Self-Learning Hard Disk
Power Management
for Mobile Devices

Andreas Weissel
weissel@cs.fau.de, http://www4.cs.fau.de

Department of Computer Sciences 4
Distributed Systems and Operating Systems
Friedrich-Alexander University of Erlangen-Nuremberg

Frank Bellosa
bellosa@ira.uka.de, http://i30www.ira.uka.de

System Architecture Group
University of Karlsruhe

mailto:weissel@cs.fau.de
mailto:bellosa@ira.uka.de

Motivation

® Hard disk power management
= use low-power operating modes, e. g. standby mode
(spin down drive motor) if drive is idle
= mode transitions cause overhead in energy and time
(up to several seconds)
= minimum idle period necessary to achieve energy savings

® Spin-down policies
= fixed or variable time-out before mode transition
(filter out short idle periods)
= adaptive policies predict length of upcoming idle interval
based on past hard disk accesses

o Andreas Weissel (weissel@cs.fau.de)

Motivation: Adaptive Policies

= Example: Adaptive Battery Life Extender (ABLE)

= internal, adaptive algorithm of IBM/Hitachi hard disks

= the drive intelligently manages the transition between its
operating modes depending on the current access pattern

= the optimal low-power mode and the time before the mode
transition are determined dynamically

= decision based on command history and energy costs associated
with each mode

® Deepest power-saving mode can be configured

by the user
= |imit impact on performance

o Andreas Weissel (weissel@cs.fau.de) 3

Motivation: Energy Savings

891.1J [] idle
500 [~ [] Os
B 1s
i Bl 2s
D 400 — — [ABLE
- _
© .]
o
€ 3001 —
7 _
-
S i
(&)
S 200
)
C n
o
100 |- —
0
gcc mpg123 gthumb cello file manager

o Andreas Weissel (weissel@cs.fau.de)

Observations

= Different, optimal spin-down policies (with respect to
energy) for different tasks or applications

= Application-specific trade-off between energy savings

and performance
= interactive tasks: delays due to mode transitions may
irritate the user

2> The need for adaptive, application-specific
power management

o Andreas Weissel (weissel@cs.fau.de) 5

Outline

m Self-Learning Hard Disk Power Management
= |mplementation in Linux

= Energy Estimation Using Dempsey

= Evaluation

® Conclusion

o Andreas Weissel (weissel@cs.fau.de)

Self-Learning Power Management

m Several spin-down policies or low-power modes
are available

= |dentify optimal, task-specific policy at run-time
= minimum energy consumption for current workload:

determined by simulation environment Dempsey
(Zedlewski et al., FAST '03)

= |limit on performance degradation

® |nfrastructure for workload- or task-specific power

management
= apply techniques from machine learning

= account for user preferences (sensitivity to transition delays)

o Andreas Weissel (weissel@cs.fau.de)

Overview: Training

® for each OS monitors hard disk /0
application; | amount of data, time between disk
accesses, read or write operation ...

/ \

feed I/O traces into Dempsey derive features
determine spin-down policy which compute averages, deviations
minimizes energy consumption over sliding time window

poliM Mracteristic features

supervised learning
find rules that map features
to optimal spin-down policy

iclassification rules

power management daemon

o Andreas Weissel (weissel@cs.fau.de) 8

Overview: Training

® for each OS monitors hard disk /0
application; | amount of data, time between disk
accesses, read or write operation ...

/ \

allow user to specify preferred derive features
policy or operating mode compute averages, deviations
account for transition delays I over sliding time window

poliM Mracteristic features

supervised learning
find rules that map features
to optimal spin-down policy

iclassification rules

power management daemon

o Andreas Weissel (weissel@cs.fau.de) 9

Overview: Classification

OS monitors hard disk 1/0
amount of data, time between disk
accesses, read or write operation ...

:

derive features
compute averages, deviations
over sliding time window

i

classification rules

i spin-down policy

hard disk control

o Andreas Weissel (weissel@cs.fau.de)

10

Outline

= Motivation

= Self-Learning Hard Disk Power Management
= Implementation in Linux

= Energy Estimation Using Dempsey

= Evaluation

® Conclusion

o Andreas Weissel (weissel@cs.fau.de)

11

Implementation in Linux

= |DE driver supports different spin-down algorithms
= currently only policies with fixed time-out

m (Operating system monitors hard disk 1/0O
= added hooks to I/O-related system calls (read, write)

= record time between I/O requests

= record amount of data read and written
(block device driver switch, generic_make_request)

= store data in small ring buffers
= extension: monitor hard disk I/O per process

= Power management daemon in user space
= periodically retrieves disk access patterns from kernel,
computes features and performs classification

O Andreas Weissel (weissel@cs.fau.de)

12

Implementation: Features

B Subset of features that can be used for classification

Number of disk accesses

Number of disk reads

Number of disk writes

Amount of data read or written

Amount of data read (kbytes)

Amount of data written (kbytes)

Number of syscall invocations to read or write data
Number of syscall invocations to read data
Number of syscall invocations to write data
Average time between two hard disk accesses
Average time between two read operations
Average time between two write operations

= computed over a time window of 10 seconds

= most significant features are automatically determined by
training algorithm

Andreas Weissel (weissel@cs.fau.de)

Implementation: Training

® Edinburgh Speech Tools Library (C++ class library)

m Classification and Regression Trees
= decisions on answers to binary questions

= questions on elements of feature vector, e. g.:
1f (average number of disk reads per time window)

= questions are ordered in a tree structure

= use purity of a set for ordering, splitting & pruning the tree:
a set is pure if all of its elements belong to the same class

= for classification, the questions are processed until a leaf
is reached: spin-down policy

= (Classification tree as sequence of if-clauses
= implementation as Perl module

<

5

o Andreas Weissel (weissel@cs.fau.de)

14

Implementation: Classification

B (Generated classification tree

if (time between read
accesses < 0.96s)

then

if (time

accesses < 0.66s)

between 1/0O

then

else

if (number of /0O

if (number of read
accesses < 981)

syscalls < 1329)

else

if (number of read
accesses < 484)

then

time-out = 1s

time-out = 0s always-idle

else

if (time between write
accesses < 1.41s)

always-idle time-out =1s

o Andreas Weissel

(weissel@cs.fau.de)

15

Dempsey

= Based on DiskSim simulator (Ganger et al.)
= |mplementation of spin-down policies

= |nput
= configuration file with properties of low-power modes
(power consumption, energy and time overhead)

= trace file of hard disk I/O
(time stamp, drive, sector, number of blocks, read or write op.)

® Qutput: for each spin-down policy
= energy estimation (error < 10 %)

= execution time

o Andreas Weissel (weissel@cs.fau.de)

16

Outline

= Motivation

= Self-Learning Hard Disk Power Management
= |mplementation in Linux

= Energy Estimation Using Dempsey

= Evaluation

® Conclusion

o Andreas Weissel (weissel@cs.fau.de)

17

Evaluation

= Measurements of energy consumption using
DAQ system
= Desktop PC, sense resistor in 5 V power lines to hard disk
= [BM/Hitachi Travelstar 40 GN (20 GB); Microdrive (1 GB)

® Tests (on Linux)
= gcc: compile prototype Linux kernel (2.6.4) using gcc 3.4 (7-8 min)

= mpgl23: playback of MP3 audio file (128 kbit/s, 9 minutes)

= gthumb: slide show of 140 digital camera pictures, 3s interval

= cello: HP Labs trace file of hard disk accesses (April 18", 1992),
first 10 minutes

= file manager: trace file of user session with gnome file manager
nautilus (viewing PDF files, editing text documents, change file
access rights), 10 minutes

O Andreas Weissel (weissel@cs.fau.de) 18

Microdrive Tests

891.1 J
500 —

W N
=, o
S S
! !
|

energy consumption [J]
S
|
|

100 [~

idle

1s
2s i
ABLE

OEEC0

gce mpg123

gthumb cello file manager

o Andreas Weissel (weissel@cs.fau.de)

19

Travelstar Tests

800

1639.5 J

energy consumption [J]
S 3
o o
| |

N

o

S
!

gcc mpg123 gthumb

ONENCIC]
N
w

cello

file manager

o Andreas Weissel (weissel@cs.fau.de)

20

Runtime Classification

= Train system with additional “idle trace” (with ABLE
as the preferred policy)

m Tests with variations of program runs
= gcc compiling Dempsey; different audio files;
different slide show interval ...
= amp instead of mpg1 23 for audio playback

m (Classification errors during start-up activity
= time window (10s) has to be filled with characteristic values

= Accuracy > 90%
= best results for compile job and audio playback
(regular access patterns)

O Andreas Weissel (weissel@cs.fau.de)

21

Applications Running in Parallel

m Extended task structure to maintain I/O statistics
per process

= |dentify appropriate spin-down policy for each task
that issues hard disk requests

= QOrder policies (e. g., according to overhead)

m Successful test with gcc and mpg123 running

concurrently
= hard disk is left in idle mode throughout the compile job

o Andreas Weissel (weissel@cs.fau.de) 22

User-Specified Spin-Down Policies

= |nfluence of power management on application quality
= no effect on MP3 playback

= considerable delays for some interactive tasks (file manager test)

m (Classification can be performed (partly) by the user
= Dempsey generates configuration (text) file for training algorithm
= can be edited by the user
= future work: user interface

® Test with file manager nautilus and mpgl23
= always-idle as preferred policy for file manager
2> error rate ~3 %

o Andreas Weissel (weissel@cs.fau.de) 23

Conclusion

m Adaptive hard disk power management
= the system is automatically trained to identify different tasks and
their optimal spin-down policy
= account for trade-off between energy savings and delays due to
mode transitions

m System services for application-specific, adaptive

power management policies
= correctly handle applications running concurrently

= incorporate user preferences

O Andreas Weissel (weissel@cs.fau.de) 24

Thanks for your attention!

Andreas Weissel
weissel@cs.fau.de, http://www4.cs.fau.de

Department of Computer Sciences 4
Distributed Systems and Operating Systems
Friedrich-Alexander University of Erlangen-Nuremberg

Frank Bellosa
bellosa@ira.uka.de, http://i80www.ira.uka.de

System Architecture Group
University of Karlsruhe

mailto:weissel@cs.fau.de
mailto:bellosa@ira.uka.de

