P that allows several execution threads^a in P itself.

an excerpt of P using the example of POSIX Threads [4]:

```
pthread_t tid;

if (!pthread_create(&tid, NULL, thread, NULL)) {
    /* ... */
pthread_join(tid, NULL);
}
```

the parallel flow allowed in P itself:

```
7 void *thread(void *null) {
8  /* ... */
9 pthread_exit(NULL);
10 }
```

Hint

It is not mandatory that these threads of execution must take place simultaneously!

^aAny kind of program thread, coroutines, signal/interrupt handlers.

Non-Sequential Program II

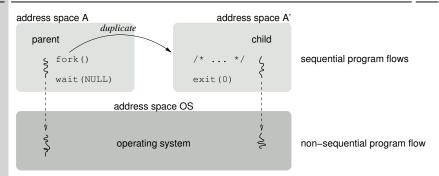
actions of parallelism—but **sequential flows** of the same program:

```
pid_t pid;

pid_t pid;

if (!(pid = fork())) {
    /* ... */
    exit(0);
}

wait(NULL);
```


- fork duplicates the address space A of P, creates A' as a copy of A
- within A as source address space arises thereby no parallel flow, however
- independent of the degree of parallelism within P, fork sets it to 1 for A'
- sequential flows can establish parallel ones within a domain that logically comprises those sequential flows
- the shown actions cause parallel flows within an operating system
 - multiprocessing (Ger. Simultanbetrieb) of sequential programs requires the operating system in the shape of a non-sequential program
 - serviceable characteristic is multithreading within the operating system

→ concept "operating system" is epitome of "non-sequential program"⁴

⁴The exception (strictly cooperative systems) proves the rule.

Multiprocessing of Sequential Programs

- processor (core) characteristic:
 - Uni operated by a process-based operating system, namely:
 - pseudo-parallelism by means of processor (core) multiplexing
 - Multi ditto; but also event-based operating system, namely:
 - real parallelism by means of processor (core) multiplication
- both cause **parallel processes** (p. 16) within the operating system

Definition (Program flow)

A program in execution.

the program specifies a sequence of actions that are to be executed

```
■ its kind depends on the particular level of abstraction (cf. p. 34) |\text{evel}|_5 \mapsto \text{program statement} \geq 1 assembly mnemonics |\text{evel}|_4 \mapsto \text{assembly mnemonic} \geq 1 machine instructions \geq 1 microprogram directives
```

- the actions of a processor thus are not imperatively indivisible (atomic)
 - this particularly holds both for the abstract (virtual) and real processor
- this sequence is static (passive), while a process is dynamic (active)

Hint (Process \neq Process instance)

 $|evel_2| \mapsto microprogram directive$

A process instance (Ger. Exemplar) is an incarnation of a process.^a

^aJust as an object is a "core image" of a class.

Indivisibility I

Definition

Being indivisible, to keep something appear as unit or entireness.

a question of the "distance" of the viewer (subject) on an object

action on higher, sequence of actions on lower level of abstraction

level	action	sequence of actions
5	i++	
4–3	incl i* addl \$1,i*	movl i,%r addl \$1,%r* movl %r,i
2–1		* read from memory into accumulator modify contents of accumulator write from accumulator into memory

typical for a complex instruction of an "abstract processor" (C, CISC)

Indivisibility II

Entireness or unit of a sequence of actions whose solo efforts all will happen apparently simultaneous (i.e., are synchronised)

- an/the essential non-functional property of an atomic operation⁵
 - logical togetherness of a sequence of actions in terms of time
 - by what that sequence appears as elementary operation (ELOP)
- examples of (critical) actions for incrementation of a counter variable:

```
■ level 5 → 3
                              ■ level _{3 \mapsto 2}
 C/C++ ASM
                                ASM ISA
1 i++; 2 movl i, %eax 5 incl i 6 read A from <i>
         3 addl $1, %eax
                                         7 modify A by 1
                                           write A to <i>
         4 movl %eax, i
```

- points (i++, incl) in case of merely conditionally atomic execution
 - namely uninterruptible operation (level $_{5 \mapsto 3}$), uniprocessor (level $_{3 \mapsto 2}$)
 - problem: overlapping in time of the sequence of actions pointed here

⁵from (Gr.) *átomo* "indivisble".

Sequential Process

Definition (Sequential program in execution)

A process with only a single thread of execution.

- a sequence of actions that forms a unique execution thread
 - but which may develop differently with each restart of that process
 - other input data, program change, ..., transient hardware errors
- the sequence is defined by a total order of its actions
 - it is reproducible given unmodified original conditions
 - same input data, no program changes, \ldots , no transient hardware errors

Hint (Execution Thread \neq Thread)

Assumptions about the technical implementation of the sequence of actions are not met and are also irrelevant here. A thread is only one option to put the incarnation of a sequential process into effect.

Non-Sequential Process

Definition (Non-sequential program in execution)

A process consisting of several threads of execution, which may take place simultaneously (in parallel).

- requirement is a **non-sequential program** (cf. p. 9)
 - that allows for at least one more process incarnation (child process) or
 - that makes arrangements for the handling of events of external processes⁶
- whereby sequences of actions may overlap in the first place:
 - i asynchronous program interrupts
 - ii multithreading (Ger. simultane Mehrfädigkeit), in fact:
 - pseudo-parallel multiplex mode of a single processor (core)
 - real parallel parallel mode of a (multi-core) multiprocessor
- consequently, the sequence of <u>all</u> actions is defined by a **partial order**
 - as external processes may enable temporal/causal independent actions

Definition (in a broader sense: "simultaneous processes")

Several threads of execution of the same non-sequential process or of multiple sequential processes taking place simultaneously.

- "concurrent" only with respect to the same level of abstraction [10]
 - none of these concurrent processes is cause or effect of the other
 - none of theses actions of these processes requires the result of any other
- however, to proceed, these processes compete for reusable resources
 - they share the processor (core), cache (line), bus, or devices
 - this also results in **interference**⁷ (Ger. *Interferenz*) in process behaviour
- the effective degree of overlapping is irrelevant for the simultaneity
 - apart from time-dependent processes that have to keep deadlines
 - note that the larger the overlapping, the larger the time delay
 - and the more likely will a delayed process miss its deadline
 - just as interference, which may also cause violation of timing constraints

© wosch, thoenig

⁷Derived from (Fre.) s'entreferir "to brawl each other".

Definition (also: "depending processes")

Simultaneous processes that, directly or indirectly, interact with each other through a shared variable or by accessing a shared resource.

- their actions get into conflict if at least one of these processes. . .
 - will change the value of one of the shared variables (access pattern) or
 already accupies a shared non-preemptable resource⁸ (resource type)
- this may emerge as a race condition (Ger. Wettlaufsituation)
 - for shared variables or (reusable/consumable) resources, resp.
 - for starting or finishing an intended sequence of actions
- conflicts are eliminated by means of synchronisation methods:
 - blocking prevent from executing an intended sequence of actions
 non-blocking let a process abort and retry a started sequence of actions
 - reducing replace a sequence of actions by an atomic instruction
- founds **coordination** of cooperation and competition of processes

⁸printer, mouse, plotter, keyboard.

```
int64_t cycle = 0;
1
   void *thread_worker(void *null) {
3
     for (;;) {
4
       /* ... */
                                              ■ inc64: see p. 7
        inc64(&cycle);
6
8
9
   void *thread_minder(void *null) {
10
     for (;;) {
11
        printf("worker cycle %lld\n", cycle);
12
        pthread_yield();
13
14
15
   which cycle values prints the minder thread (Ger. Aufpasserfaden)?
П
```

- which are produced by multiple worker threads (Ger. Arbeiterfäden)?
- in case thread_worker exists in several identical incarnations

- assuming that the non-sequential program runs on a 32-bit machine
 - instances of int64_t then form a pair of 32-bit words: double word
 - operations on instances of int64_t cease to be solo efforts
- worker thread

```
inc64:
movl 4(%esp), %eax
addl $1, (%eax)
adcl $0, 4(%eax)
ret

L6:
movl $cycle, (%esp)
call inc64
jmp .L6
```

minder thread

```
10 movl cycle+4, %edx ; high &
11 movl cycle, %eax ; low word
12 movl $.LCO, (%esp)
13 movl %edx, 8(%esp)
14 movl %eax, 4(%esp)
15 call printf
```

- assume $cycle = 2^{32} 1$
 - inc64 overlaps actions 10-11
 - then, edx = 0 and eax = 0
 - effect is, printf displays 0
 - not 2³², as would have been right

- assuming that the development or run-time environment varies
 - different compilers, assemblers, linker, or loaders
 - different operating systems—but the same real processor (x86)

```
GCC 4.7.2. Linux
                                         GCC 4.2.1. MacOSX
  inc64:
                                         inc64:
    movl 4(%esp), %eax
                                           movl 4(%esp), %eax
2
    addl $1, (%eax)
                                           movl (%eax), %ecx
3
     adcl $0, 4(%eax)
                                           movl 4(%eax), %edx
4
    ret
                                           addl $1, %ecx
                                           adcl $0, %edx
  pseudo-parallel actions (case 4.2.1)
                                           movl %edx, 4(%eax)
  (UNIX-) signal
                                           movl %ecx, (%eax)
                                      13

    asynchronous program interrupt

                                      14
                                           ret
```

- real parallel actions: (multi-core) multiprocessor
 - the actions in lines 3–4 are critical as well: divisible read-modify-write
- a classical error: as the case may be, ineffective numeration

21

Outline

Preface

Fundamentals
Program
Process

Characteristics
Physical
Logical

Summary

- prevention of race conditions by the **protection of critical sections**
 - transfer a non-sequential process into a temporary sequential process
 - strictly: the shorter the sequential time span, the better the solution
 - or, if applicable, rewrite conflict-prone program sequences as a transaction

Lookahead: prevent overlapping by means of mutual exclusion

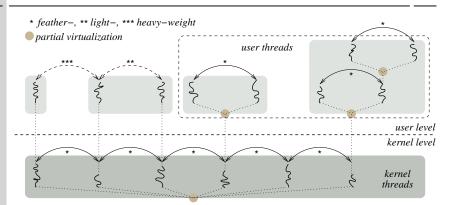
blocking of interacting processes: comparatively long time span

void mutex_inc64(int64_t *i, pthread_mutex_t *lock) {

pthread_mutex_lock(lock); /* indivisible, now */

inc64(i); /* reuse code @ p.7 */

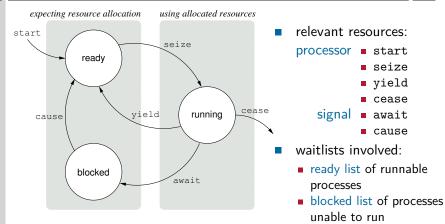
pthread_mutex_unlock(lock); /* divisible, again */


}

anywhere applicable and by orders of magnitude more efficient solution

- anchoring of processes can be different within a computing system
 - namely inside or outside the operating-system machine level:
 - inside originally, within the operating system or its kernel
 - incarnation of the process is root of possibly other processes
 - partial virtualisation of the CPU as the real processor (core)
 - outside optional, within run-time or even application system
 - incarnation of the process as leaf or inner node (of a graph)
 - partial virtualisation of the root process as an abstract processor
- usually, a processor (core) is entirely unaware of being multiplexed
 - threads evolve from time sharing their underlying processor (core)
 - a kernel thread may serve as an abstract processor for user threads
 - no nowadays known (real) processor is aware of what it is processing
 - particularly, a kernel thread does not know about potential user threads
 - when it gets switched or delayed, <u>all</u> of its user threads will as well
- operating systems are aware only of their own "first-class citizens"

- modes of process switches as to partial processor virtualisation:
 - * inside the same (user/kernel) address space, *ibidem*⁹ continuing
 - ** inside kernel address space, same user address space sharing
 - *** inside kernel address space, at other user address space landing


⁹(Lat.), "at the same place"

- **scheduling** (Ger. *Ablaufplanung*) the **dispatching** (Ger. *Einlastung*) of processes or, to be precise, process incarnations
 - a big theoretical/mathematical side of operating systems [2, 1, 6, 7]
 - but enforcing the scheduling policies faces several practical challenges
- unpredictable dynamic system behaviour at run-time dashes hopes
 - on the one hand interrupts, on the other hand resource sharing
 - breeds asynchronism and, as a result, foregrounds heuristic
- process synchronisation is notorius for producing interference
 - once it comes to <u>contention resolution</u>, which <u>implies sequencing</u>
 blocking in matters of allocating consumable and/or reusable resources
 non-blocking pertaining to indivisible machine (CPU) instructions
 - especially susceptible for inducing interference is <u>blocking synchronisation</u>
- to **control resource usage**, processes pass through logical states
 - whereby synchronisation emerges jointly responsible for state transitions
 - taken together, scheduling and synchronisation are cross-cutting concerns

26

Process States and State Transitions

- typical life time cycle of processes:
 - ready ready to run, but still waiting for a processor (core)
 - running executing on a processor (core), performing a CPU burst
 - blocked waiting for an event (being in sync), performing an I/O burst

Outline

Preface

Fundamentals Program

Proces

Characteristics
Physical
Logical

Summary

Résumé

- a process is **predetermined by a program** that is to be executed
 - the process inherits the static characteristics of its program
 - when being existent, the process adds dynamic characteristics
 - as a function of data processing and interaction with the environment
- a process may be sequential or non-sequential (as to its program)
 - that is to say, composed of non-overlapping or overlapping actions
 - whereby overlapping is caused by multiprocessing in a wider sense
 - real parallelism, but also pseudo-parallelism in its various forms
- processes are parallel, concurrent, simultaneous, or interacting
 - simultaneous processes comprise concurrent and interacting periods
 - each of these can be parallel on their part, i.e., if their actions overlap
 - by either multiplexing or multiplication of the necessary processing units
 - as to implementation, processes may be **kernel or user threads**
 - regardless of which, logical states report on the life time cycle of a process
 - whereby synchronisation emerges jointly responsible for state transitions
 - taken together, scheduling and synchronisation need to be complementary

Reference List I

- [1] COFFMAN, E. G.; DENNING, P. J.: Operating System Theory. Prentice Hall, Inc., 1973
- [2] CONWAY, R. W.; MAXWELL, L. W.; MILLNER, L. W.: Theory of Scheduling. Addison-Wesley, 1967
- [3] HANSEN, P. B.: Concurrent Processes.

In: Operating System Principles.
Englewood Cliffs, N.J., USA: Prentice-Hall, Inc., 1973. – ISBN 0-13-637843-9, Kapitel 3, S. 55-131

- [4] IEEE:
 - POSIX.1c Threads Extensions / Institute of Electrical and Electronics Engineers. New York, NY, USA, 1995 (IEEE Std 1003.1c-1995). Standarddokument
- KLEINÖDER, J.; SCHRÖDER-PREIKSCHAT, W.:
 Rechnerorganisation.
 In: LEHRSTUHL INFORMATIK 4 (Hrsg.): Systemprogrammierung.
 FAU Erlangen-Nürnberg, 2014 (Vorlesungsfolien), Kapitel 5

Reference List II

- [6] KLEINROCK, L.: Queuing Systems. Bd. I: Theory. John Wiley & Sons, 1975
- [7] LIU, J. W. S.: Real-Time Systems. Prentice-Hall, Inc., 2000. – ISBN 0-13-099651-3
- LÖHR, K.-P.:
 Nichtsequentielle Programmierung.
 In: Institut für Informatik (Hrsg.): Algorithmen und Programmierung IV.
 Freie Universität Berlin, 2006 (Vorlesungsfolien)
- [9] NEUFELDT, V. (Hrsg.); GURALNIK, D. A. (Hrsg.): Webster's New World Dictionary. Simon & Schuster, Inc., 1988
- [10] Schröder-Preikschat, W. : Concurrency.
 - In: LEHRSTUHL INFORMATIK 4 (Hrsg.): Concurrent Systems. FAU Erlangen-Nürnberg, 2014 (Lecture Slides), Kapitel 2

Reference List III

[11] TANENBAUM, A. S.:

Multilevel Machines.

In: Structured Computer Organization.
Prentice-Hall, Inc., 1979. –

ISBN 0-130-95990-1, Kapitel Introduction, S. 1-17

[12] Wikipedia:

Process.

http://en.wikipedia.org/wiki/Legal_process, Apr. 2014

Process "particularly, describes the formal notice or writ used by a court to exercise jurisdiction over a person or property"

analogy in computer science or operating-system concepts, resp.:

writ order to abandon rivalry¹⁰ in the claiming of resources

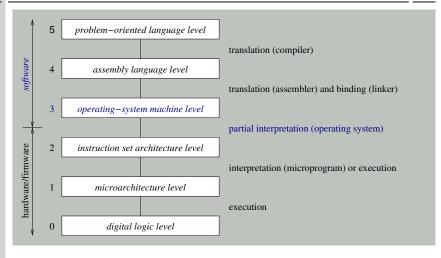
direction to resolve competition of resource contenders

court • incarnation of the function of scheduling or coordination

point of synchronisation in a programjurisdictionsphere of authority of contention resolution

zone of influence of the synchronisation policy

property • occupancy/ownership of resources, ability to proceed


• functional or non-functional attribute

generally, the action or trial, resp., follows a hierarchical jurisdiction

- thereby, the process step related to a certain level is denoted as instance
 - in informatics, translation to (Ger.) "Instanz" however was rather unept !!!
- operating systems often command a multi-level processing of processes

⁰

¹⁰Lat. rivalis "in the use of a watercourse co-authored by a neighbour"

- refinement of [11, p. 5]: levels present on todays computers
 - right, the method and (bracketed) program that supports each level

