
Dynamic Thermal Management for Distributed Systems

Andreas Weissel Frank Bellosa
University of Erlangen, Department of Computer Science 4 (Operating Systems)

{weissel, bellosa}@cs.fau.de
Abstract
In modern data centers, the impact on the thermal

properties by increased scale and power densities is
enormous and poses new challenges on the designers of
both computing as well as cooling systems. Control-
theoretic techniques have proven to manage the heat
dissipation and the temperature to avoid thermal emer-
gencies, but are not aware of the task currently execut-
ing or its specific service requirements. In this work we
investigate an approach to dynamic thermal manage-
ment with respect to the demands of individual applica-
tions, users or services. We show that the energy
consumption and the temperature can be determined on
a fine grained level and without the need for measure-
ment, using information from event monitors embedded
in modern processors. We extend the well-known
abstraction of resource containers to an infrastructure
for transparent energy and temperature management in
distributed systems. In a cluster-based server, the pro-
cessing of a request can be throttled to meet the thermal
requirements of the system, even if machine boundaries
are crossed, e.g. by remote procedure calls in a cli-
ent/server relationship. With this facility, energy con-
sumption can be accounted and the resulting heat
generation be controlled precisely without the need for
expensive hardware. Experiments on a Pentium 4
architecture show that energy and temperature are
accurately determined and thermal limits for the indi-
vidual CPU and the whole distributed system will not
be exceeded. Use cases and important implications of
our approach are discussed.

1. Introduction

The ever growing demand for higher performance is
paralleled by a dramatic increase of the power con-
sumption of cluster-based servers. At the same time,
impressive advances have been made in the area of
packaging and the level of integration of server units.
The trend to increased processing power and ultra-
dense packaging results in very high power densities
that are a severe problem in today’s data centers. Cool-
ing technology is either designed for the maximum
power consumption in a conservative approach or for
typical sustained power. In the latter case, a trigger
mechanism is provided to respond with a throttling of
activity in order to guarantee a reliable operation of the
device in case of a thermal emergency. This dynamic
thermal management (DTM) reduces the cost for cool-
ing by uniformly throttling the system. However, appli-
cation-, user- or service-specific requirements are
neglected by existing approaches to dynamic thermal
management schemes.

This paper presents a new operating system abstrac-
tion to transparently account and control the energy
usage of individual tasks in a distributed system. Event-
monitoring counters embedded in modern processors
are used to determine on-the-fly the power consumption
and who has used the power in the system. With the
specification of the cooling system (thermal resistance
and capacitance), the temperature can be estimated
without the need for measurement and used to trigger
task-specific throttling. This is achieved by extending
the well-known concept of Resource Containers [3] to a
distributed system, similar to Cluster Reserves [2]. Our
energy containers are globally identifiable and repre-
sent activities or tasks composed of several processes
communicating over the network, e.g. in a client/server
relationship. Forwarding the identifiers does not require
extra messages as they are sent piggyback with the net-
work traffic via IPv6 connections. The concept is trans-
parent to the applications running on the modified
operating system as well as to other (unmodified) oper-
ating systems.

Our approach allows individual temperature limits
to be set for each server based on its location in the
cluster and the position of the air-conditioning units.
Energy estimation of incoming requests prior to execu-
tion is not necessary, because the estimation happens at
execution time. This avoids a potential bottle-neck,

since the estimation is done in parallel on all the nodes
in the cluster. With cluster-wide temperature control the
requirements on the cooling facilities can be relaxed,
making over-provisioning unnecessary.

Power and temperature measurements of a small
cluster of Pentium 4 systems running real-world appli-
cations demonstrate that event-driven dynamic thermal
management can handle energy budgets of applications
and services while keeping the temperature of each
server below a critical limit by constraining the CPU
activity.

The rest of this paper is structured as follows. Sec-
tion 2 reviews related work. We detail our approach to
dynamic thermal management and present the abstrac-
tion of energy containers in section 3. Further, we
describe our implementation in section 3.4 and present
an evaluation in section 4. In section 5, we discuss use-
case scenarios and motivate future directions in section
6. Section 7 summarizes our results.

2. Related Work

Power and power density are becoming a major chal-
lenge in system design. Not only the power density on
the chip level is rising exponentially [10], but also the
problems for infrastructure level power supply and
cooling [4]. The need for dynamic thermal management
originates from the widening gap between maximum
power and typical active power [18]. With this tech-
nique thermal design can assume moderate average
power instead of maximum power thus reducing the
cost for packaging and cooling.

Direct feedback-driven activity reduction uses tem-
perature sensors or on-chip activity monitors to deter-
mine the thermal state of the chip and initiate a
reduction of activity of individual units or the whole
chip by reducing their execution rate. This approach
was successfully applied to microprocessors by a feed-
back-driven reduction of the clock frequency or a throt-
tling of the instruction cache [8, 14, 7, 16].

Another implementation of dynamic thermal man-
agement is task level throttling. CPU intensive tasks are
said to be “hot” when they use more than a specific
CPU activity over a period of time. When temperature
reaches a critical level, hot tasks are candidates for
throttling. In this way the system is idling and the CPU
spends more time in the low-power state, so the temper-
ature is decreased [13]. In contrast to direct feedback-
driven activity reduction, task-specific throttling does
not affect necessarily the performance of important
activities like interrupt processing and the execution of
tasks that do not contribute significantly to the power
consumption of the system. We argue that CPU activity

as a measure to identify “hot” processes is not accurate
enough. Contemporary processors show a wide varia-
tion of the active power consumption, so a finer grained
energy and temperature estimation is needed.

Architecture-level power simulators are useful to
calculate thermal plots of the processor die like the Pen-
tium 4 [10]. Thermal plots are essential for the place-
ment of a temperature sensor supporting feedback-
driven thermal management. Skadron et al. present
HotSpot, an approach to modeling thermal behavior in
architecture-level power/performance simulators [17].
HotSpot identifies the hottest micro-architectural units
and allows to evaluate techniques for regulating on-chip
temperature.

Performance monitoring counters have proved to
offer valuable information in the field of performance
analysis [1] and cache-affinity scheduling in multipro-
cessors [5, 20]. Now they become more and more
attractive in the area of power management: the
power/performance characteristics of a running thread
can be determined on-line by reading of event counters.
According to the thread’s patterns the scheduler can
find the optimal thread-specific clock-speed in a time-
sharing environment to save energy with just minor per-
formance penalties [19]. We present an extension of
these approaches to power characterization using per-
formance monitoring counters in order to estimate and
limit the temperature level. In [9], a clustered processor
architecture is proposed which contains activity
counters and attached Energy per Access Registers to
dynamically estimate the energy consumption of each
functional unit. With this information, the energy-delay
product of each functional block can be computed and
minimized by increasing or decreasing the number of
active issue queues.

Managing energy as a first class resource and shar-
ing this resource among competing tasks according to
user preferences was introduced in ECOSystem [22].
The Currentcy model [21] allows to allocate and
account energy, and to enforce energy limits. ECOSys-
tem/Currentcy is very similar to our resource container
infrastructure and could easily be adapted to support
dynamic thermal management.

Aron et al. present the concept of Cluster Reserves
[2] to achieve performance isolation of certain tasks. A
Cluster Reserve comprises resource containers on dif-
ferent machines which represent the same task, similar
to the approach taken in this work. Cluster Reserves
guarantee a certain minimal proportion of cluster
resources to every class of requests or service class.
This remains true even if the total system load induced
by other requests is high. The distribution of resources

to Cluster Reserves is computed by solving a con-
strained optimization problem.

Sharma et al. [15] show that it is necessary to moni-
tor the temperature distribution within a server room
(using a large number of temperature sensors) and to
use workload placement policies in order to correct
thermal imbalances. The temperature distribution and
especially temperature peak values can be predicted by
monitoring the server utilization and the current tem-
peratures measured by the sensors.

3. Event-Driven Dynamic Thermal
Management

Knowledge of the thermal status of the processor is an
indispensable requirement for dynamic thermal man-
agement. Chip sets which allow the reading of a ther-
mal diode embedded in modern processors cannot be
used for fine-grained management because they don’t
allow a correlation between the originator of power
consumption and the effect of heating. Furthermore,
our experiments revealed that reading the thermal
diodes of a typical Pentium 4 board imposes significant
overhead on the system. It takes 5.5 ms to retrieve the
current temperature level via the system management
bus (SMBus).

Our approach is based on the performance counters
in today's processors to clearly identify “hot” processes,
to estimate the processor's power consumption, and to
amply determine the temperature of the chip given that
the ambient temperature is either constant or can be
measured occasionally. Contrary to the measurement
approach described above, access to the performance
counters is very fast, allowing a process-specific update
on energy consumption during every timer interrupt.

Currently, our implementation is constricted to ther-
mal management of the processor, because the rest of
the system architecture is not covered by any energy-
specific monitoring counters. The presented thermal
model is not intended to compete with dedicated power
simulators. However it should provide sufficient accu-
racy to account on-the-fly CPU energy to an energy
principal, to determine the thermal status of the proces-
sor and to support appropriate throttling mechanisms
(e.g. by placing the CPU in HLT state until an interrupt
occurs).

3.1 From Events to Energy

The increasing complexity of modern processors
(superscalar architecture, out of order execution, branch
prediction, ...) demands a more elaborate procedure to
estimate on-the-fly the power consumption. While it

was sufficient for former architectures like Pentium II
to calculate the percentage of CPU activity [13], we
registered a wide variation of the active power con-
sumption between 30 W and 51 W for the Pentium 4
architecture running a compute intensive task. Because
there are high-power tasks that need about 70% more
power than low-power tasks, CPU cycles are no longer
a clear indicator for energy consumption.

Our approach to energy estimation is to correlate a
processor-internal event to an amount of energy. As
events being monitored correspond to specific activi-
ties, this correlation has linear characteristics. There-
fore, we select several events which can be counted
simultaneously and use a linear combination of these
event counts to estimate the processor's energy con-
sumption. The approach is presented in detail in [6]. An
additional source of power consumption is caused by
leakage which exists even when the processor is idle.
As supply voltages are scaled down, leakage will be a
more significant fraction of overall power consumption.
In this work, leakage is treated as a constant which is
incorporated into the base power consumption of the
CPU. We did not account for a variation of leakage
power from one processor sample to another.

3.2 Energy Containers

Local Energy Containers. To manage energy as a first
class resource we apply the abstraction of Resource
Containers [3]. In contrast to accounting to processes or
threads, this mechanism considers resource consump-
tion on kernel-level as well as resources used by server
processes working on behalf of clients. Energy Con-
tainers are a specialized form of resource containers
that can account energy accurately and with respect to
client-server relations. When a machine is running
under energy pressure, processes are throttled accord-
ing to the limits of the energy containers.

Energy containers form a hierarchical structure with
the root container at the top. The energy consumption is
accounted to the responsible container and to all of its
parent containers up to the root. Hence, the root con-
tainer indicates the total energy consumption of the sys-
tem. If an accountable device is idle, its energy
consumption is accounted to the container of the idle
task.

The association between processes and containers
can be established dynamically by special system calls
to reflect changes in the workload of the processes. It is
also possible to precisely account the energy consump-
tion of a server to a client on a per-request basis. While
a server is reading a new request from a file descriptor,
an implicit update of its energy container binding is

triggered. This approach automatically propagates
resource bindings from client to server applications
running on the same node if they communicate over
pipes or sockets. Local energy containers are presented
in detail in [6].

Global Energy Containers. To handle client/server
relationships across machine boundaries we have
extended the energy containers by global, unique iden-
tifiers that are valid in the entire distributed system.
Each node maintains a mapping between ids and local
energy containers. If processes on different nodes com-
municate over the network, the ids are sent piggyback
with the network traffic. On the receiving side, the ker-
nel extracts the id from each network packet and binds
the receiving process to the id’s (local) energy con-
tainer. A global energy container is represented by the
local containers on each node mapped to the same id
(see figure 1). To retrieve the energy consumption or to
set limits, each corresponding local container has to be
accessed.

A main design goal was transparency. The proposed
infrastructure should not require modifications to user
programs or network protocols. The modified kernel
still needs to be able to communicate with hosts run-
ning unmodified kernels or other operating systems.
The transparency of the system is vital for its applica-
tion in real computing environments rather than
restricting it to certain made up scenarios. Therefore we
decided to base the communication on IPv6 and trans-
mit the identifiers via optional IP header extensions.

The new protocol version IPv6 [11] has several
advantages over IPv4, namely a much larger address
space, simplified network administration by automatic
host configuration, methods to provide secure commu-
nication (authentication headers, encapsulating security
payload) and quality-of-service capabilities. However,
the most important feature of IPv6 for our work are des-

tination options headers. To avoid the overhead of very
large headers due to 128 bit addresses and all the new
capabilities, the header is divided into a mandatory and
an optional part. One of the optional extensions are the
so called destination options headers which are exam-
ined only by a packet’s destination node. Up to now, no
destination options are defined except for two padding
options used for data alignment. For our approach we
defined a new destination option for the exchange of
information related to energy containers.

Outgoing network packets that are sent by a process
with a resource binding to a global energy container are
extended by a destination options header containing the
container’s id. On the receiver’s side, incoming network
packets containing the new destination option are
bound to the same global energy container, i.e. to the
local container mapped to this id.

On each node, an array maps ids to containers; a ref-
erence to the respective energy container is stored for
each entry. Whenever the table is searched for an
energy container that does not have an id, the container
hierarchy is ascended until either a container is found
without a parent (the root container) or until a container
with an id is found. This way, child processes do not
cause a problem for the identifier system. If necessary it
is even possible to assign a single id only to the root
container so that all processes on that machine will be
sending out network packets containing that same id.

We have implemented our approach in Linux. In the
Linux kernel, incoming as well as outgoing network
packets are represented by the sk_buff data structure.
This structure can contain a reference to an energy con-
tainer. When a packet is sent by a process bound to a
certain container, the sk_buff’s reference is set to the
sending process’ resource binding. On reception of a
packet, the reference in the sk_buff can be read and
used to set the receiving process’ binding.

The ip6_xmit function was modified to add a
destination options header to outgoing packets. Identifi-
ers need to be added to every packet that is sent (and
bound to a global container), as packets from different
sources with possibly different identifiers can arrive in
any order and change the binding of the receiving pro-
cess. For incoming network packets, we provide a han-
dler for the new option which determines the local
energy container mapped to the id and stores a refer-
ence of this container in the sk_buff structure of the
packet.

We added the new option IPV6_SEND_OPTS to
the setsockopt system call to allow an application
to control the sending of destination options headers in
outgoing network packets via one of the application’s
sockets.

id 1

root

global
container

(id 1)

global
container

(id 2)

Id 2 id 1

root

id 2 id 1

root

id 2

Figure 1. Global resource containers

To manage global resource containers, we wrote a
user space demon (globalrcd) running on all nodes
in the distributed system to create energy containers
with a specified id, to retrieve the energy consumption
and to set energy and temperature limits.

Limiting Resource Usage. An energy container is
used to control power consumption storing the used
energy as well as a limit. We do not limit the amount of
energy, but the rate of energy consumption. Thus, time
is split up in epochs and a container has an energy limit
per epoch. This limit is refreshed according to the cur-
rent energy policy of the machine. Every activity that
consumes energy reduces the available energy of some
container. A task is allowed to run if all resources are
available. Our implementation currently accounts CPU
time and energy consumption. Limits can be defined as
absolute (i.e. energy per epoch) or relative values (i.e.
relative to the parent container). In section 3.4 we
explain how temperature management is implemented
by setting an absolute limit for the energy consumption
of the root container. Different tasks or activities (or
server processes working for different clients) can be
attributed with priorities by setting relative limits
reflecting their importance. As an example, a system for
financial or stock market transactions serves requests
from employees, customers and queries from other peo-
ple or sites (e.g. by stock tickers). In case of a thermal
emergency, the available energy must be shared by
these three groups in a way that reflects their relevance
to the company. To implement such an ordering, three
energy containers with relative limits of e.g., 50%, 35%
and 15% could be created. The server process could be
bound to the appropriate container automatically
depending on the identification or source address of the
request.

The operating system stops all activities that do not
have enough energy in their energy container and enters
low-power states to reduce power dissipation. By put-
ting the CPU into a low-power state (e.g., HLT-state)
for a short duration of time, it is possible to modulate
the processor power consumption. Further potential
throttling mechanisms are discussed in [7].

Due to the hierarchical structure of energy contain-
ers, there is a control loop of one container affecting all
containers in the sub-tree. The top-level resource con-
tainer controls any energy consuming activity in the
complete system. By changing the amount of energy
that is refreshed in this container, system-wide power
consumption can be managed according to thermal
requirements.

To protect server processes from clients with a very
low energy quantum, they always retain their original

resource container as backup. As long as the client's
container provides enough energy, its budget is used
and energy is accounted to the client. If the client runs
out of energy, the server, working on behalf of the cli-
ent, would have to wait until the client’s container is
refreshed. This would lead to a situation of priority
inversion if other clients which have not exhausted their
energy budget would have to wait for the server, too.
Thus, we modified the resource binding mechanism: if
the client’s container runs out of resources, the server
can be configured to fall back on his original container.
Other solutions to the problem of priority inversion
exist, but are outside the scope of this paper and will not
be presented here.

3.3 From Energy to Temperature

With the processor's energy input known, we are able to
estimate the processor temperature by looking at the
thermal characteristics of the heat sink. The heat sink's
energy input consists only of the energy consumed by
the processor, and can be formulated as

which is transformed into

. (3.3.1)

The energy output of the heat sink is primarily due
to convection and can be formulated as

which is transformed into Newton’s Law of Cooling:

. (3.3.2)

Energy output by heat radiation does not have to be
considered because the temperature is quit low
(< 60 ºC) and the aluminium surface has a low radiation
emitting factor. In addition to that, leakage power influ-
ences the total power consumption. Though this effect
is temperature dependent, it shows only little variation

cm∆T ∆Q P t() td
t1

t1 ∆t+

∫= =

: constant

: mass of heat sink

: CPU power usage

: elapsed time

c

m

P

∆t

: heat sink's
temperature increase

: difference of inner
energy

∆T

∆Q

dT
1

cm
-------Pdt c1Pdt= =

∆Q
α
r
--- T T 0–() t⋅ ⋅ cm∆T= =

: thermal resistance

: constant

r

α
: ambient temperatureT 0

dT c2 T T 0–()dt–=

for the temperature ranges of our experiments (30–
60 ºC) and is therefore treated as constant.

Together, these two formulas are used as an
approach to estimate the processor temperature:

. (3.3.3)

Solving this differential equation yields

. (3.3.4)

To find values for , and , we conducted

two experiments:

To determine , the raise in processor temperature

on a sudden constant power consumption and a sudden
reduction to HLT power was measured with the thermal
diode on the processor die (see figure 2).

Our thermal model resulting in the differential equa-
tion simplifies the real thermal conditions as it assumes
a single heat sink interfaced with the chip without ther-
mal resistance. However there is the impact of interface
material like grease and phase-change films [18] and
the thermal effects of heat spreaders. We found a simple
approach to come close to the complex thermal model
of several heat spreading components. We assume two
constant values for : for increasing tempera-

ture, and for decreasing temperature for mod-

elling the overlay of the characteristics of interface
material, heat spreader and heat sink in case of rising
and falling temperatures: and

.

With this approach, the estimated temperature is
above the measured temperature in all of the test cases.

For and , we measured the static tempera-

tures and power consumption of the test programs and
interpolated the resulting points with a quadratic func-
tion

(3.3.5)

which has to be above the curve measurements (see fig-
ure 3). Otherwise there could be a program for which
the real static temperature is higher than the estimated.
A quadratic function results in more accurate results
than a linear fitting.

The values for and are computed from a tan-

gent to in the point with being

the current power consumption.
This results in the following differential equation to

estimate the processor's change in temperature:

(3.3.6)

with if the last computed ,

else .

Once having measured a representative of the target
systems, the four parameters just have to be loaded into
the temperature estimation software. This estimator
only needs information about the ambient temperature
and a continuous flow of power values that can be
determined with the help of the event-monitoring
counters.

3.4 Implementation of Thermal Management

With Energy Containers, the kernel used in this work
has the infrastructure for accounting and controlling
energy consumption of processes, the entire machine
and the whole distributed system. As a result, the tem-

dT c1P c2 T T 0–()–[] dt=

T t() c̃–
c2
----- e

c2t–
⋅

c1

c2
----- P T 0+⋅+=

c1 c2 T 0

c2

0 1000 2000 3000 4000 5000
time [s]

30

35

40

45

50

55

60

te
m

pe
ra

tu
re

 [d
eg

re
es

 C
el

si
us

]

Figure 2. Temperature raise and decay
due to constant power

c2 c2 up,

c2 down,

c2 up, c2 down,>

c2 up, c2 c2 down,≈ ≈

c1 T 0

T s P() a2P
2

a1P a0+ +=

c1 T 0

T s P() P T s P(),() P

dT a2P a1+()P a0 T–+[] c2dt=

c2 c2 up,= dT 0≥

c2 c2 down,=

10 20 30 40 50
power consumption [W]

30

35

40

45

50

55

60

st
at

ic
 te

m
pe

ra
tu

re
 [d

eg
re

es
 C

el
si

us
]

test program data
quadratic fitting function
linear fitting function

Figure 3. Estimating temperature for static power

perature estimation and control could easily be imple-
mented in user-space facilitating the use of floating
point operations.

The resource container facility features simulta-
neous energy limits on different time-slices (128 ms
and 1024 ms per default). Our approach to temperature
control is to compute an energy limit for each time-slice
for the whole computer (= root container), based on the
current estimated temperature and the temperature
limit. By limiting the root container’s power consump-
tion, the change in the processor’s temperature (speci-
fied in equation (3.3.6)) will never result in an overrun
of the critical temperature:

. (3.4.1)

Formula (3.4.1) forms the quadratic inequation

. (3.4.2)

Because , the solution of this inequation is

. (3.4.3)

We extended the utility mbmon, which reads the
health monitoring chip set and displays the measured
temperature, with the temperature estimator and the
code to limit the root resource container. This eases cal-
ibration of the temperature estimation procedure. The
energy consumption necessary for the temperature esti-
mator is read from the root resource container. To pre-
vent a deadlock, the mbmon-process is accounted, but
never throttled.

Small errors in the temperature estimation mecha-
nism or errors due to changing ambient temperature
will accumulate over time. We measured an error of 3–
5 ºC over a period of 24 hours. At the same time, leak-
age power can lead to estimation errors. In order to pre-
vent such deviations the estimated temperature is
periodically adjusted to the measured temperature. For
this re-calibration a period of 10 to 20 minutes is suffi-
cient.

In order to examine the effects of energy- or temper-
ature-aware process scheduling, we modified the allot-
ment strategy for CPU time of the Linux scheduler.
Originally, time slices are computed using the static pri-
orities—the nice-levels—of the processes. We imple-
mented a scheduler which computes time slices
according to the relative power consumption of the pro-
cess compared to the power consumption of the root
container. This relation reflects the contribution of the

process to the current power dissipation and, further-
more, to the current temperature level of the CPU.
Additionally, the priority computation—the decision
which process will run next—is based on the relative
power consumption. With this approach “hot” pro-
cesses are disadvantaged by the scheduler.

To sum up, we are able to identify hot processes
using energy containers. We present two means to deal
with them: first, limiting the power consumption of the
attached containers automatically throttles hot pro-
cesses as they spend their power budget faster than the
others. Second, a power-based process scheduler can
allot longer time slices to energy-efficient processes.
While the second approach does not waste CPU time,
throttling is needed to facilitate thermal management.

4. Evaluation

For measurements we used a Pentium 4 2GHz mother-
board (ASUS P4B266E, DDR RAM) instrumented
with four–terminal precision resistors attached between
the board and the 3.3V, 5V and 12V power supply. The
voltage drop at the sense resistors was measured with
an A/D-converter with up to 40000 samples per second
and with a resolution of 256 steps.

In [6], we evaluated the energy estimation and the
temperature model of our approach by running several
different applications and application benchmarks.
Over all test runs, the estimation error of the energy
consumption was between 0% and 6%. The energy esti-
mation of the root container is at least as high as the
idle-power (about 13 W) that is accounted to the idle
thread.

For all real-world applications the temperature esti-
mator is within the accuracy of the temperature mea-
surement (< 1 ºC). The worst-case synthetic scenario is
an energy estimation error of 30% resulting in an error
in temperature estimation of 7 ºC. So the error in tem-
perature estimation is always the consequence of an
error in energy estimation. The thermal model pre-
sented in section 3.3 did not show any serious short-
comings.

4.1 Distributed Energy Accounting

Figure 4 shows the power consumption and temperature
of a small cluster of 3 servers. On the first server the
apache web server httpd is running. Client requests to
the cluster include database queries which are served by
the database postgreSQL (server #3) and requests to
factorize integers which are handled by a math software
package (server #2). Apache uses PHP to access the
services on the two other nodes of the cluster. A dis-

a2P a1+()P a0 T–+[]c2dt T limit T–≤

a2P
2

a1+ P a0 T–+
T limit T–

c2dt
------------------------≤

a2 0<

P
a1–

2a2

1
a2

T limit T–

c2dt
------------------------ a0– T

a1
2

4a2
--------+ +

–≤

0 500 1000

Figure 4. Server #1 (apache)

time [s]
0 500 10000

10

20

30

40

50

po
w

er
 c

on
su

m
pt

io
n

[W
]

0 500 1000

server #2 (factorization)

time [s]time [s]

 server #3 (postgreSQL)

container 1
root container (total)

container 2

1500 1500 1500
patcher node receives requests from two different cli-
ents. To account the energy consumed by the cluster on
behalf of each client, two global energy containers are
created. The dispatcher attributes the network packets
with the corresponding container identifiers depending
on the client IP addresses and forwards the packets to
the server running apache. The figures show that the
energy consumption of the three services is accounted
to the two containers. As both clients issue the same
requests to the database, both containers show roughly
the same power profile on the third server. The reason
for the high power consumption of container #1 on the
second server is that larger numbers are factorized for
client #1 than for client #2.

4.2 Enforcing Temperature Limits

Figure 5 shows the temperature and power consumption
of two servers of our cluster, running apache and the
factorization program, this time with a cluster-wide
temperature limit of 47 ºC (shown by the shaded area).
Mbmon wakes up periodically and computes the
current temperature. The defined temperature level
is enforced by setting an appropriate energy limit on
the root container. As long as the computed temper-
ature is below the target temperature, no energy
limit is set. As can be seen in figure 5 the tempera-
ture of server #2 is rising up to 47 ºC. At time stamp
155 the energy consumption of the root container of
the second server is limited and the system is throt-
tled in order to stay below the target temperature.
The power profile of this server reflects the throttling of
the root container. As the web server on node #1 has to
wait longer for the results from the factorization, it is
indirectly throttled, too.

Figure 6 shows another run of httpd. Initially no
temperature limit is defined. Around time stamp 148s
the limit is set to 50 ºC (again, the shaded area repre-
sents the allowed temperature level). This could be nec-
essary if e.g. a cooling unit in a server cluster fails so
that the cluster nodes have to be kept below a certain

critical temperature. In our test, the thermal manage-
ment needs about 110 seconds to reduce the tempera-
ture to the new limit.

The proof of concept is a web server accepting
requests from two different classes of clients. When a
critical temperature limit of 50 ºC is reached, client #1
should be preferred and should get a share of 80% of
the limited total power, while client #2 is just allowed to
consume 20% of the remaining power. As an example,
the two client classes could represent requests from the
intranet and internet. The power shares can be specified
using user space tools which adjust the energy limits of
the corresponding resource containers. Figure 7 shows
the power consumption of the free running apache tasks
working on behalf of the two classes of clients before
and after reaching the predefined limit of 50 ºC. The
root container reflects the sum of both client containers
plus the power consumption of the halted CPU
accounted to the idle thread.

4.3 Overhead

Reading of the event-monitoring counters is done in the
timer interrupt (1000 times per second) or when a task
is blocking. The context switching times in Linux 2.6
with energy container support is increased by 49%
(5.9 µs) due to algorithmic overhead and the time for
reading the event counters. However, for a typical sce-
nario like kernel compiling we registered an overall
performance loss of less than 1% (the time a kernel
compile run needs on the original kernel compared to
our modified kernel).

Estimating the temperature takes 4.85 µs with a
standard error of 0.843 because of a varying number of
cache misses. Setting new limits to the root container
requires 12.37 µs with a standard error of 1.537. The
overhead for temperature estimation can be neglected
because this procedure is typically executed 1–10 times
per second. Furthermore, the overhead is by orders of
magnitude smaller compared to reading the temperature
sensors of the motherboard (which takes about 5.5 ms).

0 100 200 300
time [s]

0

10

20

30

40

50

100 200 300

time [s]

0

10

20

30

40

50

po
w

er
 c

on
su

m
pt

io
n

[W
]

0 100 200 300
30

35

40

45

50

0

container 1
root container (total)

container 2

server #2 (factorization), limit at 47 ºCFigure 5. Server #1 (apache), limit at 47 ºC

measured temp.
estimated temp.

allowed temp. range

0 100 200 300
30

35

40

45

50

te
m

pe
ra

tu
re

 [d
eg

re
es

 C
el

si
us

]

5. Use-Case Scenarios

We have designed and implemented the infrastructure
for task-level energy- and temperature management for
distributed systems. In this section, we discuss implica-
tions and use-case scenarios deploying this infrastruc-
ture.

If a global temperature limit is defined, there are
several ways to translate it into local temperature and
energy limits. Depending on the location of the individ-

ual servers and the cooling units different strategies are
possible. One would be to concentrate the load on a
subset of servers so that the minimum number of cool-
ing units has to be activated. When determining the set
of servers and cooling units, the maximum temperature
and the covered area of each cooling unit has to be
taken into account. Another approach would be to uni-
formly distribute the temperature over the entire cluster.

Figure 6. Cool-down with throttling

0 100 200 300
time [s]

45

50

55

60

te
m

pe
ra

tu
re

 [d
eg

re
es

 C
el

si
us

]

estimated temp.
measured temp.

root container
client1 (80%)
client2 (20%)

0 100 200 300
time [s]

0

10

20

30

40

50

po
w

er
 c

on
su

m
pt

io
n

[W
]

Start throttling

Figure 7. Throttling at 50 ºC according to
energy shares

This way, a cluster-wide uniform temperature and
power density can be achieved.

In the case of tasks with very short execution time,
e.g. single web server or database requests, the dis-
patcher can forward incoming requests to the servers
that have not yet exhausted their energy budgets. Thus,
the dispatcher can react to unused energy on one server
very fast by changing the workload distribution. How-
ever, long running tasks often cannot easily be migrated
to servers with unused energy. The distribution of a task
on several nodes in a cluster can lead to the situation
that the global energy budget of this task is not fully
used. In this case, our approach could be extended to
collect unused energy from local containers and redis-
tribute it among the servers that have exhausted their
share already.

Implementation of such an extension is not straight-
forward, though. Our current approach simply discards
unused resources after each epoch. Moreover, reloca-
tion of resources among the nodes would require extra
network traffic as unused energy would have to be dis-
tributed quickly and frequently. Consequently, a signifi-
cant overhead for such a relocation system is likely.

Up to now, we only transmit the identifiers of global
energy containers across machine boundaries. It would
also be possible to send information about the con-
sumed energy piggyback with the response of the
server to the client node. This way, an automatic
accounting of the resource consumption of global con-
tainers could be implemented. Another possibility
would be to transmit information about the temperature
in the headers of the network packets, enabling a decen-
tralized temperature management.

6. Future Directions

There is a multiplicity of interesting opportunities for
operating system research in the area of temperature-
aware computing. If the processor architecture allows a
rapid change in clock frequency, task-specific fre-
quency scaling is a further step to moderate the thermal
load. Performance monitoring counters will provide the
essential information for the power-performance trade-
off. The thermal model has to be enhanced to deal with
variable speed. Not only the number of events is rele-
vant, but also the clock speed at which the events hap-
pen.

The architectural placement of counters and the
types of countable events in today’s computer architec-
tures are devoted to performance profiling. In a hard-

ware-/software co-design project we investigate the
benefit of energy-monitoring counters (EMCs). In con-
trast to performance-monitoring counters, EMCs cover
all energy relevant events. EMCs could also incorporate
sensors or thermal estimators for the different func-
tional units of the CPU. Having direct access to the
thermal map, a more fine-grained and reliable account-
ing of temperature would be possible. This way, the
temperature caused by leakage power could be
accounted for by adapting the estimations of the tem-
perature model to the measured values. Furthermore the
reading of these counters by the operating system is as
fast as reading a processor register. The resulting low-
overhead has to be paid by a loss in accuracy because
we allow a delayed propagation of events to counters.
By relaxing the timely resolution of the counters, we
accelerate energy accounting and reduce the overhead
in energy for managing the energy consumption.

Memory is becoming more and more a target for
power management and energy accounting. According
to precise energy estimation models for memory [12]
we want to develop elaborate energy models for the use
in operating systems that employ counters connected
with the memory modules. These memory EMCs not
only count read and write request but also the number
of cycles the clock of the individual memory banks is
enabled, and the number of cycles during which the
rows in the individual memory banks are open. As the
memory system in modern high-end servers is one of
the top power consumers, memory EMCs would be the
most promising extension to our model.

7. Conclusions

We have presented an approach to dynamic thermal
management with respect to the demands of individual
applications, users or services. Based on the abstraction
of resource containers, our approach provides the infra-
structure for task-level energy accounting and tempera-
ture management for distributed systems. Energy
accounting in a server cluster is implemented by attrib-
uting network communication, e.g. remote procedure
calls in a client/server relationship, with information
about the energy container. To meet the thermal
requirements of the system, “hot” tasks (e.g. the pro-
cessing of requests) are throttled by restricting their
energy budget. Experiments on a small cluster show
that energy and temperature are accurately determined
and local and cluster-wide thermal limits are kept.

References

[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat,
M. Henzinger, S.-T. Leung, R. Sites, M. Vandervoorde,
C. Waldspurger, and W. Weihl. Continuous profiling:
Where have all the cycles gone? ACM Transactions on
Computer Systems, 15(4), November 1997.

[2] Mohit Aron, Peter Druschel, and Willy Zwaenepoel.
Cluster reserves: a mechanism for resource management
in cluster-based network servers. In Measurement and
Modeling of Computer Systems, pages 90–101, 2000.

[3] Gaurav Banga, Peter Druschel, and Jeffrey Mogul.
Resource containers: A new facility for resource manage-
ment in server systems. In Proceedings of the Third Sym-
posium on Operating System Design and Implementation
OSDI’99, February 1999.

[4] Christian Belady. Cooling and power consideration for
semiconductors into the next century. In Proceedings of
the International Symposium on Low-Power Electronics
and Design ISLPED’01, August 2001.

[5] Frank Bellosa and Martin Steckermeier. The performance
implications of locality information usage in shared-
memory multiprocessors. Journal of Parallel and Dis-
tributed Computing, 37(1):1–2, August 1996.

[6] Frank Bellosa, Simon Kellner, Martin Waitz, Andreas
Weissel. Event-Driven Energy Accounting for Dynamic
Thermal Management. In Proceedings of the Fourth
Workshop on Compilers and Operating Systems for Low
Power COLP’03, September 2003

[7] David Brooks and Margaret Martonosi. Dynamic thermal
management for high-performance microprocessors. In
Proceedings Of The Seventh International Symposium
On High-Performance Computer Architecture
(HPCA’01), January 2001.

[8] Christos J. Georgiou, Thor A. Larsen, and Eugen Schen-
feld. Variable chip-clocking mechanism. United States
Patent 5,189,314, February 1993.

[9] José González, Antonio González. Dynamic cluster
resizing. In Proceedings of the International Conference
on Computer Design ICCD 2003, October 2003.

[10] Stephen H. Gunther, Frank Binns, Douglas M. Carmean,
and Jonathan C. Hall. Managing the impact of increasing
microprocessor power consumption. Intel Technology
Journal, 2001. Q1 issue.

[11] Internet Protocol, Version 6 (IPv6), Specification. RFC
2460.

[12] Jeff Janzen. Calculating memory system power for DDR
SDRAM. Designline, 10(2), 2001.

[13] Erven Rohou and Michael D. Smith. Dynamically man-
aging processor temperature and power. In Proceedings
of the 2nd Workshop on Feedback-Directed Optimization,
November 1999.

[14] H. Sanchez, B. Kuttanna, T. Olson, M. Alexander,
G. Gerosa, R. Philip, and J. Alvarez. Thermal manage-
ment system for high performance PowerPC micropro-
cessors. In Proceedings of IEEE Compcon’97 Digest of
Papers, February 1997.

[15] Ratnesh K. Sharma, Cullen E. Bash, Chandrakant D.
Pateland, Richard J. Friedrich, and Jeffrey S. Chase. Bal-
ance of power: dynamic thermal management for internet
data centers. Technical Report HPL-2003-5, HP Labs,
February 2003.

[16] Kevin Skadron, Tarek Abdelzaher, and Mircea R. Stan.
Control-theoretic techniques and thermal-rc modeling for
accurate and localized dynamic thermal management. In
Proceedings Of The Seventh International Symposium
On High-Performance Computer Architecture
(HPCA’02), January 2002.

[17] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar
Velusamy, Karthik Sankaranarayanan, and David Tarjan.
Temperature-aware microarchitecture. In Proceedings of
the 30th International Symposium on Computer Architec-
ture (ISCA’03), June 2003.

[18] Ram Viswanath, Vijay Wakharkar, Abhay Watwe, and
Vassou Lebonheur. Thermal performance challenges
from silicon to systems. Intel Technology Journal, 2000.
Q3 issue.

[19] Andreas Weissel and Frank Bellosa. Process cruise con-
trol: event-driven clock scaling for dynamic power man-
agement. In Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded
Systems CASES’02, October 2002.

[20] Boris Weissman. Performance counters and state sharing
annotations: a unified approach to thread locality. In Pro-
ceedings of the Eighth International Conference on
Architectural Support for Programming Languages and
Operating Systems ASPLOS’98, October 1998.

[21] Heng Zeng, Carla Ellis, Alvin Lebeck, and Amin Vahdat.
Currentcy: Unifying policies for resource management.
In Proceedings of the USENIX 2003 Annual Technical
Conference, June 2003.

[22] Heng Zeng, Xiaobo Fan, Carla Ellis, Alvin Lebeck, and
Amin Vahdat. Ecosystem: Managing energy as a first
class operating system resource. In Proceedings of the
Tenth International Conference on Architectural Support
for Programming Languages and Operating Systems
ASPLOS’02, October 2002.

	Dynamic Thermal Management for Distributed Systems
	Abstract
	1. Introduction
	2. Related Work
	3. Event-Driven Dynamic Thermal Management
	3.1 From Events to Energy
	3.2 Energy Containers
	Local Energy Containers
	Global Energy Containers
	Limiting Resource Usage

	3.3 From Energy to Temperature
	3.4 Implementation of Thermal Management

	4. Evaluation
	4.1 Distributed Energy Accounting
	4.2 Enforcing Temperature Limits
	4.3 Overhead

	5. Use-Case Scenarios
	6. Future Directions
	7. Conclusions

