Michael Golm, Meik Felser,
Christian Wawersich, Jurgen Kleinoder

A Java Operating System
as the Foundation of a
Secure Network Operating System

Technical Report TR-14-02-05 o August 2002

Department of Computer Sciences 4
Distributed Systems and Operating Systems

Friedrich-Alexander-Universitat
Erlangen-Nurnberg %

Univ. Erlangen-Nirnberg ¢ Informatik 4 « Martensstr. 1 « 91058 Erlangen « Germany . W TECHNISCHE FAKU LTAT

Phone: +49.9131.85.27277 « Fax: +49.9131.85.28732)) 2
E-Mail: i4@informatik.uni-erlangen.de « URL: http://www4.informatik.uni-erlangen.de I Faculty of Engmeerlng Smences) X

A Java Operating System as the Foundation of a
Secure Network Operating System

Michael Golm, Meik Felser, Christian Wawersich, Jurgen Kleindder
University of Erlangen-Nuremberg
Dept. of Computer Science 4 (Distributed Systems and Operating Systems)
Martensstr. 1, 91058 Erlangen, Germany
{golm, felser, wawersich, kleinoeder}@informatik.uni-erlangen.de

Abstract user to run arbitrary commands with root privilege [10],

Errors in the design and implementation of operating [11], one executes commands in emails [12], and one is an
system kernels and system programs lead to security probjnteger overflow [13]. The six buffer overflow vulnerabili-
lems that very often cause a complete breakdown of allties could have been avoided by using techniques described
security mechanisms of the system. by Cowan et al. [15]. However, not all overflow attacks can
We present the architecture of the JX operating system,be detected and the authors recommend the use of a type-
which avoids two categories of these errors. First, there are safe language.
implementation errors, such as buffer overflows, dangling ~ An argument that is often raised against type-safe sys-
pointers, and memory leaks, caused by the use of unsaféems and software protection is that the compiler must be
languages. We eliminate these errors by using Java—a typeIrUSted. We think that this is not a very strong argument for
safe language with automatic memory management—forthe following three reasons. (i) Traditional systems, such as
the implementation of the complete operating system. SecUnix, also use compilers to compile trusted components,
ond, there are architectural errors caused by complex sys- like the kernel and system programs. Security in such a sys-
tem architectures, poorly understood interdependenciestem relies on the assumption that the C compiler contains no
between system components, and minimal modularizationbugs or trojan horses [61]. (ii) Only the compiler backend
JX addresses these errors by following well-known princi- that translates the type-safe instruction set into the instruc-
ples, such as least-privilege and separation-of-privilege, tion set of the processor and the verifier that guarantees
and by using a minimal security kernel, which, for example, type-safety must be trusted. (iii) The additional effort that
excludes the filesystem. must be put into the verification of two components—the
Java security problems, such as the huge trusted classcompiler backend and the verifier—pays off with reduced
library and reliance on stack inspection are avoided. Code Verification effort for many trusted system programs. Most
of different trustworthiness or code that belongs to different Vulnerabilities in current systems are caused not by bugs in
principals is separated into isolated domains. These the kernel but by bugs in system programs.
domains represent independent virtual machines. Sharing The second category of errors—the architectural
of information or resources between domains can be com-€rrors— is more difficult to tackle. The three CERT notes

pletely controlled by the security kernel. related to the execution of commands in strings and emails
are critical because the vulnerable systems violate the prin-
1 Introduction ciple of least-privilege [52]. Thus, in current mainstream

systems it is not the question whether the proper security

There are two categories of errors that cause the easyPolicy is used, but whether security can be enforced at all
vulnerability of current systems. The first are implementa- [39]- Violations of the principle ofeast-privilegean uncon-
tion errors, such as buffer overflows, dangling pointers, angtrolled cumulation of functlonghty, many implementation
memory leaks, which are caused by the prevalent use ofeTors, complex system architectures, and poorly under-
unsafe languages in current systems. This becomes dangeﬁtOOd interrelations between system components make cur-
ous when an OS relies on a large number of trusted pro-r€nt systems very vulnerable. This is a problem that affects
grams. From the top ten CERT notes (as of January 2002)a” app_lications, because applications are built on top of an
with highest vulnerability potential six are buffer overflows OPerating system and can be only as secure as its trusted
[4], 5], [6], [7], [8], [9], two relate to errors checking user ~Programs and the underlying kernel.
supplied strings that contain commands thus allowing the

As it will never be possible to develop software of mod- nism that completely isolates the servers with respect to
erate complexity that is free of errors one must assume thatdata access and resource usage.
every complex application contains security critical errors. The paper is structured as follows. Section 2 gives an
The realization that these errors can not be avoided in cur-overview about Java security and analyzes some weak-
rent systems led to the proliferation of firewalls that are nesses of the Java security mechanism. Section 3 describes
responsible to shield potentially vulnerable systems from the architecture of JX with the focus on the security archi-
potentially dangerous traffic. Application developers and tecture. Section 4 describes the performance of the system
deployers react to the restriction of a firewall by tunneling as a web server. Section 4 discusses how the system meets
traffic over open ports, for example the http port 80. The the requirements of a security architecture. Section 5
security community reacts by building traffic analyzers that describes related work and Section 6 concludes the paper.
analyze the TCP stream and the protocols above TCP and
http. As it becomes more and more expensive to cure the2 Java Security
symptoms it becomes more attractive to fix the deeper
underlying causes of the security problems. Java security is based on the concept of a sandbox,

It is well understood that the unsafe nature of the lan- which relies on the type-safety of the executed code.
guages C and C++ is the reason for many of today’s securityUntrusted but verified code can run in the sandbox and can
problems. There are several projects that try to develop anot leave the sandbox to do any harm. Every sandbox must
safe dialect of C. One of these projects created a safe dialechave a kind of exit or hole, otherwise the code running in the
of C, called Cyclone-C [34]. Although Cyclone-C looks sandbox can not communicate results or interact with the
similar to C it is not possible to recompile an existing non- environment in a suitable way. These holes must be clearly
trivial C program, such as an OS kernel, without changes. defined and thoroughly controlled. The holes of the Java
Using Java instead of a Cyclone-C means that it is more dif- sandbox are the native methods. To control these holes, the
ficult to port C programs, but allows to run the large number Java runtime first controls which classes are allowed to load
of existing Java programs without modifications. Further- a library that contains native code. These classes must be
more, Cyclone-C programs have a similar performance trusted to guard access to their native methods. The native
overhead as Java programs. methods of these classes should be non-public and the pub-

There is still the problem that basing the protection on lic non-native methods are expected to invoke the Security-
type-safety ties the system to a certain language and typeManager before invoking a native method. The Security-
system. But this seems to be no problem at all. Although the Manager inspects the runtime call stack and checks whether
Java bytecode was not designed as the target instruction sahe caller of the trusted method is trusted.
for languages other than Java, there is a large number of lan- Java version 1 distinguishes between trusted system
guages that can be compiled to Java bytecode. Examples arelasses, which were loaded using the JVM internal class
Python [50], Eiffel [48], Tcl [35], Scheme [42], Prolog [20], loading mechanism, and untrusted classes, which were
Smalltalk [56], ADA95 [26], and Cobol [47]. loaded using a class loader external to the JVM. Implemen-

Java allows developing applications using a modern tations of the SecurityManager can check whether the
object-oriented style, emphasizing abstraction and reusabil-classes on the call stack—the callers of the method—are
ity. On the other hand many security problems have beentrusted or untrusted classes. When the caller was a system
detected in Java systems in the past [18]. The main contri-class the operation usually is allowed otherwise the Securi-
bution of this paper is an architecture for a secure Java opertyManager decides, depending on the kind of operation and
ating system that avoids these problems and a discussion ofts parameters, whether the untrusted class is allowed to
its implementation and performance. invoke the operation

We follow Rushby [51] in his reasoning that a secure Java version 2 also relies on stack inspection but can
system should be structured as if it were a distributed sys-define more flexible security policies by describing the per-
tem. With such an architecture a security problem in one missions of classes of a certain origin in external files.
part of the system does not automatically lead to a collapse To sum up, Java security relies on the following require-
of the whole system’s security. Microkernels are well suited ments:
as the foundation of such a system. Especially systems that(l) Code is kept in a sandbox by using an intermediate

adhere to the multi-server approach, such as SawMill [28], instruction set. Programs are verified to be type-safe.
and mediate communication between the servers [33] are

able to limit the effect of security violations.
The JX system combines the advantages of a multi- 1.The real implementation uses the abstractioolagsloader-depth
server structure with the advantages of type-safety. It uses which is the number of stack frames between the current stack frame

. - s and the first stack frame connected to a class that was loaded using
type-safety to provide an efficient communication mecha- . ssioader.

(2) The package-specific and/or class-specific accessA small microkernel contains low-level hardware initializa-
modifiers must be used to restrict access to the holes oftion code and a minimal Java Virtual Machine (JVM).
this sandbox: the native methods of trusted classes. As The JX system is structured into domains (see Figure 1).
long as the demarcation line between Java code and nativieach domain represents the illusion of an independent
code is not crossed, the Java code can do no harm. JVM. A domain has a unique ID, its own heap including its
(3) The publicly accessible methods of the trusted classesoWn garbage collector, and its own threads. Thus domains

must invoke the SecurityManager to check whether an are isolated with respect to CPU and memory Consumption.
operation that would leave the sandbox is allowed. They can be terminated independently from each other and

the memory that is reserved for the heap, the stack and
domain control structures can be released immediately
when the domain is terminated.

The SecurityManager is similar to a reference monitor,
but has a severe shortcoming: it is not automatically
invoked. A trusted class must explicitly invoke the Security- :)
Manager to protect itself. The mere number of native meth- All domains execute 100% Java code. The microkernel

ods makes it difficult to assure this. We counted 1312 native '€Presents itself also as a domain. Because this domain has
methods in Sun’s JRE 1.3.1 02 for Linux. which are 2.9 the ID O it is called DomainZero. DomainZero contains all

percent of all methods. From these native methods 34 per-C @nd assembler code that is used in the system.
JX does not support native methods and there is no

cent are public and even as much as 16 percent are public _ _
static methods in a public class. This means that the method"uSted Java code that must be loaded into a domain. There
can be invoked directly from everywhere without the Secu- IS N0 trust boundary within a domain which eases adminis-
rityManager having a chance to intercept the call. Two of tration and allows a domain complete freedom in what code

these methods argavalangSystem.currentTimeMilis) and it runs. Becau_se the domain contains no trusted code itis a
javalang Thread sleep() which provides an interesting opportu- _sandbox that is co_n_ﬁpletely closed. We create a new hole by
nity to create a covert timing channel. The fact that covert INtroducing capabilities, callgbrtals: _

channels are not exploited can be attributed to the existence ~Ortals are proxies [55] for a service that runs in another

of many overt channels. Public, non-final, static variables in d°main. Portals look like ordinary objects and are located

public system classes are only one example (we counted 32" & domains heap, but the invocation of a method synchro-
of these fields in Sun’s JRE). nously transfers control to the service that runs in another

A further problem is that the stack inspection mecha- domain. Parameters are copied from the client to the server

nism only is concerned with access control. It completely domain.) o
ignores the availability aspect of security. This lack was ~ Portals and services can not be created explicitly by the

addressed in JRes [17]. By rewriting bytecodes, JRes creProgrammer. They “magically” appear during portal com-
ates a layer on top of the JVM. In our opinion, this is the Munication. When a domain wants to provide a service it
wrong layer for resource control, because resources that ar&an define a portal interface, which must be a subinterface
only visible inside the JVM can only be accounted inside of jx.zero.Portal, and a class that |mpler_nentS this interface.
the JVM. Examples are CPU time and memory used for the WWhen an instance of such a class is passed to another
garbage collector (GC) or just-in-time compiler or memory domain the portal invocation mechanism creates a service in

used for stack frames. Furthermore, rewriting bytecodes isthe source domain and a portal in the dest.ination domain.
a performance overhead in itself and it creates slower pro- 1 NiS architecture has a bootstrap problem: A domain can
grams. Often, Java is perceived as inherently insecure due to

the complexity of its class libraries and runtime system [22]. Components || Heap

As will be described in Section 3, JX avoids this problem by Classed Portals
not trusting the JDK class library. mEm
Objects R
3 JX Security Architecture Threads B
Java—Stackﬂ I:I |:| '
This section describes the aspects of the JX architecture Thread Control Blockf} -

that are relevant to security.

. C Code
3.1 JX architecture Stacks EEE

JXis a single address space system. All code runs in one
physical address space; an MMU is not used. Protection is
based on the type-safety of the Java bytecode instruction set.

Thread Control Block!
ooo

Figure 1: Structure of the JX system

obtain new portals solely by using existing portals. There- local service table, a pointer to the Domain Control Block
fore each domain possesses an initial portal: a portal to a(DCB) and a domain ID. DCBs are one of the few global
naming service. Using this portal the domain can obtain data structures of JX. Because the DCB of a domain is
other portals to access more services. When a domain is crereused when a domain terminates and portals can outlive the
ated, the creating domain can pass the naming portal as @omain in which the service is located, the DCB pointer
parameter of the domain creation call. When no naming could point to a DCB that contains not information about
portal is specified in thereateDomain® call, the default the terminated service domain but a newly created domain.
Naming portal of the creating domain is passed to the cre- Therefore the portal contains also a unique domain ID,
ated domain. The naming service of the microkernel is usedwhich is checked against the ID in the DCB before the DCB
only by the initial domain (Domainlinit) which implements is used.

a naming service in Java and passes this naming service to Although the portal is located on the heap of the client
all domains it creates. Because Domainlinit looks up all por- domain the Java code has no way to access its contents. The
tals from the microkernel on startup no interaction with the type of the portal reference is ttpezero.Portal interface,
microkernel naming service by any domain is needed afterwhich, as an interface, has no fields. Thus it is not possible

Domainlinit has completed its initialization. to forge a portal to access an arbitrary service.
The implementation of the portal mechanism had to ful- Services are removed automatically when no portal to
fil the following requirements: the service exists. To detect this condition the SCB contains

« It must not be possible to explicitly create a portal object. a reference counter that counts the number of portals to the
* It must be possible to terminate a domain and release allservice. When a portal is passed to another domain a portal
its resources independent of its current communicationto the same service is created in the other domain and the
relationships. reference counter is incremented. When a portal is garbage
« As services are created by the microkernel they must alsocollected the finalization cycle decrements the reference
be automatically removed when they are no longer counter of the service. When a domain terminates all portals
needed. The data structures necessary to control a servicean be considered garbage and a finalization cycle is per-
must be placed on the domains heap and a garbage colledormed before the heap memory is released.
tor must be able to move them.
With the foIIowing_impIementation all these require— 3.2 JX as a capability system
ments are met. A service is represented by a service control
block (SCB) that is stored on the server domain’s heap. The Portals are capabilities [19]. A domain can only access
SCB has a reference to the object that contains the imple-0ther domains when it possesses a portal to a service of the
mentation of the portal methods, a thread that is used to exe0ther domain. The operations that can be performed with

cute the methods, and a queue of waiting senders (Figure 2)the portal are listed in the portal interface.
Although the capability concept is very flexible and

P Sender Queue solves many security problems, such as the confused deputy
DomainID |_wr{Service [30], in a very natural way, it has yyell known limitations. .
ServicelD - C§)|mr|?l The major concern is that a capability can be used to obtain
Portal oc other capabilities, which makes it difficult, if not impossi-
)/ ble, to enforce confinement [62]. JX as described up to now
Service (Thread Object can not enforce confinement. Thus an additional mecha-
Table Control o . .
Block nism is needed: a reference monitor that is able to check all
. . . portal invocations and the transfer of portals between
Client Domain Server Domain .
domains.

Figure 2: Portal data structures

A portal contains no direct pointer to the Service Control 3.3 The reference monitor
Block (SCB) because the SCB is stored on the heap and can
be moved by the garbage collector. Using direct pointers
would require updating all portals to a service during a GC
cycle of the service domain. This would require a scan of
the heaps of all domains which does not scale well. There-
fore a portal contains the index of the service in a domain-

A reference monitor must be tamper-proof, mediate all
accesses, and be small enough to be verified.

A reference monitor for JX must at least control incom-
ing and outgoing portal calls. There are two alternatives for
the implementation of such a reference monitor:

Proxy. Initially a domain has access only to the naming por-
2.createDomain is a method of the DomainManager service which tal that is passed du”r.]g d.omam creation. To obtain .Other
runs in DomainzZero. portals the name service is used. The parent domain can

implement this name service to not return the registered por-to an object of another domain. The reference monitor fur-
tal but a proxy portal which implements the same interface. thermore gets th®omain portal of the caller domain and
This proxy can then invoke a central reference monitor the callee domain. To accelerate the operation of the refer-
before invoking the original portal. ence monitor, théomain portal is a portal which can be
inlined by the translator. On an x86 it takes only two
| machine instructions to get the domain ID given Denain
portal.

The main problem is to obtain a consistent view of the
system during the check. One way is to freeze the whole

These two implementation alternatives have the follow- system by disabling interrupts during the check. This would

ing advantages and drawbacks. The proxy solution needs né!”o”‘ only on a uniprocessor, \.NOUId interfere with schedul-

modification of the microkernel and thus avoids the danger Ing, ?‘”d allowadt_amal—of—_serwce attack. Therefore, our cur-
of introducing new bugs. As long as no reference monitor- rent |mplementat|on copies all parameters from the client
ing is needed, the proxy solution does not cause any addi—domaln tq the server dqmam up toa cer_tam per-call quota.
tional cost. The microkernel solution must check in every These_ objects are not immediately ava|l_able o the server
portal invocation sequence whether a reference monitor isdomaln, but are first checked by the security manager. When

attached to the domain. Because the domain control block,_the sec_urity manager approves the call the normal portal
which contains this information, is already in the cache dur- invocation sequence proceeds.

ing the portal invocation, this check is nearly for free. Onthe

other hand, the proxy solution requires the name service to3.4 Making an access decision

create a proxy for each registered portal. During a method

) i t such tal the whol ¢ h ¢ Spencer et al. [58] argue that basing an access decision
invocation at such a portal the whol€ parameter graph mus only on the intercepted IPC between servers forces the secu-

be traversed and when a portal is found it must be replacedrity server to duplicate part of the object server's state or
by a broxy portal. . . functionality. We found two examples of this problem. In
We rejected .the proxy approach,. pecqu;e It requires BUNIX-like systems access to files in a file system is checked
rather complex |mplementat|on an_d itis difficult to assure when the file is opened. The security manager must analyze
that each pc.)r.tal IS “encgpsulated“ N a proxy portal. the file name to make the access decision, which is difficult
We modified the mmrokernel to mvokg the referencg without knowing details of the file system implementation
monitor whgn a portal call invokes a service of the moni- and without information that is only accessible to the file
tored .do.m:?un (mbou_nd) and when a service of.another system implementation. The problem is even more obvious
dor_n{:un IS mvokeq via a portal (outbound). The internal in a database system that is accessed using SQL statements.
activity of a domain is not controlled. The same reference To make an access decision the reference monitor must

g\onltpr tr)m:s(,jt_ﬁcontrf(lj mbqund and og_tfl?ounctj Ca”i of Z parse the SQL statement. This is inefficient and duplicates
omain, but different domains can use different monitors. functionality of the database server.

monitor is attaphed to a domain when_the domainis created_. There are three solutions for these problems:

When a domain creates a new domain, the reference moni- .

tor of the creating domain is asked to attach a reference (1) The reference monitor lets thg server proceed and only

monitor to the created domain. Usually, it will attach itself checks the returne_d .portal (the f|_le portal?.)

to the new domain but it can - depending on the security pol- (2) The server explicitly communicates with the security

icy - attach another reference monitor or no reference mon- Manager when an access decision is needed.

itor at all. (3) Design a different interface that simplifies the access
It must be guaranteed, that while the access check is per- decision.

formed, the state to be checked can only be modified by the Approach (1) may be too late, especially in cases where

reference monitor. When this state only includes the param-the call modified the state of the server.

eters of the call, these parameters could be copied to aloca- Approach (2) is the most flexible solution. It is used in

tion that is only accessible by the reference monitor. When Flask with the intention of separating security policy and

the state includes other properties of the involved domains,enforcement mechanism [58]. The main problem of this

the activity of these domains must be suspended. For thes&olution is, that it pollutes the server implementation with

reasons the access check is performed in a separate domaipalls to the security manager. The Flask security architec-

not in the caller or callee domain. ture was implemented in SELinux [40]. In SELinux, the list
The list of parameters is accessed using an array ofof permissions for file and directory objects have a nearly

VMObject portals.vMObject is a portal which allows access one-to-one correspondence to an interface one would use

Microkernel. The portal invocation mechanism inside the
microkernel invokes a reference monitor on each portal cal
and passes sender principal, receiver principal, and call
parameters to the reference monitor.

for these objects. This makes approach (3) the most promis-control of portal communication and (ii) the control of por-
ing approach. Our two example problems would be solvedtal propagation.

by parsing the path in the client domain. In an analogous

manner the SQL parser is located in the client domainanda Figure 3 shows the complete reference monitor inter-
parsed representation is passed to the server domain anthce. Figure 4 shows the information that is available to the
intercepted by the security manager. This has the additionalreference monitor.

advantage of moving code to an untrusted client, eliminat- — ,

. public interface DomainBorder {

ing t_he need to venfy_ this code._ Section 3.11 gives further boolean outBound(Interceptinfo info);

details about the design of the file server interface. boolean inBound(Interceptinfo info):
boolean createPortal(Portallnfo info);

3.5 Contro”ing porta' propagation } void deStrOYPOfta'(Porta“nfO |nf0),

In [36] Lampson envisioned a system in which the client
can determine all communication channels that are avail- Figure 3: Reference monitor interface
able to the servdreforetalking to the server. We can do this
by enumerating all portals thgt are owned by a domain. As public interface Interceptinfo extends Portal {
we can not enforce a domain to bgemorylesg36], we Domain getSourceDomain();
must also control the future communication behavior of a Domain getTargetDomain();
domain to guarantee the confinement of information passed| VMMethod getMethod();

to the domain. VMObject getServiceObject();
Several alternative implementations can be used to enu-| VMObject[] getParameters();
merate the portals of a domain: }

(1) A simple approach is to scan the complete heap of the
domain for portal objects. Besides the expensive scanning
operation, the security manager can not be sure, that the
domain will not obtain portals in the future. }

(2) An outbound intercepter can be installed to observe all
outgoing communication of the domain. Thus a domain is
allowed to posses a critical portal but the reference moni-
tor can rejects it's use. The performance disadvantage is3 g Principals
that the complete communication must be checked, even

if the security policy allows unrestricted communication A security policy uses the concept opeincipal [19] to
with a subset of all domains. name the subject that is responsible for an operation. The

(3) The security manager checks all portals transferred toprlnmpal concept is not known to the JX m|crokernel. Itis
a domain. This can be achieved by installing an inbound an gbstractlon that is |mplemented b.y the security system
interceptor which inspects all data given to a domain and OUtS'dpf the m|c.rokernel, \.Nh'le the m!crokernel only.ope.r—
traverses the parameter object graph to find portals. This2tes with d‘?”?"?“”s- Mapping a domain ID to a principal is
could be an expensive operation if a parameter object isthe responsibility of the security manager. We implemented

the root of a large object graph. During copying of the a security manager which uses a hash table to map the

parameters to the destination domain, the microkernel90main ID to the principal object. We first considered an

already traverses the whole object graph. Therefore it is/MPlementation where the microkernel supports the attach-
easy to find portals during this copying operation. The ment of a principal object to a domain. The b|ggestpr.obllem
kernel can then inform the security manager, that there is©! SUCh @ support would be the placement of the principal
a portal passed to the domain (methodatePortal(). obj_ect. Should .the object live in th.e domain itis attached to
The return value otreatePortal() decides whether the ©F in the security manager domain? Both approaches have
portal can be created or not. The security manager mustSevere problems. As the security manager must access the

also be informed if the garbage collector destroys a portal ObleCt. it should be plgcgd in the secumy manager’_s heap.
(destroyPortal()). This way reference monitor can keep But this creates domain interdependencies and the indepen-

track of what portals a domain actually possesses. der}ce of heap management and garpage collection, which is
an important property of the JX architecture, would be lost.

Thus, a numerical principal ID seemed to be the only solu-

tion. But having a principal ID has no advantages over hav-

public interface Portallnfo extends Portal {
Domain getTargetDomain();
int getServicelD();

Figure 4: Information interfaces

Confinement can now be guaranteed with two mecha-
nisms that can be used separately or in combination: (i) the

ing a domain ID, so finally we concluded that the microker- outside the runtime system, the runtime system must know
nel should not care about principals at all. about their existence or even know part of their internal
The security manager maps the unique domain ID to astructure (fields and methods). These structural require-
principal object. Once the principal is known, the security ments are checked by the verifier.
manager can use several policies for the access decision, for The clas®bject is the base class of all classes and inter-
example based on a simple identity or based on roles [24].faces. It contains methods to use the object as a condition
To service a portal call the server thread may itself variable, etc. In JXObject is implemented by the runtime
invoke portals into other domains. To avoid several prob- system. The clasString is used for strings. Becausgring
lems (trojan horse, confused deputy [30]) the server mayis used inside the runtime system, it is required that the
want to downgrade the rights of these invocations to the String class does exist in a domain and that the first field is
rights of the original client. The most elegant solution of acharacter array. The runtime system needs to throw several
these problems is a pure capability architecture. In the JXexceptions, such asArraylndexOutOfBoundsException,
architecture this would mean that the server uses only por-NullpointerException, OutOfMemoryError, StackOverflow-
tals that were obtained from that particular client. This Error. It is required that these classes and their superclasses
requirement is difficult to assure in a multi-threaded server RuntimeException, Exception and Throwable exist in a
domain that processes requests from different clients at thedomain. There are no structural requirements for these
same time. Because the server threads use the same heapgckasses. Arrays are type compatible to the interfaiiese-
portal may leak from one server thread to another. A betterable andSerializable. These interfaces also must exist in a
solution is to allow the reference monitor to downgrade the domain.
rights of a call. To allow the reference monitor to enforce Classes are represented by the pgsakro.VMClass.
downgrading rights to the rights of the invoker, each service But becauseObject contains a methodetClass(), it is
thread (a thread that processes a portal call) has the domairequired thajava.lang.Class exists and contains a construc-
ID of the original client attached to it. This information is tor which has one parameter of tyiClass.
passed during each portal invocation. The reference monitor
h_as access to_thi_s information_ a_nd can ba_se _the accessdeck g gtructure of the Trusted Computing Base
sion on the principal of the original domain, instead of the
principal of the immediate client. Figure 5 shows the structure of the trusted computing
base (TCB). In the TCB we include all system components
that the user trusts to perform a certain operation correctly.
The central part of the system is thtegrity kernel Com-
There is a special kind of portals, callfest portals Fast promising the integrity kernel allows an intruder to crash the
portals can only be created by DomainZero. They are exe-whole system. Built on the integrity kernel is teecurity
cuted in the context of the caller. The semantics of a fastkernel The security kernel represents the minimal TCB. In
portal is known to the system and it's methods can be a typical system configuration the TCB will include the
inlined by the translator. An example for a fast portal is the window manager and the file system. Users will trust the file
Memory portal. We solved the confinement problems of system to store their data reliably. Compromising the secu-
capabilities by introducing a reference monitor that is rity kernel or the rest of the TCB leads to security breaches,
invoked when a portal is used. This is not practical with such as disclosure of confidential data or unauthorized mod-
memory portals for performance reasons, although it couldification of data, but not to an immediate system crash. It
be done. Therefore memory portals support revocation.may lead to a system crash when a compromised security
When the reference monitor detects that a portal is passedernel allows access to the integrity kernel. This design is
between two domainsieatePortal()) it could revoke the reminiscent of the protection rings of Multics.
access right to the memory object for the source domain or JX is a component-based system. A component consists
reject passing of the memory portal. of a number of classes and a file that describes the compo-
nent. This file also contains the information on what other
components the component depends on. The modulariza-
tion and explicit dependencies allows to remove unneces-
The JVM and the class library of the Java Development sary functionality with a few configuration changes. For
Kit (JDK) can not easily be separated from each other. example in a server system the window manager may not be
In JX the JDK is not part of the trusted computing base part of the TCB, while in a thin client system the file system
(TCB). However, there are some classes, whose definition ismay not be needed. A user may even decide not to trust the

very tightly integrated with the JVM specification [38][29]. file system and store the data in an own data base.
Although these classes (excepbject) are implemented

3.7 Revocation of memory objects

3.8 Minimizing the JDK class library

read file

Window Manager
Keyboard and
Mouse Driver

T
oy !
g !
III
e
F= ol [© !
S ol [
o S| [0 !
g 5 |E !
= ‘UB g oY c
& (o} ! ‘T
= ! £
() Lot o]
= Vo S
! =
! S
g ob 2]
'
¢ 0
: O

’Access/Execute
Decision

Principal
Management

Central
Security
Manager

Domain
Starter

Progral
Loader

Component
Repository

Verifier &
Translator

Hardware

W interception

portal call

Figure 5: Typical TCB structure

File Server

User Application

Security Kernel

read/write sector

BlocklO
Disk Driver
JX Microkernel

It is important that there are no dependencies between
the inner kernels and the outer ones. The security manager,
for example, must not store its configuration in the file sys-
tem but use its own simple file system.

Tamper-resistant auditing. The system must assure that
all security relevant events are persistently stored on disk
and cannot be modified. To be certain that the audit trail is
tamper-proof we use a separate disk and write this disk in an
append only mode. We do not use a file system at all but
write the messages unbuffered to consecutive disk sectors.
We do not use any buffering and the audit call only returns
when the block was written to disk. Writing at consecutive
disk sectors avoids long distance head movements and gives
a rate of 630 audit messages per seGowiting one audit
message needs 158B&econds. Given that a file access
which can be satisfied from the buffer cache is in the tenth
of pseconds auditing each file access adds considerable
overhead. The size of a typical audit message is between 35
and 40 bytes. The disk is used as a ring buffer: when the last
sector is reached we wrap to the first one and overwrite old
logs. This avoids a problem often encountered when log-
ging to a file system: when the file system is full logs get
lost. Usually, the most recent logs are the most valuable.
With the above mentioned message rate of 630 messages/
second and a message size of 40 bytes we have a time win-
dow of 110 hours using a 10 GBytes disk. Under normal
operation the time window is much larger, because the mes-
sage rate is well below its maximum.

Trusted path. According to the Orange Book [21] a trusted
path is the path from the user to the TCB. Depending on the
user interface the TCB must include the window manager or
the console driver.

Recent literature generalizes the notion of a trusted path
to any communication mechanism within the system. To
trust a communication path it is essential to identify the
communication partner and provide a communication chan-
nel that can not be overheard or modified. Portal communi-
cation is such a mechanism.

Usually, the reference monitor limits communication
according to a certain security policy. This mechanism
works automatically and is transparent to domains. But it is
even possible for a domain to explicitly consider portal
communication as being performed on a trusted path,
because the target domain of a portal can be obtained and
this identity can not be spoofed.

3. The following hardware was used for all measurements in this pa-
per: Intel PIIl 500 MHz, 512 KB cache, 640 MB RAM, 440BX
Chipset, 82371AB PIlIX4 IDE, Maxtor 91303D6 disk.

3.10 Maintaining security in a dynamic system classes in terms of our capability-based filesystem interface

An operating system is a highly dynamic system. New (Figure 6).

users log in, services are started and terminate, rights of Client Domain
users are changing, etc. To maintain security in such a sys- [clent]
tem, the initial system state must be secure and each state
transition must transfer the system into a secure state. ava. 1o RandomAGCessFIe
There are two issues to be considered here: the system L Jak_fs J
issue and the security policy issue. pisre
It must be guaranteed that trusted software is not tam-
pered and untrusted software runs in a restricted environ-
ment. The system starts with a secure boot process. Pro-
vided that no attacker has physical access to the hardware @ - - | { _ond Securty oy
booting from a tamper-proof device, such as a CD-ROM, is v Security Domain
sufficient and we do not need a secure boot process as in
AEGIS [2] that checks for hardware modifications. We trust © user
the initial domain to correctly start the security services and —
to attach them to the created domains. Each domain is fs-_user_impl j
started with a strictly defined set of rights (portals) and no s e Legend:

trusted code. The initial portals always include a naming 5 implementation
portal with which other portals can be obtained. To avoid the C fs_javafs j
expensive nameserver lookup it is possible to pass a set of I bio BlockiO
additional portals to a newly created domain. The created bio
domain is automatically associated with a principal. When Fileserver Domain
a domain obtains new portals or communicates using exist-
ing portals the security system is involved.

The policy issue is concerned with secure changes of the 1,0 implementation component jdk_fs contains imple-
access rights, additions of principals, etc. How this is done mentations for the java.io.* classes and uses portal inter-
depends on the used security policy and is outside the SCopg, ces from the fs_user interface component to access the file

fs_user

x.fs.File

Interface

Interface Component]

Figure 6: Filesystem layers

of this paper. system. These portals access service objects that are imple-
mented in the fs_user_impl component.
3.11 Securing servers Code that uses thjava.io classes can run unmodified on

' . top of our implementation géva.io. But the advantages of
We use the file system server to illustrate how our secu- . e
a capability-based system are lost: files must be referenced

rity qrchltecture works in a rea_l system. As we discussed in by name and problems similar to the Confused Deputy [30]
Section 3.4 we use the server interface to make access deci- : L .

. : : are possible. An application can avoid the problems by
sions. For this to work servers must expsecurable inter-

faces A securable interface must use simple parameters an({J sing the (not JDK-compatible) capability-based file sys-

rovide fine-grained simple operations em interface.
P 9 pie op L . In an multi-level security (MLS) system in which the file
Many servers have a built-in notion of permissions, for

example the user/group/other permissions in a UNIX file system is part of the TCB, the file system must be verified
S ster?1 We call tr?enmgtive eEmissionsThese ermis- to work correctly - which may be a difficult task as file sys-

y j P b tems employ non-trivial algorithms. We used a configura-
sions can be supplemented or replaced by a sédrefgn

ermissions These permissions could. for example. be tion which eliminates the need for file system verification.
P P ' bi€, Our system creates different instances of the file system for

access control lists. Because foreign permissions are nO{he different security levels, each file server being able to
supported by the server, there must be a way to store them,

. o . use a disjunct range of sectors of the disk. Assuring correct
The SELinux system [4(?] uses aflle'h|erarchy in the normal MLS operation can now be reduced to the problem of veri-
file system to store foreign permissions.

fying that the disk driver works correctly; that is, it really
writes the block to the correct position on the disk. The file
fc,ystem may run outside the TCB with a security label that
Is equivalent to the data it stores.

There is some scepticism whether a capability-based
system can be compatible to the JDK (see the discussion o
capabilities in [63]). We proved that this is possible by
implementing a component that implements fhea.io.*

4 Discussion pointer manipulation errors.Therefore we assume that Java
programs contain less bugs per LOC.
In this section we analyze how well JX meets the Saltzer All systems have between 30 and 120 kLOC. The largest
& Schroeder [52] requirements for a security architecture: part of the Linux source code are device drivers. But only
Economy of mechanismThe security mechanisms must few drivers are normally linked to the kernel statically or as
be simple and small to be subject to verificati®he micro- a module. The Linux number only contains the absolutely
kernel is small and as simple as possible. The concept ofnecessary part of the sources. The number would be higher
stack inspection is no longer needed. Even untrusted codean one of the standard distributions where the kernel con-
can obtain a capability to do useful work in a restricted way. tains additional file systems, network protocols, or other
JX relies on the type safety of the Java Bytecode language services.
If a flaw in the type system is found the whole system is Using a Java processor the translator can be eliminated
compromised. We assume that Java is type-safe. There is #om the TCB. This would reduce the size of the integrity
lot of ongoing and finished work on formally proving the kernel to 37 KLOC.
type safety of Java. Using a simpler intermediate languageFail-safe defaults.Access should be rejected if not explic-
could make this proof easier and require a simpler translatoritly granted Basing access decisions on fail-safe defaults is
[45]. mainly the responsibility of the security manager. As an
The trusted computing base must be as small as possiexample, we implemented a security manager that allows
ble, because it must be verified to obtain high assurance. ltcommunication between dedicated principals and automat-
must not only be small in size, but the whole system archi- ically rejects all other communication attempts.
tecture must be simple and clean. One requirement for aComplete mediation.All accesses must be checkdthe
security architecture is a small and modular TCB. Table 1 reference monitor is automatically invoked when a portal is

- accessed.
System Parts kLO¢ kLg)(t:al Open design.The system design must be publish&€te
. design and implementation of JX is completely open
SecureJava [22] Jazgrﬁmggﬁsm Kemel %; 33 Sepgration of Erivilege.Do not concentraﬁe allypri?/ileges
S 242 —— 3 119 at one principal Th_e mlcrokern_e_l—based architecture sup-
mm 15 ports a system design where privileges are not centralized in
ipc 3 one component but distributed through the system in sepa-
arch/i386/kernel 25 rate domains. Domains do not trust each other; therefore
arch/i386/mm 1 breaking into one domain has a strictly limited effect for the
;: ext2 Zg overall system security.
netlipva 34 Lga_st privil_ege.A system component_should be grant(_ed the
Cinix 2.4.2 drivers 1711 m|n|mal_ pnwleggs_ necessary to fulfil its task domain
starts with the privilege to lookup portals. What portals can
Linux 1.0 & drivers 105 be obtained by a domain is limited by the name service and
LOCK [57] TCB 87 87 also by the reference monitor that is consulted when a portal
KeyKOS [49] Kernel 25 50 comes into a domain or is passed to another domain. If the
Domain code 25 file system is compromised file data can be modified and
JX integrity kernel| Microkernel 25 77 disclosed, but a database or file system that run in another
(no drivers) Translator 40 domain can still be trusted - as long as it does not trust the
Verifier 12 compromised file system domain.
Table 1: Operating system code sizg$rom published Least common mechanismNo unnecessary sharing
sources or measured using andfind) between system components should be allod¥dllows

controlled sharing between applications (domains) using
portals. Domains do not share resources that are imple-
mented by the microkernel. All resources, like files, sockets,
and database tables, are implemented by domains and
c?hared using portals. Domains have separate heaps and
independent garbage collection.

Psychological acceptabilityWhen the security system
communicates with the human user it must respect the men-
gal model of the user and must not annoy the user with too
many questiondVhether the user accepts a security policy

gives an estimate of the complexity of several systems by
counting lines of code (KLOC = 1000 lines of code). When
comparing the numbers one should keep in mind that differ-
ent programming languages are used: the Translator an
Verifier of JX are written in Java, the kernel of JX and all

other systems are written in C and assembler. A number of
programming errors that are possible in C and assembler ar
not possible in Java, such as memory management an

10

depends on the formulation and implementation of the pol- down of central mechanisms may have a dramatic effect for
icy and on the user interface. This is outside the scope of thisthe performance of the whole system.
paper. Security has an associated cost in terms of performance
and resource usage. The performance overhead of JX has to
Besides the requirements described by Saltzer & causes: the use of a type-safe language and the use of a ref-
Schroeder there are additional requirements: erence monitor. To measure the effect of type-safety we

Separation of policy and enforcementSeparation of pol- used two benchmarks and compare the JX performance

icy from mechanism is a software engineering principle that W':;h an_equllvalen;c IE_mux :cn:r?lelrgzntatmgéagvebr?ervir and
leads to a modular system structure with evolvable and @ aAva|mp§Dm;n Ia |0nl% el onef[]t' encl_tm?rr] .t .
exchangeable policies. Several security architectures follow S our class library misses unctionality that 1s

this principle. The DTOS system [43] and its successor :equw?d(sgo run antoﬁ—the-sre\llf Java \t/)veb serv_?rr{ S\]l;?h abs
Flask [58] concentrated on policy flexibility in a microker- omcat [60], we wrote a simple Java web server. The JX we

nel-based OS. In some systems, security decisions ar&€rver accepts a connection, creates a either a new domain
spread over the whole system, which makes it difficult to or anew thread and passes the portal that represents the TCP

i i i tion and a portal to the file system to the new domain/
understand what kind of security policy the system as a S9"N€C
whole actually enforces [37]. Centralizing the policy facili- thread. Table 2 shows the performance of the JX web server.

tates adaptations to new security requirements and enhance’go reference monitor was installed in the system.

manageability. The policy can be changed without changes Benchmark http request rate
to the fundamental security and system architecture and (reg/sec)
without changes to the object servers. Furthermore, a cen- [JX web server using threads 459
tral security manager is a requirement for the enforcement 55 eb"server using domains 142

of complex security policies that are more than access deci-
sions. The policy could, for example, state that all email
must be encrypted, an alert must be activated for three
unsuccessful login attempts, or that users of a certain clear- To see how well the JX web server performs we wrote
ance must store all their data in encrypted form. These pol-an equivalent web server in C and measured its performance
icies can only be enforced by a security manager that hason Linux (Table 3). The Linux web server accepts a connec-
complete control over the system. tion, and either forks a process that parses the http request,
The security policy is not part of the servers. Even the reads the requested file and sends a reply, or processes the
enforcement is separated from the functional part of the request without forking a new process.
servers.

Table 2: JX performance
(mean of four runs each sending 1000 requests)

] .] Benchmark http request rate
Suitable programming language The importance of the (reg/sec)
programming language for a secure system was recognized[Tinux web server using fork 381
in early systems, such as KSOS [25]. A study of the Secure Linux webserver without fork 245

Computing Corporation evaluates five microkernel-based
operating systems with respect to security [53]. This study Table 3: Linux performance
contains a list ([53] pp. 24) of properties of a programming (mean of four runs each sending 1000 requests)
language that affect assurability of code. To improve The Linux and JX/thread numbers are not much differ-
assurability a programming language should allow a high ent. This indicates that even a TCP/IP stack that is written in
abstraction level, support strong data typing, modulariza- java can saturate a 100MBit/s network interface using a 500
tion, and prohibit pointer manipulation. MHz PIIl processor. Creating a new domain to processes
Many security flaws are due to language defiances, like each request is considerably more expensive, but allows to
buffer overflows, that simply cannot happen in a language execute arbitrary untrusted code to process the request.
like Java. We tried to keep the non-Java portion of the sys- A benchmark that is more dominated by computation
tem as small as possible. As can be seen in Table 1 theyerformance is I0Zone. Figure 7 compares the 10Zone per-
microkernel, which is the only part of the system that is formance of JX to Linux. In this benchmark JX performs
written in an unsafe language, is rather small (25 kLOC) considerable worse than Linux. We expect this problem to
compared to the other parts of the TCB. gradually disappear in future versions, because there are no

below the perceptional threshold of a typical user, a slow- 9lobal information about all components loaded in a
domain; no stack inspection is used, i.e. methods can be

11

record size in KBytes

00— 4
8

9ol - - - - 16 L L.
32

80 - - - - B4 o e e e
128

70 - - - - 256 - —-—mmmmmm— o

60t - - - - o |
50

difference in percent

40,
301

64 128 25¢ 32
fl?esme |anBytes 64

20]

achieved throughput in percent

10]

L] Figure 9: Clientand file server in different domains; Monitor ¢

48 16 32 64 128 256 512 permissions before every read/write method
filesize in KBytes

security attributes of an object are changed, the portal (capa-

Figure 7: Multi-domain 10Zone benchmark without bility) still allows access.

reference monitor compared to Linux I0Zone

inlined; a domain can use it's own non-preemptive sched-5 Related Work

uler and can be restricted to one processor, i.e. memory

accesses can be liberally reordered, as long as they onlyCapability-based systemsSeveral operating systems are

affect the own heap of a domain. based on capabilities and use three different implementation
Depending on the configuration, using a reference mon-techniques: partitioned memory, tagged memory [23], and

itor causes an additional overhead. Figure 8 shows the overpassword capabilities. Early capability systems used a

head relative to the multi-domain configuration that is cre- tagged memory architecture (Burroughs 5000 [46], Sym-

ated by using a monitor that intercepts and allows all invo- polics Lisp Machine [44]), or partitioned memory in data-

cations. containing and capability-containing segments (KeyKOS
record size in KBytes [27] and EROS [54]). All these implementations relied on
4 specific hardware features. To become hardware-indepen-
% dent, password capabilities [1] have been invented and are
= used in several systems (Mungi [32], Opal [14], Amoeba
128 [59]). There is no definite agreement on how secure pass-
512 word capabilities really are. There is a non-zero chance that

passwords can be guessed. Security relies on the strength of

o
5 the cryptographic function. Password capabilities can be
. transferred over an external channel, for example, on a
. o .

82 e 16 w2 ea i28 556 E1o desktop sy_stlem the user.reads the capability in one window

g filesize in'kBytes and types it in another window. Furthermore, using crypto-

ES graphic methods adds an overhead when using password
capabilities.

igure 8: Client and file server in different domains; Monitor Type-safe instruction sets, such as the Java intermediate

intercepts and allows all operations bytecode, are a fourth way of implementing capabilities.

We implemented a reference monitor which imitates the The main advantages of this technique are that it is hard-
discretionary access policy of UNIX. Each domain is owned Ware-independent, capability verification is performed at
by a principal. The credentials of a principal consist of user l0ad time, access rights are encoded in the capability type
ID and a list of group IDs. Each read and write access to the@nd not stored as a bitmap in the capability, and capabilities
file portal is validated against the user credentials. During ¢&n not be transferred over uncontrolled channels.

this check the security manager asks the file server for theyjrtual Machines. Virtual machines can be used to isolate
file permissions. As can be seen in Figure 9 this configura- systems that share the same hardware. The classic architec-
tion is expensive. Using a pure capability architecture is tyre is the IBM OS/360 [41]. Virtual machines experienced
much faster, because only portal creation must be checked recent revival with the VMWare PC emulator [64]. Using
but not portal access. This creates, however, the problem of; \/M to isolate untrusted systems requires that the underly-
cached access decisions. When the security policy or theing system (e.g., the control program in 0S/360 and the host

12

operating system of VMWare) is either secure or can notbeg Conclusion

attacked, because it is not connected to the network. Other-

wise an intruder can break into the host system and read or We described the security architecture of the Java oper-
modify the memory of the emulated system using inter- ating system JX, which can be seen as a hybrid of language-
faces, like /dev/ikmem. VMs only work at a large granular- based protection and operating system protection. It recon-
ity. VMWare instances consume a lot of resources to emu-ciles the integrity of a type-safe protection mechanism with
late a complete PC which makes it impossible to create fine-the strong isolation and complete mediation of operating
grained domains. Most applications require controlled systems. JX avoids typical Java security problems, such as
information flow between classification levels; that is native methods, execution of code of different trustworthi-
between VMWare instances. A virtual machine realizes a ness in the same thread, and a huge trusted class library.
sandbox. The holes of the VMWare sandbox are the emu- JX provides a number of security mechanisms of differ-
lated devices. Thus, communication is rather expensive andent invasiveness. The capability mechanism is inherent in
stating a security policy in terms of an emulated device may the architecture and guarantees a minimal level of security.
be a difficult task. On a per-domain basis this mechanism can be supplemented
by a monitor that controls propagation of capabilities
between domains and, if necessary, a reference monitor that
mediates access to these capabilities.

The measured performance overhead of the reference
monitor indicates that this mechanism should not be used if
not needed. We believe that for most applications the pure
capability system, with proper interface design (e.g., aread-
only interface), supplemented by the capability propagation
monitor will provide sufficient security and guarantee con-
finement at a low cost.

Java security.Secure Java [22] aimed at reducing the TCB

of a Java VM to its minimum. The bytecode verifier and

just-in-time compiler are outside the TCB. The JIT can be
inside the TCB to enable certain optimizations. The garbage
collector is inside the TCB, but because the JIT and verifier
are not trusted the integrity of the heap can not be guaran
teed. We think that this is the main problem, because not
relying on the integrity of the heap complicates the GC
implementation and complex implementations should be
avoided in a secure system. Heap integrity is important
when reasoning about security of higher level applications.
However, ideas from the Secure Java architecture could be/ References

used to build an additional protection ring inside our integ- -
[1] M. Anderson, R. Pose, and C. S. Wallace. A password-capability syst€he In

rity kernel. . . . Computer Journal, 29p. 1-8, 1986.
The J-Kernel [31] implements a capability architecture [z w. Amaugh, D. Farber, and J. Smith. A Secure and Reliable Bootstrap Architecture.

for Java. Itis layered on top of a JVM, with the problems of In Proc. of IEEE Symposium on Security and Privapy65-71, May 1997.
a very |arge TCB and limited means of resource control. It Bl G.Back W.C. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation, Resource

. . Management, and Sharing in Javétac. of 4th Symposium on Operating Systems
uses classloaders to separate types. The capability system is Design & Implementatioict. 2000,

not orthogonal to application code which makes reuse in a4 CERTICCVU#16532: BIND T_NXT record processing may cause buffer overfiow
different context (using a different security policy) difficult. -Nov. 1999,

icn. [0l CERT/CCVU#5648: Buffer Overflows in various email clieti898.
| The IIVNM [16]6 and K.a ff(i‘:‘]OS [3] are systims that.ISO [6] CERT/CC.VU#970472: Network Time Protocol ([X]ntpd) daemon contains buffer
ate applications that run in the same JVM. The MVM is an overflow in ntp_controk:ctl_getiter() functiodpr, 2001

extension of Sun’s HotSpot JVM that allows running many [7] CERT/CCVU#745371: Multiple vendor telnet daemons vulnerable to buffer over-
Java applications in one JVM and give the applications the flowvia crafted protocol optionguly 2001.

: : . : [8] CERT/CC.VU#28934: Sun Solaris sadmind buffer overfiow in amsl_verify when
illusion of having a JVM of their own. There are no means requiesting NETMGT. PROG. SERVICEC, 1999,

fo_r resource cpntr_ol an.d no fast communication meCha' [9] CERT/CC.VU#952336: Microsoft Index Server/indexing Service used by IIS 4.0/
nisms for applications inside one MVM. KaffeOS is an 5.0 contains unchecked buffer used when encoding double-byte chahanters
extension of the Kaffe JVM. KaffeOS uses a process 200L.

: s . _ [10] CERT/CCVU#29823: Format string input validation error in wu-ftpd site_exec()
abstraction that is similar to UNIX, with kernel-mode code function June 2000,

and user-mode code, whereas JX is more structured like g11) cerT/ccVU#789543: 11S decodes flenames superfiuously after applying secrity
multi-server microkernel system. There needs to be no checksMay 2001.

f . . messageg@\pr. 1998.
in KaffeOS is done usin gas hared h eap. Our goal was to[13] CERT/CCVU#945216: SSH CRC32 attack detection code contains remote integer

avoid sharing between domains as much as possible and we, ~ overfow Feb. 2001.
therefore, use RPC for inter-domain communication. [14] J.S.Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and Protection
ina Single Address Space Operating SysterACN Trans. on Computer Systems,
12(4) pp. 271-307, Nov. 1994.
[15] C.Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer Overflows: Attacks
and Defenses for the Vulnerability of the Decad@®AiRPA Information Survivabil-
ity Conference and Expo (DISCE3an. 2000.

13

[16]

(17

(18]

(19]

[20]

(1]
(22]
(23]
(24]

[25]

26]
[27]
(28]
[29]
(30]

(31

(32

[33]

(34]
[35]
(36]

37

(38]

(39]

(40]
[41]
[42]

[43]

G. Czajkowski and L. Daynes. Multitasking without Compromise: A Virtual
Machine Evolution. IfProc. of the OOPSLAwp. 125-138, Oct. 2001.

G. Czajkowski and T. von Eicken. JRes: A Resource Accounting Interface for Java. [45]
In Proc. of Conference on Object-Oriented Programming Systems, Languages, and
Applications 98'pp. 21-35, ACM Press, 1998.

D. Dean, E. W. Felten, D. S. Wallach, D. Balfanz, and P. J. Denning. Java security: [46]
Web browsers and beyond. In D. E. Denning (ett)net Beseiged: Countering
Cyberspace Scofflawgp. 241-269, ACM Press, 1998.

J. B. Dennis and E. C. Van Horn. Programming Semantics for Multiprogrammed
Computations. Ii€ommunications of the ACM, 9(Bp. 143-155, Mar. 1966.

E. Denti, A. Omicini, and A. Ricci. tuProlog: A Light-weight Prolog for Internet
Applications and Infrastructures. In Ramakrishnan, 1.V. RFdgtical Aspects of
Declarative Language$ 3rd International Symposium (PADL 201&cture

Notes in Computer Science 1990, pp. 184-198, Springer-Verlag, 2001.
Department of Defens@usted computer system evaluation criteria (Orange
Book) DOD 5200.28-STD, Dec. 1985.

L. v. Doomn. A Secure Java Virtual Machine Phoc. of the 9th USENIX Security
Symposiumpp. 19-34, Aug. 2000.

R. S. Fabry. Capability-based addressingCdmmunications of the ACM, 17(7)

pp. 403-412 , July 1974.

D. Ferraiolo and R. Kuhn. Role-based access contrdoln of the 15th National
Computer Security Conferenpp. 554-563, Oct. 1992.

Ford Aerospacé&ecure Minicomputer Operating System (KSOS) Executive Sum-
mary: Phase I: Design of the Department of Defense Kernelized Secure Operating[56]
SystemTechnical Report WDL-781, Palo Alto, CA, 1978. [57]
Franco Gasperoni and Gary Dismukes. Multilanguage Programming on the JVM: [58]
The Ada 95 Benefits.2002.

B. Frantz. KeyKOS - a secure, high-performance environment for S/37@drof
SHARE 70pp. 465-471, Feb. 1988.

A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone, V. Uhlig, J.E. Tidswell, L.
Deller, and L. Reuther. The SawMill Multiserver Approactirtoc. of the 9th
SIGOPS European Worksh&ep. 2000.

J. Gosling, B. Joy, and G. Stedle Java Language Specificatidug. 1996.

N. Hardy. The confused deputy.@perating Systems Review, 220f) 36-38, Oct.
1988.

C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and T. v. Eicken. Implementing [63]
Multiple Protection Domains in Java.Roc. of the USENIX Annual Technical
Conferencgpp. 259-270, June 1998.

G. Heiser, K. Elphinstone, S. Russel, and J. Vochteloo. Mungi: A Distributed Single [64]
Address-Space Operating Systeni.7th Australiasion Computer Science Confer- [65]
encepp. 271-280, Jan. 1994.

T. Jaeger, J. Tidswell, A. Gefflaut, Y. Park, J. Liedtke, and K. Elphinstone. Synchro-
nous IPC over Transparent Monitors9th SIGOPS European Worksh&ep.

2000.

T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A
Safe Dialect of C. I’NSENIX Annual Technical Conferendene 2002.

R. JohnsorTCL and Java Integratiofechnical Report , Sun Microsystems Lab-
oratory, Jan. 1998.

B. W. Lampson. A Note on the Confinement Problen€dmmunications of the

ACM, 16(10)pp. 613-615, Oct. 1973.

C. E. Landwehr, C. L. Heitmeyer, and J. McLean. A Security Model for Military
Message Systems. ACM Trans. on Computer Systems,,2{8) 198-222, Aug.

1984.

T. Lindholm and F. YellinThe Java Virtual Machine Specificatigkddison-Wesley,

Sep. 1996.

P. A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Taylor, S. Jeff
Turner, and John F. Farrell. The Inevitability of Failure: The Flawed Assumption of
Security in Modern Computing Environments2irst National Information Sys-

tems Security Conferengm. 303-314, Oct. 1998.

P. Loscocco and S. Smalley. Integrating Flexible Support for Security Policies into

the Linux Operating System. Wisenix 2001 Freenix TracR001.

G. Mealy, B. Witt, and W. Clark. The Functional Structure of OS/36IBNISys-

tems Journal, 5(1pp. 3-51, Jan. 1966.

S. G. Miller.SISC: A Complete Scheme Interpreter in Jagehnical Report, Jan.

2002.

S. E. Minear. Providing Policy Control Over Object Operations in a Mach Based
System. IrProc. of the 5th USENIX Security Symposidome 1995.

[44]

[47]
[48]

[49]

(50]
[51]

[52]
[53]
(54]

[55]

[59)
[60]
[61]

[62]

14

D. A. Moon. Symbolics Architecture. IEEE Computer, 20(1pp. 43-52, IEEE,

Jan. 1987.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed Assembly
Language. Ii€onference Record 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languagep. 85-97, 1998.

E. I. OrganickComputer System Organization: The B5700/B6700 Sadas

demic Press, Inc., New York, 1973.

PERCobol, http:/Avww.legacyj.com/.

J. Potter, J. Noble, and R. Shelswell. Project Bruce: Translating from Eiffel to Java.
INTOOLS 97 7.

S. Rajunas, N. Hardy, A. Bomberger, W. Frantz, and C. Landau. Security in Key-
KOS. InProc. of the 1986 IEEE Symposium on Security and Pritacy1986.

N. Rappin and S. Pedrodython Essential©OReilly.,2002."

J. Rushby. Design and Verification of Secure Systenisda of the 8th Symposium

on Operating System Principlggp. 12-21, 1981.

J. H. Saltzer and M. D. Schroeder. The Protection of Information in Computer Sys-
tems. IrProceedings of the IEEE , 63(pp. 1278-1308 , Sep. 1975.

Secure Computing Corporati@TOS General System Security and Assurability
Assessment RepdiB97.

J. S. Shapiro, J. M. Smith, and D. J. FaBROS: a fast capability systeimSym-
posium on Operating Systems Principlgs 170-185, 1999.

M. Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy Princi-
ple. InNICDCS 1986pp. 198-204, 1986.

SmalltalkJVM, http:/Aww.smalltalkJVM.com/.

R. E. SmithCost Profile of a Highly Assured, Secure Operating Syssem 1999.

R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Anderson, and J. Lepreau. The
Flask Security Architecture: System Support for Diverse Security Policiesdn

of the 8th USENIX Security Symposjukng. 1999.

A. Tanenbaum. Chapter 7.Mistributed Operating Systenfrentice Hall, 1995.

The Jakarta Project, http:/jakarta.apache.org/tomcat/.

K. Thompson. Reflections on trusting trustdommunications of the ACM, 27(8)

pp. 761-763, Aug. 1984.

W. E. Boebert. On the inability of an unmodified capability machine to enforce the
*-property. InProc. of the 7th DoD/NBS Computer Security Confergpc@91-

293, Sep. 1984.

D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Extensible security architec-
tures for Java. l6th Symp. on Operating System Princjpes116-128, Apr.

1997.

Webpage of VMWare, http:/Aww.vmware.com/.

Webpage of the I0Zone filesystem benchmark, http:/Awww.iozone.org/.

