
Energy-aware Recon�guration of Sensor Nodes

Andreas Weissel and Simon Kellner

University of Erlangen-Nuremberg
Distributed Systems and Operating Systems

{weissel,kellner}@cs.fau.de

Abstract. Energy consumption is one of the most challenging con-
straints for the design and implementation of sensor networks. As sensor
nodes are commonly battery-driven, the way the available energy is used
determines the lifetime of the system. In recent research, a variety of
approaches has been investigated to predict energy consumption o�-line
using simulation, emulation, code analysis and energy models of hard-
ware components. However, for a wide range of applications the run-time
behavior is dictated by sensor measurements or external events, allowing
only a worst case analysis before deployment.
In this paper, we investigate di�erent approaches to derive energy char-
acteristics during run-time and to adapt or recon�gure the applications
running on individual sensor nodes. We discuss prototype implementa-
tions based on TinyOS for the BTnode architecture and their overhead
regarding energy consumption and code size.

1 Introduction

To address the issue of energy-e�ciency, sensor nodes are equipped with low
power hardware components. For instance, the Atmel ATmega128 microproces-
sor found in many sensor nodes features six di�erent sleep modes with reduced
power consumption. The energy consumption of a sensor node running a speci�c
application is usually estimated o�-line by integrating energy models of system
components into simulation or emulation environments. With this information,
the application can be tailored to the requirements on system lifetime. How-
ever, application scenarios can be envisioned where this approach can lead to
ine�cient results as the run-time energy consumption is hard to predict.

The following piece of pseudo code shows an exemplary sensor node applica-
tion. The program polls a sensor and propagates this information to its neighbor
if it exceeds a certain critical value (e. g. the temperature level in a habitat
monitoring scenario):

do forever {

val = read_sensor()

if (val > threshold)

send_packet(val, neighbor)

sleep(cycle_period)

}

Two parameters have an in�uence on the energy consumption and the corre-
sponding battery lifetime of a node running this simple application: cycle_period
determines the length of the sleep phase, while the value of threshold has an
impact on the number of network transmissions.

The energy consumption of the application under di�erent duty cycles can
be calculated or derived from simulation. However, the impact of the second
parameter on battery lifetime is not known before the node is deployed and
sensor readings are available.

Approaches to address this problem aim for structural redundancy or de-
sign the application for the worst case, i. e. every sensor measurement exceeds
the threshold. Depending on the average case, this solution could result in an
over-provisioning of battery capacity, potentially violating other limitations like
weight or size constraints.

As an alternative, the application could derive its energy characteristics at
run-time and, if necessary, be adapted (either by itself or another node). In the
example above, a simple, straightforward solution would be to change one of the
two parameters threshold or cycle_period if the target system lifetime cannot
be reached. Therefore, the application has to be aware of its energy consumption.

Dynamic routing algorithms are another application of recon�guration. As
the nodes that are responsible for forwarding network tra�c (the so called �cov-
ering set�) will probably deplete their energy reserves earlier than other nodes,
power-aware routing protocols reassign their roles from time to time in order to
balance the energy consumption of all nodes and to increase the lifetime of the
whole network. Therefore, nodes have to be aware of their remaining battery
lifetime and support recon�guration.

In the next section, we discuss di�erent approaches to characterize the energy
consumption of a sensor application during run-time and present solutions for
system recon�guration in section 3. Related work is discussed in section 4.

Strategies for energy-aware code distribution (discussed, e. g., in [10]) are
outside the scope of this paper.

All measurements and implementations were conducted on the BTnode plat-
form [12, 2] running TinyOS [5, 8]. The BTnode (rev. 3) is equipped with an
Atmel ATmega 128L microcontroller, a Bluetooth subsystem (Zeevo ZV4002)
and a low-power radio (Chipcon CC1000).

2 Energy Accounting

In order to decide when and how to recon�gure a running system its energy
characteristics, i. e. the capacity of the battery and the energy consumption, have
to be known. The energy consumption can be estimated on-line by observing
state changes and the occurrence of speci�c events. However, the remaining
system lifetime is not only in�uenced by the application's energy consumption
but also by environmental conditions like the current temperature. Information
from a battery sensor can be used to calibrate lifetime estimations based on the

accounted energy. In this section, we discuss the di�erent approaches to run-time
energy estimation in more detail.

2.1 Battery lifetime estimation

One line of the A/D converter on the BTnode is connected to the batteries,
enabling the application to measure the battery voltage with few instructions at
runtime. The batteries' discharge characteristics are known, so it is possible to
give at least a rough estimation on the remaining lifetime.

In our tests, we used standard alkaline batteries. We did not succeed in �nding
a simple battery model with easily computable parameters, since their discharge
characteristics are not in the form of a simple function. The middle part of these
characteristics, which covers most of the lifetime, can be approximated by a
linear function. This allows a su�ciently accurate estimation of the remaining
lifetime.

If the batteries can be expected to have the same type, the discharge char-
acteristics could be stored on the node, resulting in a more accurate lifetime
prediction. These data tables could grow very large, depending on factors like
the number of battery types, resolution and temperature.

If the discharge characteristics could be approximated by a simple mathemat-
ical function, the development of a battery model would be more feasible. This
would eliminate the potentially large tables at the expense of more computation.
For example, a combination of one quadratic polynomial and two exponential
functions can be �tted manually to the discharge characteristics of our batteries.
On the BTnode, however, algorithms for an automatic �tting currently fail due
to the low resolution of about 250 distinct values and, on top of that, erratic
A/D converter output in the range ±2.

With the restriction to one battery type and a narrow temperature range it is
possible to make a rough estimation on the remaining battery lifetime. One way
to counter the poor resolution of the A/D converter is to sum up a number of
samples taken in quick succession. The dissipation characteristics of the battery
type can be stored in a table (e. g. in �ash memory) or even computed since
they are approximately linear most of the time.

2.2 Event-based energy accounting

Event-based accounting associates the occurrence of speci�c events, e. g. the
transmission of a network packet, with a certain amount of energy. Time- or
state-based accounting measures the time a component (CPU, radio) spends in
a speci�c operating mode. Each operating mode is attributed with a speci�c
energy weight.

The power consumption of the node for di�erent operating modes as well as
the energy consumption of speci�c events can be determined using measurement
hardware or based on information from data sheets. In [7] and [11], detailed
power measurements of the ATmega128 microprocessor in di�erent sleep modes
and the ChipCon radio, both of a Mica2 sensor node, are listed.

operation power consumption current draw

xor 31.6mW 10.8mA
fmul 29.3mW 10.0mA
lds 31.1mW 10.6mA

Table 1. Active power consumption of the ATmega128 performing di�erent operations.

We measured the voltage drop at a high-precision resistor in the power lines
between the batteries and the node with an A/D-converter operating at 20 kHz
with a resolution of 8 bit.

Current processors for desktop and high-end systems show a wide variation
of the active power consumption, depending on the functional units accessed
or the operations executed [1]. However, our measurements of the ATmega128
indicate that the power consumption of this CPU is rather constant, see table
1. Therefore, energy accounting based on the run-time of tasks in the system
should provide su�cient accuracy. This approach has the advantage that the
implementation overhead (regarding code size and execution time) is limited.

In order to implement energy accounting, we modi�ed the scheduler routine
of TinyOS. All runnable tasks in the system are stored in a scheduler queue.
The scheduler function executes all enqueued tasks and then puts the system
into sleep mode. An interrupt handler is able to add a task to the scheduler
queue. Upon arrival of an interrupt, the sleep state is left and the queue is
processed once again. A straightforward approach to implement CPU energy
accounting is to measure the time before and after the sleep phase (sleep()):

do forever {

while(! queue.empty()) run_next_task()

cpu_accounting()

sleep()

cpu_accounting()

}

For more accurate timing values, accounting could be started early in each
interrupt handler.

In order to be of practical use, energy estimations on a resource-constrained
platform like sensor nodes should be derived e�ciently and without signi�cant
impact on battery lifetime. We measured the overhead of energy accounting for
a simple application waking up 4 times a second. The energy consumption of
the entire system is increased by 34.4µW or 4.1%. This overhead depends on
the application's duty cycle and the number of interrupts. Code size is increased
by 356 bytes and memory consumption by 6 bytes (a 48 bit counter is used to
store the energy consumption).

As applications usually consist of periodic tasks, the required timer can be
utilized to account the energy spent in sleep mode. The di�erence in power
consumption of various sleep modes has to be taken into account. Depending on
the system con�guration (timers and interrupts), the power management module

of TinyOS chooses the deepest sleep mode that still o�ers the required wake up
functionality. For the BTnode, the power consumption varies from 14.28mW in
�idle� mode to 0.71µW in �power down� mode.

To account the energy consumption of peripheral devices like the ChipCon
radio a combination of event- and time-based accounting could be used. The
occurrence of speci�c events, for instance the sending of network packets can
be counted, see e .g. [9]. The energy weight for each transmission depends on
the transmit power. In addition to that, the time the device spends in di�er-
ent states/operating modes, e. g. when listening for incoming packets could be
measured similar to the run-time accounting for CPU energy.

3 System Recon�guration

We evaluated three di�erent methods of system recon�guration: adaptive appli-
cations, multiple pre-installed applications and application upload.

Adaptive applications

A single application supports recon�guration by switching to other code parts or
simply through some parameters held in RAM or EEPROM. In our example (see
section 1), the parameters would be threshold and cycle_period. This method
requires neither a communication channel nor re-programming of the �ash mem-
ory. Recon�guration can be triggered by the application itself or upon request
by another node. This method's overhead and complexity heavily depends on
the application and its desired �exibility.

Multiple pre-installed applications

To simplify application design, one could consider storing two or more complete
applications (or versions of one application) on the same node. On the BTnode,
the 128 kBytes of �ash memory provide su�cient storage space. To ease the
installation of several programs on a node, we automated the process of linking
two or more applications together.

A requirement for switching between interrupt-enabled applications is to up-
date the interrupt vectors. We investigated two solutions: re-programming the
interrupt vector table in �ash memory and introducing an interrupt dispatcher.

To avoid programming the �ash at runtime, the reset and interrupt vectors
are redirected to a dispatcher routine which reads an ID from RAM or EEP-
ROM and calls the right handler in the corresponding application. Like the �rst
method, this approach requires neither communication nor re-programming of
the �ash memory. It allows for more radical changes in applications, as the ap-
plications do not have to answer the same interrupts. The application switch is
fast: Apart from the reset, only one byte in RAM has to be changed.

Alternatively, the interrupt vector table in �ash memory can be re-programmed
before switching to another application. This method's runtime overhead is lower
at the expense of a higher switching overhead. As we expect applications to
switch only infrequently, the lifetime of the �ash memory (the ATmega128 is
speci�ed for 10,000 write/erase cycles) should not be a concern.

The interrupt dispatcher adds 56 clock cycles at every interrupt. The energy
overhead is within the measurement error of our DAQ hardware.

Application upload

The application loads the complete binary of another application, programs the
�ash memory and triggers a reset, similar to �Xnp� of TinyOS [6]. This method
requires a communication channel.

The overhead is considerable:

� periodic listening on the selected communication channel,
� connection setup,
� transfer time (18.9 s for 16.5 kBytes using Bluetooth)
� programming multiple pages in �ash memory (20ms, 1-2mJ per page)

In spite of its large overhead, this solution can be advantageous over the
other methods in that the application can be changed after deployment. A more
e�cient approach would be to replace only parts of an application as proposed
in [3, 4].

The above-mentioned methods of application switching and upload could
even save more energy than a single application. For example, a virtualized timer
using lists of scheduled events is only needed if it is used by several modules.
In a power-saving application where only one module uses the timer, the whole
virtualization layer is super�uous and can be left out.

4 Related Work

A multitude of approaches based on simulation or emulation has been proposed
to estimate the energy consumption of sensor nodes. Power Tossim is a simulator
for TinyOS providing a prediction of the energy consumption of Mica2 nodes [11].
AEON (Accurate Prediction of Power Consumption) is a tool to estimate the
energy consumption of sensor nodes. Measurements of the current draw of Mica2
nodes are fed into a sensor node emulator. The energy consumption is quanti�ed
by observing state changes of hardware components.

System recon�guration of sensor nodes has been extensively studied, however
we know of no research project that focuses on energy issues. TinyOS supports
remote, in-network programming of (at least) Mica2 nodes, called Xnp [6]. A
system image in srec-format is downloaded using radio communication and
stored in �ash memory. A �boot loader� residing in a reserved section of the
program memory is responsible for recon�guration. Contiki allows the dynamic
loading and replacement of individual programs and services on sensor nodes [3].
It supports incremental updates which require less energy as only the application
binary and not the entire system has to be transmitted and installed. SOS is
an infrastructure for software updates [4]. Measurements show that it performs
comparably to Xnp of TinyOS in terms of energy usage and performance and
better in terms of energy consumption during software updates. Like Contiki, it
supports modular updates.

5 Conclusion

Sophisticated power management policies have been proposed for mobile, desk-
top and high-end computers. For battery-powered, resource-constrained embed-
ded devices like sensor nodes, research has focused on o�-line estimation of power
consumption using simulation and emulation techniques. In this paper, we dis-
cussed di�erent approaches to retrieve the energy characteristics of a sensor node
application during runtime and to adapt or recon�gure the running system. An
analysis of the overhead in energy and code size for prototype implementations
on the BTnode are presented.

References

1. F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Event-driven energy accounting
for dynamic thermal management. In Proc. of the Workshop on Compilers and
Operating Systems for Low Power (COLP'03), September 2003.

2. J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund, and L. Thiele. Proto-
typing wireless sensor network applications with btnodes. In 1st European Work-
shop on Wireless Sensor Networks (EWSN), January 2004.

3. A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and �exible oper-
ating system for tiny networked sensors. In Proc. of the First IEEE Workshop on
Embedded Networked Sensors 2004 (IEEE EmNetS-I), November 2004.

4. C.-C. Han, R. K. Rengaswamy, R. Shea, E. Kohler, and M. Srivastava. Sos: A
dynamic operating system for sensor nodes. In Proc. of the Third International
Conference on Mobile Systems, Applications, And Services (Mobisys), June 2005.

5. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System archi-
tecture directions for network sensors. In Proc. of the 9th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IX) 2000, November 2000.

6. C. T. Inc. Mote In-Network Programming User Reference, 2003.
7. O. Landsiedel, K. Wehrle, and S. Götz. Accurate prediction of power consump-

tion in sensor networks. In Proc. of The Second IEEE Workshop on Embedded
Networked Sensors (EmNetS-II), May 2005.

8. P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer, and
D. Culler. The emergence of networking abstractions and techniques in tinyos. In
Proc. of the First USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI 2004), March 2004.

9. S. Madden, M. J. Franklin, and J. M. Hellerstein. Tag: a tiny aggregation service
for ad-hoc sensor networks. In Proc. of the 5th Annual Symposium on Operating
Systems Design and Implementation (OSDI), December 2002.

10. N. Reijers and K. Langendoen. E�cient code distribution in wireless sensor net-
works. In Proc. of the International Workshop on Wireless Sensor Networks and
Applications, September 2003.

11. V. Shnayder, M. Hempstead, B. rong Chen, G. Werner-Allen, and M. Welsh. Simu-
lating the power consumption of large-scale sensor network applications. In Proc. of
the Second ACM Conference on Embedded Networked Sensor Systems (SenSys'04),
November 2004.

12. E. T. H. Zürich. Btnode - a distributed environment for prototyping ad hoc net-
works. Web page. Visited 2005-12-06, http://www.btnode.ethz.ch.

