
Friedrich-Alexander-Universität
Erlangen-Nürnberg
TECHNISCHE FAKULTÄT

Department of Computer Sciences 4
Distributed Systems and Operating Systems

(Faculty of Engineering Sciences)
Univ. Erlangen-Nürnberg • Informatik 4 • Martensstr. 1 • 91058 Erlangen • Germany
Phone: +49.9131.85.27277 • Fax: +49.9131.85.28732
E-Mail: i4@informatik.uni-erlangen.de • URL: http://www4.informatik.uni-erlangen.de

Michael Golm, Meik Felser,
Christian Wawersich, Jürgen Kleinöder

A Java Operating System
as the Foundation of a

Secure Network Operating System

Technical Report TR-I4-02-05 ◆ August 2002

1

A Java Operating System as the Foundation of a
Secure Network Operating System

Michael Golm, Meik Felser, Christian Wawersich, Jürgen Kleinöder
University of Erlangen-Nuremberg

Dept. of Computer Science 4 (Distributed Systems and Operating Systems)
Martensstr. 1, 91058 Erlangen, Germany

{golm, felser, wawersich, kleinoeder}@informatik.uni-erlangen.de

Abstract
Errors in the design and implementation of operating

system kernels and system programs lead to security prob-
lems that very often cause a complete breakdown of all
security mechanisms of the system.
We present the architecture of the JX operating system,
which avoids two categories of these errors. First, there are
implementation errors, such as buffer overflows, dangling
pointers, and memory leaks, caused by the use of unsafe
languages. We eliminate these errors by using Java—a type-
safe language with automatic memory management—for
the implementation of the complete operating system. Sec-
ond, there are architectural errors caused by complex sys-
tem architectures, poorly understood interdependencies
between system components, and minimal modularization.
JX addresses these errors by following well-known princi-
ples, such as least-privilege and separation-of-privilege,
and by using a minimal security kernel, which, for example,
excludes the filesystem.
Java security problems, such as the huge trusted class
library and reliance on stack inspection are avoided. Code
of different trustworthiness or code that belongs to different
principals is separated into isolated domains. These
domains represent independent virtual machines. Sharing
of information or resources between domains can be com-
pletely controlled by the security kernel.

1 Introduction

There are two categories of errors that cause the easy
vulnerability of current systems. The first are implementa-
tion errors, such as buffer overflows, dangling pointers, and
memory leaks, which are caused by the prevalent use of
unsafe languages in current systems. This becomes danger-
ous when an OS relies on a large number of trusted pro-
grams. From the top ten CERT notes (as of January 2002)
with highest vulnerability potential six are buffer overflows
[4], [5], [6], [7], [8], [9], two relate to errors checking user
supplied strings that contain commands thus allowing the

user to run arbitrary commands with root privilege [10],
[11], one executes commands in emails [12], and one is an
integer overflow [13]. The six buffer overflow vulnerabili-
ties could have been avoided by using techniques described
by Cowan et al. [15]. However, not all overflow attacks can
be detected and the authors recommend the use of a type-
safe language.

An argument that is often raised against type-safe sys-
tems and software protection is that the compiler must be
trusted. We think that this is not a very strong argument for
the following three reasons. (i) Traditional systems, such as
Unix, also use compilers to compile trusted components,
like the kernel and system programs. Security in such a sys-
tem relies on the assumption that the C compiler contains no
bugs or trojan horses [61]. (ii) Only the compiler backend
that translates the type-safe instruction set into the instruc-
tion set of the processor and the verifier that guarantees
type-safety must be trusted. (iii) The additional effort that
must be put into the verification of two components—the
compiler backend and the verifier—pays off with reduced
verification effort for many trusted system programs. Most
vulnerabilities in current systems are caused not by bugs in
the kernel but by bugs in system programs.

The second category of errors—the architectural
errors— is more difficult to tackle. The three CERT notes
related to the execution of commands in strings and emails
are critical because the vulnerable systems violate the prin-
ciple of least-privilege [52]. Thus, in current mainstream
systems it is not the question whether the proper security
policy is used, but whether security can be enforced at all
[39]. Violations of the principle ofleast-privilege, an uncon-
trolled cumulation of functionality, many implementation
errors, complex system architectures, and poorly under-
stood interrelations between system components make cur-
rent systems very vulnerable. This is a problem that affects
all applications, because applications are built on top of an
operating system and can be only as secure as its trusted
programs and the underlying kernel.

 2

As it will never be possible to develop software of mod-
erate complexity that is free of errors one must assume that
every complex application contains security critical errors.
The realization that these errors can not be avoided in cur-
rent systems led to the proliferation of firewalls that are
responsible to shield potentially vulnerable systems from
potentially dangerous traffic. Application developers and
deployers react to the restriction of a firewall by tunneling
traffic over open ports, for example the http port 80. The
security community reacts by building traffic analyzers that
analyze the TCP stream and the protocols above TCP and
http. As it becomes more and more expensive to cure the
symptoms it becomes more attractive to fix the deeper
underlying causes of the security problems.

It is well understood that the unsafe nature of the lan-
guages C and C++ is the reason for many of today’s security
problems. There are several projects that try to develop a
safe dialect of C. One of these projects created a safe dialect
of C, called Cyclone-C [34]. Although Cyclone-C looks
similar to C it is not possible to recompile an existing non-
trivial C program, such as an OS kernel, without changes.
Using Java instead of a Cyclone-C means that it is more dif-
ficult to port C programs, but allows to run the large number
of existing Java programs without modifications. Further-
more, Cyclone-C programs have a similar performance
overhead as Java programs.

There is still the problem that basing the protection on
type-safety ties the system to a certain language and type
system. But this seems to be no problem at all. Although the
Java bytecode was not designed as the target instruction set
for languages other than Java, there is a large number of lan-
guages that can be compiled to Java bytecode. Examples are
Python [50], Eiffel [48], Tcl [35], Scheme [42], Prolog [20],
Smalltalk [56], ADA95 [26], and Cobol [47].

Java allows developing applications using a modern
object-oriented style, emphasizing abstraction and reusabil-
ity. On the other hand many security problems have been
detected in Java systems in the past [18]. The main contri-
bution of this paper is an architecture for a secure Java oper-
ating system that avoids these problems and a discussion of
its implementation and performance.

We follow Rushby [51] in his reasoning that a secure
system should be structured as if it were a distributed sys-
tem. With such an architecture a security problem in one
part of the system does not automatically lead to a collapse
of the whole system’s security. Microkernels are well suited
as the foundation of such a system. Especially systems that
adhere to the multi-server approach, such as SawMill [28],
and mediate communication between the servers [33] are
able to limit the effect of security violations.

The JX system combines the advantages of a multi-
server structure with the advantages of type-safety. It uses
type-safety to provide an efficient communication mecha-

nism that completely isolates the servers with respect to
data access and resource usage.

The paper is structured as follows. Section 2 gives an
overview about Java security and analyzes some weak-
nesses of the Java security mechanism. Section 3 describes
the architecture of JX with the focus on the security archi-
tecture. Section 4 describes the performance of the system
as a web server. Section 4 discusses how the system meets
the requirements of a security architecture. Section 5
describes related work and Section 6 concludes the paper.

2 Java Security

Java security is based on the concept of a sandbox,
which relies on the type-safety of the executed code.
Untrusted but verified code can run in the sandbox and can
not leave the sandbox to do any harm. Every sandbox must
have a kind of exit or hole, otherwise the code running in the
sandbox can not communicate results or interact with the
environment in a suitable way. These holes must be clearly
defined and thoroughly controlled. The holes of the Java
sandbox are the native methods. To control these holes, the
Java runtime first controls which classes are allowed to load
a library that contains native code. These classes must be
trusted to guard access to their native methods. The native
methods of these classes should be non-public and the pub-
lic non-native methods are expected to invoke the Security-
Manager before invoking a native method. The Security-
Manager inspects the runtime call stack and checks whether
the caller of the trusted method is trusted.

Java version 1 distinguishes between trusted system
classes, which were loaded using the JVM internal class
loading mechanism, and untrusted classes, which were
loaded using a class loader external to the JVM. Implemen-
tations of the SecurityManager can check whether the
classes on the call stack—the callers of the method—are
trusted or untrusted classes. When the caller was a system
class the operation usually is allowed otherwise the Securi-
tyManager decides, depending on the kind of operation and
its parameters, whether the untrusted class is allowed to
invoke the operation1.

Java version 2 also relies on stack inspection but can
define more flexible security policies by describing the per-
missions of classes of a certain origin in external files.

To sum up, Java security relies on the following require-
ments:
0(1) Code is kept in a sandbox by using an intermediate

instruction set. Programs are verified to be type-safe.

1.The real implementation uses the abstraction ofclassloader-depth,
which is the number of stack frames between the current stack frame
and the first stack frame connected to a class that was loaded using
a classloader.

 3

(2) The package-specific and/or class-specific access
modifiers must be used to restrict access to the holes of
this sandbox: the native methods of trusted classes. As
long as the demarcation line between Java code and native
code is not crossed, the Java code can do no harm.

(3) The publicly accessible methods of the trusted classes
must invoke the SecurityManager to check whether an
operation that would leave the sandbox is allowed.

The SecurityManager is similar to a reference monitor,
but has a severe shortcoming: it is not automatically
invoked. A trusted class must explicitly invoke the Security-
Manager to protect itself. The mere number of native meth-
ods makes it difficult to assure this. We counted 1312 native
methods in Sun’s JRE 1.3.1_02 for Linux, which are 2.9
percent of all methods. From these native methods 34 per-
cent are public and even as much as 16 percent are public
static methods in a public class. This means that the method
can be invoked directly from everywhere without the Secu-
rityManager having a chance to intercept the call. Two of
these methods arejava.lang.System.currentTimeMillis() and
java.lang.Thread.sleep() which provides an interesting opportu-
nity to create a covert timing channel. The fact that covert
channels are not exploited can be attributed to the existence
of many overt channels. Public, non-final, static variables in
public system classes are only one example (we counted 31
of these fields in Sun’s JRE).

A further problem is that the stack inspection mecha-
nism only is concerned with access control. It completely
ignores the availability aspect of security. This lack was
addressed in JRes [17]. By rewriting bytecodes, JRes cre-
ates a layer on top of the JVM. In our opinion, this is the
wrong layer for resource control, because resources that are
only visible inside the JVM can only be accounted inside
the JVM. Examples are CPU time and memory used for the
garbage collector (GC) or just-in-time compiler or memory
used for stack frames. Furthermore, rewriting bytecodes is
a performance overhead in itself and it creates slower pro-
grams. Often, Java is perceived as inherently insecure due to
the complexity of its class libraries and runtime system [22].
As will be described in Section 3, JX avoids this problem by
not trusting the JDK class library.

3 JX Security Architecture

This section describes the aspects of the JX architecture
that are relevant to security.

3.1 JX architecture

JX is a single address space system. All code runs in one
physical address space; an MMU is not used. Protection is
based on the type-safety of the Java bytecode instruction set.

A small microkernel contains low-level hardware initializa-
tion code and a minimal Java Virtual Machine (JVM).

The JX system is structured into domains (see Figure 1).
Each domain represents the illusion of an independent
JVM. A domain has a unique ID, its own heap including its
own garbage collector, and its own threads. Thus domains
are isolated with respect to CPU and memory consumption.
They can be terminated independently from each other and
the memory that is reserved for the heap, the stack and
domain control structures can be released immediately
when the domain is terminated.

All domains execute 100% Java code. The microkernel
represents itself also as a domain. Because this domain has
the ID 0 it is called DomainZero. DomainZero contains all
C and assembler code that is used in the system.

JX does not support native methods and there is no
trusted Java code that must be loaded into a domain. There
is no trust boundary within a domain which eases adminis-
tration and allows a domain complete freedom in what code
it runs. Because the domain contains no trusted code it is a
sandbox that is completely closed. We create a new hole by
introducing capabilities, calledportals.

Portals are proxies [55] for a service that runs in another
domain. Portals look like ordinary objects and are located
on a domains heap, but the invocation of a method synchro-
nously transfers control to the service that runs in another
domain. Parameters are copied from the client to the server
domain.

Portals and services can not be created explicitly by the
programmer. They “magically” appear during portal com-
munication. When a domain wants to provide a service it
can define a portal interface, which must be a subinterface
of jx.zero.Portal, and a class that implements this interface.
When an instance of such a class is passed to another
domain the portal invocation mechanism creates a service in
the source domain and a portal in the destination domain.
This architecture has a bootstrap problem: A domain can

Domain A

Heap

Java-Stacks

Components

Thread Control Blocks

Classes

Objects

Portals

Threads

Domain B

DomainZero (Microkernel)

Stacks
Thread Control Blocks

ThreadsC Code
Assembler

Figure 1: Structure of the JX system

 4

obtain new portals solely by using existing portals. There-
fore each domain possesses an initial portal: a portal to a
naming service. Using this portal the domain can obtain
other portals to access more services. When a domain is cre-
ated, the creating domain can pass the naming portal as a
parameter of the domain creation call. When no naming
portal is specified in thecreateDomain2 call, the default
Naming portal of the creating domain is passed to the cre-
ated domain. The naming service of the microkernel is used
only by the initial domain (DomainInit) which implements
a naming service in Java and passes this naming service to
all domains it creates. Because DomainInit looks up all por-
tals from the microkernel on startup no interaction with the
microkernel naming service by any domain is needed after
DomainInit has completed its initialization.

The implementation of the portal mechanism had to ful-
fil the following requirements:
• It must not be possible to explicitly create a portal object.
• It must be possible to terminate a domain and release all

its resources independent of its current communication
relationships.

• As services are created by the microkernel they must also
be automatically removed when they are no longer
needed. The data structures necessary to control a service
must be placed on the domains heap and a garbage collec-
tor must be able to move them.

With the following implementation all these require-
ments are met. A service is represented by a service control
block (SCB) that is stored on the server domain’s heap. The
SCB has a reference to the object that contains the imple-
mentation of the portal methods, a thread that is used to exe-
cute the methods, and a queue of waiting senders (Figure 2).

A portal contains no direct pointer to the Service Control
Block (SCB) because the SCB is stored on the heap and can
be moved by the garbage collector. Using direct pointers
would require updating all portals to a service during a GC
cycle of the service domain. This would require a scan of
the heaps of all domains which does not scale well. There-
fore a portal contains the index of the service in a domain-

local service table, a pointer to the Domain Control Block
(DCB) and a domain ID. DCBs are one of the few global
data structures of JX. Because the DCB of a domain is
reused when a domain terminates and portals can outlive the
domain in which the service is located, the DCB pointer
could point to a DCB that contains not information about
the terminated service domain but a newly created domain.
Therefore the portal contains also a unique domain ID,
which is checked against the ID in the DCB before the DCB
is used.

Although the portal is located on the heap of the client
domain the Java code has no way to access its contents. The
type of the portal reference is thejx.zero.Portal interface,
which, as an interface, has no fields. Thus it is not possible
to forge a portal to access an arbitrary service.

Services are removed automatically when no portal to
the service exists. To detect this condition the SCB contains
a reference counter that counts the number of portals to the
service. When a portal is passed to another domain a portal
to the same service is created in the other domain and the
reference counter is incremented. When a portal is garbage
collected the finalization cycle decrements the reference
counter of the service. When a domain terminates all portals
can be considered garbage and a finalization cycle is per-
formed before the heap memory is released.

3.2 JX as a capability system

Portals are capabilities [19]. A domain can only access
other domains when it possesses a portal to a service of the
other domain. The operations that can be performed with
the portal are listed in the portal interface.

Although the capability concept is very flexible and
solves many security problems, such as the confused deputy
[30], in a very natural way, it has well known limitations.
The major concern is that a capability can be used to obtain
other capabilities, which makes it difficult, if not impossi-
ble, to enforce confinement [62]. JX as described up to now
can not enforce confinement. Thus an additional mecha-
nism is needed: a reference monitor that is able to check all
portal invocations and the transfer of portals between
domains.

3.3 The reference monitor

A reference monitor must be tamper-proof, mediate all
accesses, and be small enough to be verified.

A reference monitor for JX must at least control incom-
ing and outgoing portal calls. There are two alternatives for
the implementation of such a reference monitor:

Proxy. Initially a domain has access only to the naming por-
tal that is passed during domain creation. To obtain other
portals the name service is used. The parent domain can

2.createDomain is a method of the DomainManager service which
runs in DomainZero.

Service Object

Service

Portal

DomainID

ServiceID

Client Domain Server Domain

Table

Control
Block

Thread
Control
Block

Figure 2: Portal data structures

Sender Queue

 5

implement this name service to not return the registered por-
tal but a proxy portal which implements the same interface.
This proxy can then invoke a central reference monitor
before invoking the original portal.

Microkernel. The portal invocation mechanism inside the
microkernel invokes a reference monitor on each portal call
and passes sender principal, receiver principal, and call
parameters to the reference monitor.

These two implementation alternatives have the follow-
ing advantages and drawbacks. The proxy solution needs no
modification of the microkernel and thus avoids the danger
of introducing new bugs. As long as no reference monitor-
ing is needed, the proxy solution does not cause any addi-
tional cost. The microkernel solution must check in every
portal invocation sequence whether a reference monitor is
attached to the domain. Because the domain control block,
which contains this information, is already in the cache dur-
ing the portal invocation, this check is nearly for free. On the
other hand, the proxy solution requires the name service to
create a proxy for each registered portal. During a method
invocation at such a portal the whole parameter graph must
be traversed and when a portal is found it must be replaced
by a proxy portal.

We rejected the proxy approach, because it requires a
rather complex implementation and it is difficult to assure
that each portal is “encapsulated” in a proxy portal.

We modified the microkernel to invoke the reference
monitor when a portal call invokes a service of the moni-
tored domain (inbound) and when a service of another
domain is invoked via a portal (outbound). The internal
activity of a domain is not controlled. The same reference
monitor must control inbound and outbound calls of a
domain, but different domains can use different monitors. A
monitor is attached to a domain when the domain is created.
When a domain creates a new domain, the reference moni-
tor of the creating domain is asked to attach a reference
monitor to the created domain. Usually, it will attach itself
to the new domain but it can - depending on the security pol-
icy - attach another reference monitor or no reference mon-
itor at all.

It must be guaranteed, that while the access check is per-
formed, the state to be checked can only be modified by the
reference monitor. When this state only includes the param-
eters of the call, these parameters could be copied to a loca-
tion that is only accessible by the reference monitor. When
the state includes other properties of the involved domains,
the activity of these domains must be suspended. For these
reasons the access check is performed in a separate domain,
not in the caller or callee domain.

The list of parameters is accessed using an array of
VMObject portals.VMObject is a portal which allows access

to an object of another domain. The reference monitor fur-
thermore gets theDomain portal of the caller domain and
the callee domain. To accelerate the operation of the refer-
ence monitor, theDomain portal is a portal which can be
inlined by the translator. On an x86 it takes only two
machine instructions to get the domain ID given theDomain
portal.

The main problem is to obtain a consistent view of the
system during the check. One way is to freeze the whole
system by disabling interrupts during the check. This would
work only on a uniprocessor, would interfere with schedul-
ing, and allow a denial-of-service attack. Therefore, our cur-
rent implementation copies all parameters from the client
domain to the server domain up to a certain per-call quota.
These objects are not immediately available to the server
domain, but are first checked by the security manager. When
the security manager approves the call the normal portal
invocation sequence proceeds.

3.4 Making an access decision

Spencer et al. [58] argue that basing an access decision
only on the intercepted IPC between servers forces the secu-
rity server to duplicate part of the object server’s state or
functionality. We found two examples of this problem. In
UNIX-like systems access to files in a file system is checked
when the file is opened. The security manager must analyze
the file name to make the access decision, which is difficult
without knowing details of the file system implementation
and without information that is only accessible to the file
system implementation. The problem is even more obvious
in a database system that is accessed using SQL statements.
To make an access decision the reference monitor must
parse the SQL statement. This is inefficient and duplicates
functionality of the database server.

There are three solutions for these problems:
0(1) The reference monitor lets the server proceed and only

checks the returned portal (the file portal).

(2) The server explicitly communicates with the security
manager when an access decision is needed.

(3) Design a different interface that simplifies the access
decision.

Approach (1) may be too late, especially in cases where
the call modified the state of the server.

Approach (2) is the most flexible solution. It is used in
Flask with the intention of separating security policy and
enforcement mechanism [58]. The main problem of this
solution is, that it pollutes the server implementation with
calls to the security manager. The Flask security architec-
ture was implemented in SELinux [40]. In SELinux, the list
of permissions for file and directory objects have a nearly
one-to-one correspondence to an interface one would use

 6

for these objects. This makes approach (3) the most promis-
ing approach. Our two example problems would be solved
by parsing the path in the client domain. In an analogous
manner the SQL parser is located in the client domain and a
parsed representation is passed to the server domain and
intercepted by the security manager. This has the additional
advantage of moving code to an untrusted client, eliminat-
ing the need to verify this code. Section 3.11 gives further
details about the design of the file server interface.

3.5 Controlling portal propagation

In [36] Lampson envisioned a system in which the client
can determine all communication channels that are avail-
able to the serverbeforetalking to the server. We can do this
by enumerating all portals that are owned by a domain. As
we can not enforce a domain to bememoryless[36], we
must also control the future communication behavior of a
domain to guarantee the confinement of information passed
to the domain.

Several alternative implementations can be used to enu-
merate the portals of a domain:
0(1) A simple approach is to scan the complete heap of the

domain for portal objects. Besides the expensive scanning
operation, the security manager can not be sure, that the
domain will not obtain portals in the future.

(2) An outbound intercepter can be installed to observe all
outgoing communication of the domain. Thus a domain is
allowed to posses a critical portal but the reference moni-
tor can rejects it’s use. The performance disadvantage is
that the complete communication must be checked, even
if the security policy allows unrestricted communication
with a subset of all domains.

(3) The security manager checks all portals transferred to
a domain. This can be achieved by installing an inbound
interceptor which inspects all data given to a domain and
traverses the parameter object graph to find portals. This
could be an expensive operation if a parameter object is
the root of a large object graph. During copying of the
parameters to the destination domain, the microkernel
already traverses the whole object graph. Therefore it is
easy to find portals during this copying operation. The
kernel can then inform the security manager, that there is
a portal passed to the domain (methodcreatePortal()).
The return value ofcreatePortal() decides whether the
portal can be created or not. The security manager must
also be informed if the garbage collector destroys a portal
(destroyPortal()). This way reference monitor can keep
track of what portals a domain actually possesses.

Confinement can now be guaranteed with two mecha-
nisms that can be used separately or in combination: (i) the

control of portal communication and (ii) the control of por-
tal propagation.

Figure 3 shows the complete reference monitor inter-
face. Figure 4 shows the information that is available to the
reference monitor.

3.6 Principals

A security policy uses the concept of aprincipal [19] to
name the subject that is responsible for an operation. The
principal concept is not known to the JX microkernel. It is
an abstraction that is implemented by the security system
outside the microkernel, while the microkernel only oper-
ates with domains. Mapping a domain ID to a principal is
the responsibility of the security manager. We implemented
a security manager which uses a hash table to map the
domain ID to the principal object. We first considered an
implementation where the microkernel supports the attach-
ment of a principal object to a domain. The biggest problem
of such a support would be the placement of the principal
object. Should the object live in the domain it is attached to
or in the security manager domain? Both approaches have
severe problems. As the security manager must access the
object it should be placed in the security manager’s heap.
But this creates domain interdependencies and the indepen-
dence of heap management and garbage collection, which is
an important property of the JX architecture, would be lost.
Thus, a numerical principal ID seemed to be the only solu-
tion. But having a principal ID has no advantages over hav-

Figure 3: Reference monitor interface

public interface DomainBorder {
boolean outBound(InterceptInfo info);
boolean inBound(InterceptInfo info);
boolean createPortal(PortalInfo info);
void destroyPortal(PortalInfo info);

}

Figure 4: Information interfaces

public interface InterceptInfo extends Portal {
 Domain getSourceDomain();
 Domain getTargetDomain();
 VMMethod getMethod();
 VMObject getServiceObject();
 VMObject[] getParameters();
}

public interface PortalInfo extends Portal {
 Domain getTargetDomain();
 int getServiceID();
}

 7

ing a domain ID, so finally we concluded that the microker-
nel should not care about principals at all.

The security manager maps the unique domain ID to a
principal object. Once the principal is known, the security
manager can use several policies for the access decision, for
example based on a simple identity or based on roles [24].

To service a portal call the server thread may itself
invoke portals into other domains. To avoid several prob-
lems (trojan horse, confused deputy [30]) the server may
want to downgrade the rights of these invocations to the
rights of the original client. The most elegant solution of
these problems is a pure capability architecture. In the JX
architecture this would mean that the server uses only por-
tals that were obtained from that particular client. This
requirement is difficult to assure in a multi-threaded server
domain that processes requests from different clients at the
same time. Because the server threads use the same heap, a
portal may leak from one server thread to another. A better
solution is to allow the reference monitor to downgrade the
rights of a call. To allow the reference monitor to enforce
downgrading rights to the rights of the invoker, each service
thread (a thread that processes a portal call) has the domain
ID of the original client attached to it. This information is
passed during each portal invocation. The reference monitor
has access to this information and can base the access deci-
sion on the principal of the original domain, instead of the
principal of the immediate client.

3.7 Revocation of memory objects

There is a special kind of portals, calledfast portals. Fast
portals can only be created by DomainZero. They are exe-
cuted in the context of the caller. The semantics of a fast
portal is known to the system and it’s methods can be
inlined by the translator. An example for a fast portal is the
Memory portal. We solved the confinement problems of
capabilities by introducing a reference monitor that is
invoked when a portal is used. This is not practical with
memory portals for performance reasons, although it could
be done. Therefore memory portals support revocation.
When the reference monitor detects that a portal is passed
between two domains (createPortal()) it could revoke the
access right to the memory object for the source domain or
reject passing of the memory portal.

3.8 Minimizing the JDK class library

The JVM and the class library of the Java Development
Kit (JDK) can not easily be separated from each other.

In JX the JDK is not part of the trusted computing base
(TCB). However, there are some classes, whose definition is
very tightly integrated with the JVM specification [38][29].
Although these classes (exceptObject) are implemented

outside the runtime system, the runtime system must know
about their existence or even know part of their internal
structure (fields and methods). These structural require-
ments are checked by the verifier.

The classObject is the base class of all classes and inter-
faces. It contains methods to use the object as a condition
variable, etc. In JXObject is implemented by the runtime
system. The classString is used for strings. BecauseString
is used inside the runtime system, it is required that the
String class does exist in a domain and that the first field is
a character array. The runtime system needs to throw several
exceptions, such asArrayIndexOutOfBoundsException,
NullpointerException, OutOfMemoryError, StackOverflow-
Error. It is required that these classes and their superclasses
RuntimeException, Exception and Throwable exist in a
domain. There are no structural requirements for these
classes. Arrays are type compatible to the interfacesClone-
able andSerializable. These interfaces also must exist in a
domain.

Classes are represented by the portaljx.zero.VMClass.
But becauseObject contains a methodgetClass(), it is
required thatjava.lang.Class exists and contains a construc-
tor which has one parameter of typeVMClass.

3.9 Structure of the Trusted Computing Base

Figure 5 shows the structure of the trusted computing
base (TCB). In the TCB we include all system components
that the user trusts to perform a certain operation correctly.
The central part of the system is theintegrity kernel. Com-
promising the integrity kernel allows an intruder to crash the
whole system. Built on the integrity kernel is thesecurity
kernel. The security kernel represents the minimal TCB. In
a typical system configuration the TCB will include the
window manager and the file system. Users will trust the file
system to store their data reliably. Compromising the secu-
rity kernel or the rest of the TCB leads to security breaches,
such as disclosure of confidential data or unauthorized mod-
ification of data, but not to an immediate system crash. It
may lead to a system crash when a compromised security
kernel allows access to the integrity kernel. This design is
reminiscent of the protection rings of Multics.

JX is a component-based system. A component consists
of a number of classes and a file that describes the compo-
nent. This file also contains the information on what other
components the component depends on. The modulariza-
tion and explicit dependencies allows to remove unneces-
sary functionality with a few configuration changes. For
example in a server system the window manager may not be
part of the TCB, while in a thin client system the file system
may not be needed. A user may even decide not to trust the
file system and store the data in an own data base.

 8

It is important that there are no dependencies between
the inner kernels and the outer ones. The security manager,
for example, must not store its configuration in the file sys-
tem but use its own simple file system.

Tamper-resistant auditing.The system must assure that
all security relevant events are persistently stored on disk
and cannot be modified. To be certain that the audit trail is
tamper-proof we use a separate disk and write this disk in an
append only mode. We do not use a file system at all but
write the messages unbuffered to consecutive disk sectors.
We do not use any buffering and the audit call only returns
when the block was written to disk. Writing at consecutive
disk sectors avoids long distance head movements and gives
a rate of 630 audit messages per second3. Writing one audit
message needs 1582µseconds. Given that a file access
which can be satisfied from the buffer cache is in the tenth
of µseconds auditing each file access adds considerable
overhead. The size of a typical audit message is between 35
and 40 bytes. The disk is used as a ring buffer: when the last
sector is reached we wrap to the first one and overwrite old
logs. This avoids a problem often encountered when log-
ging to a file system: when the file system is full logs get
lost. Usually, the most recent logs are the most valuable.
With the above mentioned message rate of 630 messages/
second and a message size of 40 bytes we have a time win-
dow of 110 hours using a 10 GBytes disk. Under normal
operation the time window is much larger, because the mes-
sage rate is well below its maximum.

Trusted path. According to the Orange Book [21] a trusted
path is the path from the user to the TCB. Depending on the
user interface the TCB must include the window manager or
the console driver.

Recent literature generalizes the notion of a trusted path
to any communication mechanism within the system. To
trust a communication path it is essential to identify the
communication partner and provide a communication chan-
nel that can not be overheard or modified. Portal communi-
cation is such a mechanism.

Usually, the reference monitor limits communication
according to a certain security policy. This mechanism
works automatically and is transparent to domains. But it is
even possible for a domain to explicitly consider portal
communication as being performed on a trusted path,
because the target domain of a portal can be obtained and
this identity can not be spoofed.

File Server

Authentication

Security Kernel

Hardware

Verifier &

Program

Integrity Kernel

read file

open

Audit

portal call

 interception

Component

Figure 5: Typical TCB structure

TCB

Disk Driver
BlockIO

JX Microkernel

 System

Principal
Management

Access/Execute
Decision

Central
Security
Manager

Keyboard and
Mouse Driver

Window Manager

tr
us

te
d

pa
th

as
k

us
er

Loader

Repository

Translator

Domain
Starter

window

ge
t p

er
m

is
si

on
s

st
ar

t d
om

ai
n

re
ad

/w
rit

e
se

ct
or

User ApplicationUser Application

domain
3.The following hardware was used for all measurements in this pa-

per: Intel PIII 500 MHz, 512 KB cache, 640 MB RAM, 440BX
Chipset, 82371AB PIIX4 IDE, Maxtor 91303D6 disk.

 9

3.10 Maintaining security in a dynamic system

An operating system is a highly dynamic system. New
users log in, services are started and terminate, rights of
users are changing, etc. To maintain security in such a sys-
tem, the initial system state must be secure and each state
transition must transfer the system into a secure state.

There are two issues to be considered here: the system
issue and the security policy issue.

It must be guaranteed that trusted software is not tam-
pered and untrusted software runs in a restricted environ-
ment. The system starts with a secure boot process. Pro-
vided that no attacker has physical access to the hardware
booting from a tamper-proof device, such as a CD-ROM, is
sufficient and we do not need a secure boot process as in
AEGIS [2] that checks for hardware modifications. We trust
the initial domain to correctly start the security services and
to attach them to the created domains. Each domain is
started with a strictly defined set of rights (portals) and no
trusted code. The initial portals always include a naming
portal with which other portals can be obtained. To avoid the
expensive nameserver lookup it is possible to pass a set of
additional portals to a newly created domain. The created
domain is automatically associated with a principal. When
a domain obtains new portals or communicates using exist-
ing portals the security system is involved.

The policy issue is concerned with secure changes of the
access rights, additions of principals, etc. How this is done
depends on the used security policy and is outside the scope
of this paper.

3.11 Securing servers

We use the file system server to illustrate how our secu-
rity architecture works in a real system. As we discussed in
Section 3.4 we use the server interface to make access deci-
sions. For this to work servers must exportsecurable inter-
faces. A securable interface must use simple parameters and
provide fine-grained simple operations.

Many servers have a built-in notion of permissions, for
example the user/group/other permissions in a UNIX file
system. We call themnative permissions. These permis-
sions can be supplemented or replaced by a set offoreign
permissions. These permissions could, for example, be
access control lists. Because foreign permissions are not
supported by the server, there must be a way to store them.
The SELinux system [40] uses a file hierarchy in the normal
file system to store foreign permissions.

There is some scepticism whether a capability-based
system can be compatible to the JDK (see the discussion of
capabilities in [63]). We proved that this is possible by
implementing a component that implements thejava.io.*

classes in terms of our capability-based filesystem interface
(Figure 6).

The implementation component jdk_fs contains imple-
mentations for the java.io.* classes and uses portal inter-
faces from the fs_user interface component to access the file
system. These portals access service objects that are imple-
mented in the fs_user_impl component.

Code that uses thejava.io classes can run unmodified on
top of our implementation ofjava.io. But the advantages of
a capability-based system are lost: files must be referenced
by name and problems similar to the Confused Deputy [30]
are possible. An application can avoid the problems by
using the (not JDK-compatible) capability-based file sys-
tem interface.

In an multi-level security (MLS) system in which the file
system is part of the TCB, the file system must be verified
to work correctly - which may be a difficult task as file sys-
tems employ non-trivial algorithms. We used a configura-
tion which eliminates the need for file system verification.
Our system creates different instances of the file system for
the different security levels, each file server being able to
use a disjunct range of sectors of the disk. Assuring correct
MLS operation can now be reduced to the problem of veri-
fying that the disk driver works correctly; that is, it really
writes the block to the correct position on the disk. The file
system may run outside the TCB with a security label that
is equivalent to the data it stores.

fs_javafs

fs_user_impl

fs_user

fs

Fileserver Domain

Reference Monitor
and Security Policy

Figure 6: Filesystem layers

jx.fs.File

jx.fs.FileInode

Security Domain

bio

jx.bio.BlockIO

jdk_fs

Client

Client Domain

fs_user

java.io.RandomAccessFile

jx.fs.File

Legend:

Interface Component

Interface

Implementation
Component

 10

4 Discussion

In this section we analyze how well JX meets the Saltzer
& Schroeder [52] requirements for a security architecture:
Economy of mechanism.The security mechanisms must
be simple and small to be subject to verification. The micro-
kernel is small and as simple as possible. The concept of
stack inspection is no longer needed. Even untrusted code
can obtain a capability to do useful work in a restricted way.
JX relies on the type safety of the Java Bytecode language.
If a flaw in the type system is found the whole system is
compromised. We assume that Java is type-safe. There is a
lot of ongoing and finished work on formally proving the
type safety of Java. Using a simpler intermediate language
could make this proof easier and require a simpler translator
[45].

The trusted computing base must be as small as possi-
ble, because it must be verified to obtain high assurance. It
must not only be small in size, but the whole system archi-
tecture must be simple and clean. One requirement for a
security architecture is a small and modular TCB. Table 1

gives an estimate of the complexity of several systems by
counting lines of code (kLOC = 1000 lines of code). When
comparing the numbers one should keep in mind that differ-
ent programming languages are used: the Translator and
Verifier of JX are written in Java, the kernel of JX and all
other systems are written in C and assembler. A number of
programming errors that are possible in C and assembler are
not possible in Java, such as memory management and

pointer manipulation errors.Therefore we assume that Java
programs contain less bugs per LOC.

All systems have between 30 and 120 kLOC. The largest
part of the Linux source code are device drivers. But only
few drivers are normally linked to the kernel statically or as
a module. The Linux number only contains the absolutely
necessary part of the sources. The number would be higher
in one of the standard distributions where the kernel con-
tains additional file systems, network protocols, or other
services.

Using a Java processor the translator can be eliminated
from the TCB. This would reduce the size of the integrity
kernel to 37 kLOC.
Fail-safe defaults.Access should be rejected if not explic-
itly granted. Basing access decisions on fail-safe defaults is
mainly the responsibility of the security manager. As an
example, we implemented a security manager that allows
communication between dedicated principals and automat-
ically rejects all other communication attempts.
Complete mediation.All accesses must be checked. The
reference monitor is automatically invoked when a portal is
accessed.
Open design.The system design must be published. The
design and implementation of JX is completely open
Separation of privilege.Do not concentrate all privileges
at one principal. The microkernel-based architecture sup-
ports a system design where privileges are not centralized in
one component but distributed through the system in sepa-
rate domains. Domains do not trust each other; therefore
breaking into one domain has a strictly limited effect for the
overall system security.
Least privilege.A system component should be granted the
minimal privileges necessary to fulfil its task. A domain
starts with the privilege to lookup portals. What portals can
be obtained by a domain is limited by the name service and
also by the reference monitor that is consulted when a portal
comes into a domain or is passed to another domain. If the
file system is compromised file data can be modified and
disclosed, but a database or file system that run in another
domain can still be trusted - as long as it does not trust the
compromised file system domain.
Least common mechanism.No unnecessary sharing
between system components should be allowed. JX allows
controlled sharing between applications (domains) using
portals. Domains do not share resources that are imple-
mented by the microkernel. All resources, like files, sockets,
and database tables, are implemented by domains and
shared using portals. Domains have separate heaps and
independent garbage collection.
Psychological acceptability.When the security system
communicates with the human user it must respect the men-
tal model of the user and must not annoy the user with too
many questions. Whether the user accepts a security policy

System Parts kLOC total
kLOC

SecureJava [22] Paramecium Kernel
Java Nucleus

11
22

33

Linux 2.4.2 kernel
mm
ipc
arch/i386/kernel
arch/i386/mm
fs
fs/ext2
net/ipv4

13
15
3

25
1

23
5

34

119

Linux 2.4.2 drivers 1,711

Linux 1.0 & drivers 105

LOCK [57] TCB 87 87

KeyKOS [49] Kernel
Domain code

25
25

50

JX integrity kernel
(no drivers)

Microkernel
Translator
Verifier

25
40
12

77

Table 1: Operating system code sizes (from published
sources or measured usingwc andfind)

 11

depends on the formulation and implementation of the pol-
icy and on the user interface. This is outside the scope of this
paper.

Besides the requirements described by Saltzer &
Schroeder there are additional requirements:

Separation of policy and enforcement.Separation of pol-
icy from mechanism is a software engineering principle that
leads to a modular system structure with evolvable and
exchangeable policies. Several security architectures follow
this principle. The DTOS system [43] and its successor
Flask [58] concentrated on policy flexibility in a microker-
nel-based OS. In some systems, security decisions are
spread over the whole system, which makes it difficult to
understand what kind of security policy the system as a
whole actually enforces [37]. Centralizing the policy facili-
tates adaptations to new security requirements and enhances
manageability. The policy can be changed without changes
to the fundamental security and system architecture and
without changes to the object servers. Furthermore, a cen-
tral security manager is a requirement for the enforcement
of complex security policies that are more than access deci-
sions. The policy could, for example, state that all email
must be encrypted, an alert must be activated for three
unsuccessful login attempts, or that users of a certain clear-
ance must store all their data in encrypted form. These pol-
icies can only be enforced by a security manager that has
complete control over the system.

The security policy is not part of the servers. Even the
enforcement is separated from the functional part of the
servers.

Suitable programming language.The importance of the
programming language for a secure system was recognized
in early systems, such as KSOS [25]. A study of the Secure
Computing Corporation evaluates five microkernel-based
operating systems with respect to security [53]. This study
contains a list ([53] pp. 24) of properties of a programming
language that affect assurability of code. To improve
assurability a programming language should allow a high
abstraction level, support strong data typing, modulariza-
tion, and prohibit pointer manipulation.

Many security flaws are due to language defiances, like
buffer overflows, that simply cannot happen in a language
like Java. We tried to keep the non-Java portion of the sys-
tem as small as possible. As can be seen in Table 1 the
microkernel, which is the only part of the system that is
written in an unsafe language, is rather small (25 kLOC)
compared to the other parts of the TCB.

Performance.Although current advances in processor per-
formance will keep a moderate performance degradation
below the perceptional threshold of a typical user, a slow-

down of central mechanisms may have a dramatic effect for
the performance of the whole system.

Security has an associated cost in terms of performance
and resource usage. The performance overhead of JX has to
causes: the use of a type-safe language and the use of a ref-
erence monitor. To measure the effect of type-safety we
used two benchmarks and compare the JX performance
with an equivalent Linux implementation: a web server and
a Java implementation of the IOZone [65] benchmark.

As our JDK class library misses functionality that is
required to run an off-the-shelf Java web server, such as
tomcat [60], we wrote a simple Java web server. The JX web
server accepts a connection, creates a either a new domain
or a new thread and passes the portal that represents the TCP
connection and a portal to the file system to the new domain/
thread. Table 2 shows the performance of the JX web server.
No reference monitor was installed in the system.

To see how well the JX web server performs we wrote
an equivalent web server in C and measured its performance
on Linux (Table 3). The Linux web server accepts a connec-
tion, and either forks a process that parses the http request,
reads the requested file and sends a reply, or processes the
request without forking a new process.

The Linux and JX/thread numbers are not much differ-
ent. This indicates that even a TCP/IP stack that is written in
Java can saturate a 100MBit/s network interface using a 500
MHz PIII processor. Creating a new domain to processes
each request is considerably more expensive, but allows to
execute arbitrary untrusted code to process the request.

A benchmark that is more dominated by computation
performance is IOZone. Figure 7 compares the IOZone per-
formance of JX to Linux. In this benchmark JX performs
considerable worse than Linux. We expect this problem to
gradually disappear in future versions, because there are no
optimization barriers in the JX architecture: components
can be loaded privately in a domain and the translator has
global information about all components loaded in a
domain; no stack inspection is used, i.e. methods can be

Benchmark http request rate
(req/sec)

JX web server using threads 459

JX web server using domains 142

Table 2: JX performance
(mean of four runs each sending 1000 requests)

Benchmark http request rate
(req/sec)

Linux web server using fork 381

Linux webserver without fork 445

Table 3: Linux performance
(mean of four runs each sending 1000 requests)

 12

inlined; a domain can use it’s own non-preemptive sched-
uler and can be restricted to one processor, i.e. memory
accesses can be liberally reordered, as long as they only
affect the own heap of a domain.

Depending on the configuration, using a reference mon-
itor causes an additional overhead. Figure 8 shows the over-
head relative to the multi-domain configuration that is cre-
ated by using a monitor that intercepts and allows all invo-
cations.

We implemented a reference monitor which imitates the
discretionary access policy of UNIX. Each domain is owned
by a principal. The credentials of a principal consist of user
ID and a list of group IDs. Each read and write access to the
file portal is validated against the user credentials. During
this check the security manager asks the file server for the
file permissions. As can be seen in Figure 9 this configura-
tion is expensive. Using a pure capability architecture is
much faster, because only portal creation must be checked
but not portal access. This creates, however, the problem of
cached access decisions. When the security policy or the

security attributes of an object are changed, the portal (capa-
bility) still allows access.

5 Related Work

Capability-based systems.Several operating systems are
based on capabilities and use three different implementation
techniques: partitioned memory, tagged memory [23], and
password capabilities. Early capability systems used a
tagged memory architecture (Burroughs 5000 [46], Sym-
bolics Lisp Machine [44]), or partitioned memory in data-
containing and capability-containing segments (KeyKOS
[27] and EROS [54]). All these implementations relied on
specific hardware features. To become hardware-indepen-
dent, password capabilities [1] have been invented and are
used in several systems (Mungi [32], Opal [14], Amoeba
[59]). There is no definite agreement on how secure pass-
word capabilities really are. There is a non-zero chance that
passwords can be guessed. Security relies on the strength of
the cryptographic function. Password capabilities can be
transferred over an external channel, for example, on a
desktop system the user reads the capability in one window
and types it in another window. Furthermore, using crypto-
graphic methods adds an overhead when using password
capabilities.

Type-safe instruction sets, such as the Java intermediate
bytecode, are a fourth way of implementing capabilities.
The main advantages of this technique are that it is hard-
ware-independent, capability verification is performed at
load time, access rights are encoded in the capability type
and not stored as a bitmap in the capability, and capabilities
can not be transferred over uncontrolled channels.

Virtual Machines. Virtual machines can be used to isolate
systems that share the same hardware. The classic architec-
ture is the IBM OS/360 [41]. Virtual machines experienced
a recent revival with the VMWare PC emulator [64]. Using
a VM to isolate untrusted systems requires that the underly-
ing system (e.g., the control program in OS/360 and the host

0

10

20

30

40

50

60

70

80

90

100

filesize in KBytes

ac
hi

ev
ed

 th
ro

ug
hp

ut
 in

 p
er

ce
nt

4 8 16 32 64 128 256 512

Figure 7: Multi-domain IOZone benchmark without
reference monitor compared to Linux IOZone

4
8
16
32
64
128
256
512

record size in KBytes

-20

-10

filesize in kBytes

di
ffe

re
nc

e
in

 p
er

ce
nt

4 8 16 32 64 128 256 512

4
8
16
32
64
128
256
512

record size in KBytes

Figure 8: Client and file server in different domains; Monitor
intercepts and allows all operations

-50

-40

-30

-20

-10

filesize in kBytes

di
ffe

re
nc

e
in

 p
er

ce
nt

4 8 16 32 64 128 256 512

Figure9:Clientandfileserver indifferentdomains;Monitorch
permissions before every read/write method

4
8
16
32
64
128
256
512

record size in KBytes

 13

operating system of VMWare) is either secure or can not be
attacked, because it is not connected to the network. Other-
wise an intruder can break into the host system and read or
modify the memory of the emulated system using inter-
faces, like /dev/kmem. VMs only work at a large granular-
ity. VMWare instances consume a lot of resources to emu-
late a complete PC which makes it impossible to create fine-
grained domains. Most applications require controlled
information flow between classification levels; that is
between VMWare instances. A virtual machine realizes a
sandbox. The holes of the VMWare sandbox are the emu-
lated devices. Thus, communication is rather expensive and
stating a security policy in terms of an emulated device may
be a difficult task.

Java security.Secure Java [22] aimed at reducing the TCB
of a Java VM to its minimum. The bytecode verifier and
just-in-time compiler are outside the TCB. The JIT can be
inside the TCB to enable certain optimizations. The garbage
collector is inside the TCB, but because the JIT and verifier
are not trusted the integrity of the heap can not be guaran-
teed. We think that this is the main problem, because not
relying on the integrity of the heap complicates the GC
implementation and complex implementations should be
avoided in a secure system. Heap integrity is important
when reasoning about security of higher level applications.
However, ideas from the Secure Java architecture could be
used to build an additional protection ring inside our integ-
rity kernel.

The J-Kernel [31] implements a capability architecture
for Java. It is layered on top of a JVM, with the problems of
a very large TCB and limited means of resource control. It
uses classloaders to separate types. The capability system is
not orthogonal to application code which makes reuse in a
different context (using a different security policy) difficult.

The MVM [16], and KaffeOS [3] are systems that iso-
late applications that run in the same JVM. The MVM is an
extension of Sun’s HotSpot JVM that allows running many
Java applications in one JVM and give the applications the
illusion of having a JVM of their own. There are no means
for resource control and no fast communication mecha-
nisms for applications inside one MVM. KaffeOS is an
extension of the Kaffe JVM. KaffeOS uses a process
abstraction that is similar to UNIX, with kernel-mode code
and user-mode code, whereas JX is more structured like a
multi-server microkernel system. There needs to be no
trusted Java code in JX. Communication between processes
in KaffeOS is done using a shared heap. Our goal was to
avoid sharing between domains as much as possible and we,
therefore, use RPC for inter-domain communication.

6 Conclusion

We described the security architecture of the Java oper-
ating system JX, which can be seen as a hybrid of language-
based protection and operating system protection. It recon-
ciles the integrity of a type-safe protection mechanism with
the strong isolation and complete mediation of operating
systems. JX avoids typical Java security problems, such as
native methods, execution of code of different trustworthi-
ness in the same thread, and a huge trusted class library.

JX provides a number of security mechanisms of differ-
ent invasiveness. The capability mechanism is inherent in
the architecture and guarantees a minimal level of security.
On a per-domain basis this mechanism can be supplemented
by a monitor that controls propagation of capabilities
between domains and, if necessary, a reference monitor that
mediates access to these capabilities.

The measured performance overhead of the reference
monitor indicates that this mechanism should not be used if
not needed. We believe that for most applications the pure
capability system, with proper interface design (e.g., a read-
only interface), supplemented by the capability propagation
monitor will provide sufficient security and guarantee con-
finement at a low cost.

7 References

[1] M. Anderson, R. Pose, and C. S. Wallace. A password-capability system. InThe
Computer Journal, 29, pp. 1-8, 1986.

[2] W.Arbaugh,D.Farber,andJ.Smith.ASecureandReliableBootstrapArchitecture.
In Proc. of IEEE Symposium on Security and Privacy, pp. 65-71, May 1997.

[3] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation, Resource
Management,andSharinginJava. InProc.of4thSymposiumonOperatingSystems
Design & Implementation, Oct. 2000.

[4] CERT/CC.VU#16532:BINDT_NXTrecordprocessingmaycausebufferoverflow
. Nov. 1999.

[5] CERT/CC.VU#5648: Buffer Overflows in various email clients. 1998.
[6] CERT/CC.VU#970472: Network Time Protocol ([x]ntpd) daemon contains buffer

overflow in ntp_control:ctl_getitem() function. Apr. 2001.
[7] CERT/CC.VU#745371: Multiple vendor telnet daemons vulnerable to buffer over-

flow via crafted protocol options. July 2001.
[8] CERT/CC.VU#28934: Sun Solaris sadmind buffer overflow in amsl_verify when

requesting NETMGT_PROC_SERVICE. Dec. 1999.
[9] CERT/CC.VU#952336: Microsoft Index Server/Indexing Service used by IIS 4.0/

5.0 contains unchecked buffer used when encoding double-byte characters. June
2001.

[10] CERT/CC.VU#29823: Format string input validation error in wu-ftpd site_exec()
function. June 2000.

[11] CERT/CC.VU#789543:IISdecodesfilenamessuperfluouslyafterapplyingsecurity
checks. May 2001.

[12] CERT/CC.VU#17215: SGI systems may execute commands embedded in mail
messages. Apr. 1998.

[13] CERT/CC.VU#945216:SSHCRC32attackdetectioncodecontainsremoteinteger
overflow. Feb. 2001.

[14] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and Protection
inaSingleAddressSpaceOperatingSystem. InACMTrans.onComputerSystems,
12(4), pp. 271-307, Nov. 1994.

[15] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer Overflows: Attacks
andDefensesfor theVulnerabilityof theDecade. InDARPAInformationSurvivabil-
ity Conference and Expo (DISCEX), Jan. 2000.

 14

[16] G. Czajkowski and L. Daynes. Multitasking without Compromise: A Virtual
Machine Evolution. InProc. of the OOPSLA, pp. 125-138, Oct. 2001.

[17] G.CzajkowskiandT.vonEicken.JRes:AResourceAccounting Interface forJava.
InProc.ofConferenceonObject-OrientedProgrammingSystems,Languages,and
Applications 98', pp. 21-35, ACM Press, 1998.

[18] D. Dean, E. W. Felten, D. S. Wallach, D. Balfanz, and P. J. Denning. Java security:
Web browsers and beyond. In D. E. Denning (ed.)Internet Beseiged: Countering
Cyberspace Scofflaws. pp. 241-269, ACM Press, 1998.

[19] J. B. Dennis and E. C. Van Horn. Programming Semantics for Multiprogrammed
Computations. InCommunications of the ACM, 9(3), pp. 143-155, Mar. 1966.

[20] E. Denti, A. Omicini, and A. Ricci. tuProlog: A Light-weight Prolog for Internet
Applications and Infrastructures. In Ramakrishnan, I.V. (ed.)Practical Aspects of
Declarative Languages. In3rd International Symposium (PADL 2001), Lecture
Notes in Computer Science 1990, pp. 184-198, Springer-Verlag, 2001.

[21] Department of Defense.Trusted computer system evaluation criteria (Orange
Book). DOD 5200.28-STD, Dec. 1985.

[22] L. v. Doorn. A Secure Java Virtual Machine . InProc. of the 9th USENIX Security
Symposium, pp. 19-34, Aug. 2000.

[23] R. S. Fabry. Capability-based addressing . InCommunications of the ACM, 17(7),
pp. 403-412 , July 1974.

[24] D.FerraioloandR.Kuhn.Role-basedaccesscontrols. InProc.of the15thNational
Computer Security Conference, pp. 554-563, Oct. 1992.

[25] Ford Aerospace.Secure Minicomputer Operating System (KSOS) Executive Sum-
mary: Phase I: Design of the Department of Defense Kernelized Secure Operating
System. Technical Report WDL-781, Palo Alto, CA, 1978.

[26] Franco Gasperoni and Gary Dismukes. Multilanguage Programming on the JVM:
The Ada 95 Benefits.2002.

[27] B.Frantz.KeyKOS-asecure,high-performanceenvironment forS/370. InProc.of
SHARE 70, pp. 465-471, Feb. 1988.

[28] A.Gefflaut,T.Jaeger,Y.Park, J.Liedtke,K.Elphinstone,V.Uhlig, J.E.Tidswell, L.
Deller, and L. Reuther. The SawMill Multiserver Approach. InProc. of the 9th
SIGOPS European Workshop, Sep. 2000.

[29] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Aug. 1996.
[30] N.Hardy.Theconfuseddeputy. InOperatingSystemsReview,22(4),pp.36-38,Oct.

1988.
[31] C.Hawblitzel,C.-C.Chang,G.Czajkowski,D.Hu,andT.v.Eicken. Implementing

Multiple Protection Domains in Java. InProc. of the USENIX Annual Technical
Conference, pp. 259-270, June 1998.

[32] G.Heiser,K.Elphinstone,S.Russel,andJ.Vochteloo.Mungi:ADistributedSingle
Address-Space Operating System. In17thAustraliasionComputer ScienceConfer-
ence, pp. 271-280, Jan. 1994.

[33] T. Jaeger, J. Tidswell, A. Gefflaut, Y. Park, J. Liedtke, and K. Elphinstone. Synchro-
nous IPC over Transparent Monitors. In9th SIGOPS European Workshop, Sep.
2000.

[34] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A
Safe Dialect of C. InUSENIX Annual Technical Conference, June 2002.

[35] R. Johnson.TCL and Java Integration. Technical Report , Sun Microsystems Lab-
oratory, Jan. 1998.

[36] B. W. Lampson. A Note on the Confinement Problem. InCommunications of the
ACM, 16(10), pp. 613-615, Oct. 1973.

[37] C. E. Landwehr, C. L. Heitmeyer, and J. McLean. A Security Model for Military
Message Systems. InACM Trans. on Computer Systems, 2(3), pp. 198-222, Aug.
1984.

[38] T.LindholmandF.Yellin.TheJavaVirtualMachineSpecification.Addison-Wesley,
Sep. 1996.

[39] P.A.Loscocco,StephenD.Smalley,PatrickA.Muckelbauer,RuthC.Taylor,S.Jeff
Turner, and John F. Farrell. The Inevitability of Failure: The Flawed Assumption of
Security in Modern Computing Environments. In21st National Information Sys-
tems Security Conference, pp. 303-314, Oct. 1998.

[40] P. Loscocco and S. Smalley. Integrating Flexible Support for Security Policies into
the Linux Operating System. InUsenix 2001 Freenix Track, 2001.

[41] G. Mealy, B. Witt, and W. Clark. The Functional Structure of OS/360. InIBM Sys-
tems Journal, 5(1), pp. 3-51, Jan. 1966.

[42] S. G. Miller.SISC: A Complete Scheme Interpreter in Java. Technical Report, Jan.
2002.

[43] S. E. Minear. Providing Policy Control Over Object Operations in a Mach Based
System. InProc. of the 5th USENIX Security Symposium, June 1995.

[44] D. A. Moon. Symbolics Architecture. InIEEE Computer, 20(1), pp. 43-52, IEEE,
Jan. 1987.

[45] G.Morrisett,D.Walker,K.Crary,andN.Glew.FromSystemFtoTypedAssembly
Language. InConference Record 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 85-97, 1998.

[46] E. I. Organick.Computer System Organization: The B5700/B6700 Series. Aca-
demic Press, Inc., New York, 1973.

[47] PERCobol, http://www.legacyj.com/.
[48] J. Potter, J. Noble, and R. Shelswell. Project Bruce: Translating from Eiffel to Java.

In TOOLS 97, 7.
[49] S. Rajunas, N. Hardy, A. Bomberger, W. Frantz, and C. Landau. Security in Key-

KOS. InProc. of the 1986 IEEE Symposium on Security and Privacy, Apr. 1986.
[50] N. Rappin and S. Pedroni.Jython Essentials. OReilly.,2002.'
[51] J.Rushby.DesignandVerificationofSecureSystems.InProc.ofthe8thSymposium

on Operating System Principles, pp. 12-21, 1981.
[52] J. H. Saltzer and M. D. Schroeder. The Protection of Information in Computer Sys-

tems. InProceedings of the IEEE , 63(9), pp. 1278-1308 , Sep. 1975.
[53] Secure Computing Corporation.DTOS General System Security and Assurability

Assessment Report. 1997.
[54] J. S. Shapiro, J. M. Smith, and D. J. Farber.EROS: a fast capability system. InSym-

posium on Operating Systems Principles, pp. 170-185, 1999.
[55] M. Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy Princi-

ple. InICDCS 1986, pp. 198-204, 1986.
[56] SmalltalkJVM, http://www.smalltalkJVM.com/.
[57] R.E.Smith.CostProfileofaHighlyAssured,SecureOperatingSystem.Sep.1999.
[58] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Anderson, and J. Lepreau. The

Flask Security Architecture: System Support for Diverse Security Policies. InProc.
of the 8th USENIX Security Symposium, Aug. 1999.

[59] A. Tanenbaum. Chapter 7. InDistributed Operating Systems. Prentice Hall, 1995.
[60] The Jakarta Project, http://jakarta.apache.org/tomcat/.
[61] K.Thompson.Reflectionson trusting trust. InCommunicationsof theACM,27(8),

pp. 761-763, Aug. 1984.
[62] W. E. Boebert. On the inability of an unmodified capability machine to enforce the

*-property. InProc. of the 7th DoD/NBS Computer Security Conference, pp. 291-
293, Sep. 1984.

[63] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Extensible security architec-
tures for Java. In16th Symp. on Operating System Principles, pp. 116-128, Apr.
1997.

[64] Webpage of VMWare, http://www.vmware.com/.
[65] Webpage of the IOZone filesystem benchmark, http://www.iozone.org/.

