
Synthesising Real-Time Systems from Atomic Basic Blocks

Fabian Scheler, Wolfgang Schröder-Preikschat

Friedrich-Alexander University Erlangen-Nuremberg
Department of Computer Science 4

Martensstrasse 1, 91058 Erlangen, Germany
{scheler,wosch}@informatik.uni-erlangen.de

Abstract

Whether a real-time system is implemented as time-
triggered or event-triggered system is constituted quite
early in the development process of real-time systems. Un-
fortunately, different task models are associated insepara-
bly with these real-time architectures. This makes it very
hard to migrate from time-triggered to event-triggered sys-
tems and vice versa, also the reuse of individual event-
handlers of a real-time system is prohibited by this fact. In
this paper we point out that there is no need to prefer a
certain real-time architecture in many cases. Therefore, we
sketch an architecture-independent representation of real-
time systems based on so calledatomic basic blocks(ABB).
These ABBs allow to describe reusable event-handlers that
are composed into the final real-time system by an auto-
mated synthesis.

1. Introduction

An important decision in state-of-the-art real-time (RT)
systems development is to settle either for a time-triggered
(TT) or an event-triggered (ET) architecture. This deci-
sion is crucial for the development of RT systems as both
architectures offer very different control flow abstractions.
These different control flow abstractions make a later mi-
gration from a TT to an ET system or vice versa imprac-
ticable. In many cases such a migration is equivalent to a
complete redesign and reimplementation of the entire RT
system. Moreover, the reuse of individual event-handlers
of a RT system is hardly possible when the RT architec-
ture changes. As RT systems definitely can be built in a TT
as well as in an ET fashion, it might be valuable to consider
the RT architecture as non-functional property. Thereby, the
flexibility and the reusability of RT systems on the level of
event-handlers would be increased. In this paper we sketch
the notion ofatomic basic blocksthat enables treating the
RT architecture as non-functional property and give a short
overview on their possible applications.

The rest of the paper is structured as follows: Section
2 succinctly subsumes the differences amongst TT and ET
systems regarding their non-functional as well as functional
properties. Section 3 sketches a method to describe a RT
system independent of the used RT architecture and section
4 gives possible applications of such a representation. Sec-
tion 5 discusses related work, section 6 gives an outlook on
future work and section 7 concludes the paper.

2. Time-triggered versus Event-Triggered?

The TT and the ET approach are now compared with re-
spect to their non-functionalas well as their functional prop-
erties. The focus of this comparison is to figure out which
non-functional factors favour either a TT or an ET architec-
ture and which functional properties inhibit an exchange of
these two approaches.

2.1. Non-Functional Properties

The non-functional factors influencing the decision for a
TT or an ET architecture shall be shortly summed up here.
For most of these criterions Kopetz already gave a compari-
son of TT and ET systems [7]. Nevertheless these criterions
are taken into account again, as the prerequisites leading to
those appraisals meanwhile may have changed.

Analyzability Deciding the schedulability of a set of
tasks and finding an appropriate schedule under the given
temporal constraints is crucial for RT systems. For TT sys-
tems (statically computed schedules, e.g. [10]) and ET sys-
tems (response time analysis, e.g. [8]) suitable methods to
ensure deadlines exist. Hence, neither TT systems nor ET
systems are to be preferred with respect to analyzability.

Predictability The state of ET systems cannot be pre-
dicted exactly, of course, while this is easy for TT sys-
tems, as these systems follow a statically computed sched-
ule. However, a RT system does not necessarily have to be
predictable. In order to guarantee deadlines, it is sufficient
to be deterministic. Hence, neither TT systems nor ET sys-
tems are to be preferred with respect to predictability.



Testability Functional testing is similar among TT and
ET systems. It is more important how timing constraints
are verified. In both kinds of architectures it is sufficient to
test each event-handler for its worst case performance. The
schedulability of the whole system must be ensured after-
wards by formal techniques. As such techniques exist for
both, TT and ET systems, neither TT systems nor ET sys-
tems are to be preferred with respect to testability.

Extensibility Extensibility stands for the costs one has to
pay when he needs to add new functionality, e.g. new event-
handlers, to an existing system. In RT systems deadlines
also have to be guaranteed within the extended system. That
fact is taken care of by recomputing the static schedules in
TT systems and repeating the response-time analysis in ET
systems. Hence, neither TT systems nor ET systems are to
be preferred with respect to extensibility.

Fault Tolerance For reasons of strict timing constraints
fault tolerance is often based on active redundancy within
RT systems, though active redundancy requires replica de-
terminism. While this is almost for free in TT systems, state
synchronism is very hard to achieve in ET systems. So TT
system are to be preferred with respect to fault tolerance.

Resource Utilization Even in hard RT systems not all
events to be serviced are strictly periodic. In TT systems
such aperiodic and sporadic events have to be polled. This
imposes a significant run-time overhead, while the average
response time for servicing such events is still quite poor.
As alternative such events can be serviced in an ET manner
in a TT system, but also imposing all other drawbacks of ET
systems. So ET systems are to be preferred with respect to
resource utilization, when non-periodic events are relevant.

2.2. Functional Properties

The main functional difference between TT and ET sys-
tems is the control flow abstraction used in each case. In
TT systems jobs are executed according to a statically com-
puted schedule. Synchronisation among different jobs is
performed ahead of run-time, so jobs often expose a run-to-
completion semantics. Moreover, usage of certain system
services like communication often is restricted to certain
points in time in order to guarantee predictable behaviour.
In ET systems on the other hand schedules unfold dynam-
ically during runtime as per the emergence of events. This
entails explicit synchronisation among different jobs, alto-
gether, with all the pitfalls arising with explicit synchronisa-
tion mechanisms. However, less restrictions on the usage of
system services are imposed and ET systems appear easier
to be handled for many developers.

2.3. Conclusion

All in all, the only non-functional criterions having a
substantial impact on the selection between a TT or an ET

architecture arefault toleranceandresource utilization. The
other factors neither favor the one nor the other approach.
Unfortunately this selection cannot be postponed because
of the functional difference between these RT architectures,
namely, their control flow abstractions.

3. Architecture Independent RT Systems

In order to make a RT system independent of its archi-
tecture one has to bypass the functional differences between
the TT and the ET approach. As pointed out in the fore-
going section the major difference are the control flow ab-
stractions significant for those approaches. In this section
we sketch a method that can be used to describe a RT sys-
tem independent of the RT architecture and how it can be
applied in the development of RT systems.

3.1. Atomic Basic Blocks

To bypass the functional difference between TT and
ET systems any control flow abstraction has to be omitted
within the representation of a RT system. Therefore, a RT
system is described byatomic basic blocks.

An atomic basic block(ABB) is a section of the control
flow that ensures the consistency of the data, that is affected
within this ABB. Most of these ABBs are identical to min-
imal basic blocks known from compiler construction, but
an ABB can also span a complete critical section. ABBs
are basically arranged in three different graphs: a control-
flow, a data-flow and a mutual exclusion graph. The control-
flow graph and the data-flow graph are directed graphs de-
picting the flow of control and data between the different
ABBs, while the mutual exclusion graph is undirected and
expresses mutual exclusion constraints among ABBs.

As a short example consider the following scenario: we
have two data sources (sourceA andsourceB). Data is
gathered from them and pre-processed so it can be post-
processed by the same algorithm. Finally, some output is
generated from the completely processed data. Each of
these activities is regarded as an ABB for reasons of sim-
plicity. Figure 1 shows the representation of such a system
by means of ABBs. These ABB-graphs can be mapped to
a set of threads for an ET system (see figure 2), but the
generation of a static schedule suitable for a TT system is
thinkable, too.

3.2. Development Process

An important question is, how these ABB-graphs (i.e.
the control-flow graph, the data-flow graph and the mutual-
exclusion graph) are provided and how they are mapped to
control flow abstractions. To achieve an efficient and flex-
ible mapping ABBs should be as fine grained as possible
and, therefore, best be generated automatically.

A possible source for the generation of such ABB-graphs
would be to describe an event-handler as simple end-to-
end-scenario by means of e.g. a simple procedure. Such



Postproc.1

PreprocB.2

PreprocB.1PreprocA.1

PreprocA.2

Postproc.2

gather data

preprocess data

generate output

postprocess data

buffer data

fetch data Postproc.1

Postproc.2

Postproc.3

PreprocB.2

PreprocB.3

PreprocA.2

PreprocA.1

PreprocA.3

PreprocB.1

control−flow edges data−flow edges mutual exclusion edges

(a) (b)

(a) The control- and data-flows among the different ABBs. The fusion of the two
branches of the data-flow graph can have eitheror- or and-semantics.

(b) In case ofand-semantics, the pre-processed data from both sources has to be
available before post-processing can start, buffering of the pre-processed data
becomes inevitable, therefore additional ABBs are added tothe control- and
data-flow graph. These ABBs have to be executed mutually exclusive, as each
of them accesses a common buffer.

Figure 1. ABB-graphs

event-handlers are most reasonable if they do not depend on
other event-handlers, otherwise, these dependencies haveto
be modeled explicitly by e.g. annotations. Furthermore, it
should be feasible to specify such event-handlers e.g. by
design and modeling tools like matlab/simulink. Another,
really exciting source for ABBs might be provided by al-
ready existing RT systems. Thereby, it might be possible to
extract event-handlers from existing RT systems. Any infor-
mation that is needed to build those ABB-graphs is already
present in ET systems. For TT systems a given static sched-
ule can additionally be exploited to deduce the control-flow
and data-flow information while mutual exclusion will de-
mand manual intervention.

The later mapping to a concrete control flow abstraction,
thus, the synthesis of the final RT system should also go
on automatically. During the synthesis the ABBs are be-
ing connected by someglue codetaking care of implement-
ing the control-flow, data-flow and mutual exclusion con-
straints. Depending on the requirements of the RT object
a TT or an ET platform can be chosen as target platform
and an application for this platform is generated. Such plat-
forms can be already existing RT operating systems, but it
is also thinkable to generate or configure such a platform
along with the generation of the application.

4. Cases of Application

ABBs are not restricted to facilitate an architecture in-
dependent representation of RT systems only. This section
gives a short overview on some applications of ABBs for
the synthesis of RT systems.

TASK(PreprocA) {
/* get and pre-process data (source A) */
GetResource(data_buffer);
/* buffer pre-processed data */
ReleaseResource(data_buffer);
IncrementCounter(PostprocCounter);

}
TASK(Postproc) {

GetResource(data_buffer);
/* get buffered data */
ReleaseResource(data_buffer);
/* postprocess data and generate output */
SetRelAlarm(PostProcAlarm,2,0);
TerminateTask();

}

The listing above shows a possible mapping of figure 1(b) to anOSEK-application
[1]. The pre-processing phase is mapped to two independent tasksPreProcA and
PreProcB, the software counterPostProcCounter is incremented when pre-
processing is finished. The counter runs an alarmPostProcAlarm that activates
the post-processing taskPostProc on expiration.

Figure 2. Event-triggered mapping

4.1. Reusable Event-Handlers

Currently, RT systems are only reusable at the level of
components, modules or even complete nodes in distributed
RT systems. Drivers and libraries, of course, can be easily
embedded into different RT systems in most cases, but com-
plete event-handlers are only seldom reused. The reason
is that too many assumptions on the particular RT system
are hard-coded in such event-handlers. Those assumptions
range from a certain RT architecture over the semantics of
system services to the capability of peripheral hardware to
issue interrupts. ABBs are completely independent of such
assumptions and would therefore enable the reuse of com-
plete event-handlers.

4.2. Optimisation

ABB-graphs cary enough information to synthesise the
final RT system. Additional ABB-graphs can carry more
information about the RT system that can help to optimise
the synthesis. The run-time consumption of the ABBs and
occurrence patterns of events (given e.g. by period and
phase) could be used to optimise synchronisation, for in-
stance. A clever mapping of ABBs to tasks and the selection
of a suitable synchronisation protocol, maybe, could secure
that some critical sections can never coincide making syn-
chronisation superfluous or, at least, minimize the blocking
time. Moreover, all the information embedded into such
ABB-graphs can finally be exploited to either configure the
target platform, or even better, to synthesise it as well, so
the platform suits best the demands of the RT system.

4.3. Scheduling

An ABB-graph equipped with timing information can
also be used to check the schedulability of RT systems dur-



ing their synthesis by e.g. a response time analysis. Con-
ventional response time analysis for ET systems often is too
pessimistic due to very complex task models in current RT
operating systems. With the help of ABBs a RT system
could be synthesised with respect to the adequacy of esti-
mated response times. Should a RT system turn out to be
not schedulable anyway, a detailed timing analysis of the
RT system is possible on the level of ABBs.

Along with TT systems such graphs could help to gen-
erate static schedules. In TT systems static schedules are
often divided in minor and major cycles. In the cyclic ex-
ecutive model [2], for instance, the length of minor cycles
also imposes restrictions on the WCET of event-handlers:
each event-handler has to fit in exactly one minor cycle.
Event-handlers that consume more run-time have to be split
in junks suitable for the length of one minor cycle. With
ABBs this splitting could be done automatically by map-
ping ABBs appropriately to minor cycles.

5. Related Work

There already exist a number of papers dealing with the
synthesis of RT systems. In most cases component frame-
works are used to model RT systems, so synthesising re-
sults in mapping the different components to a set of tasks
and generating someglue codeto adapt the components to
the used task model. Bordin et al [3] and the TimeWeaver
framework by de Niz and Rajkumar [5] are two examples.
Gu and Shin [6] proceed one step further. Components are
mapped to threads according to different multi-threading
strategies and a method to analyse the schedulability for
a component based multi-threading strategy is presented.
Chou and Boriello [4], on the other side, try to increase the
retargetability of RT systems by synthesising the run-time
system, while a fixed task model is employed. Only few
work closing the gap between TT and ET systems has been
published so far. Yokoyama [11] presents an approach, that
allows him to model the data-flow in a TT, ET or demand-
triggered way. However, he does not consider mapping this
data-flow to concrete control flow abstractions.

The method sketched in this paper combines and ex-
tends the approaches for synthesising RT systems men-
tioned above. Fine grained components, namely ABBs,
are mapped in a flexible way to a tailored run-time sys-
tem. Thus, facilitating reusable event-handlers that can be
mapped to even very different RT systems platforms.

6. Future Work and Evaluation

From this paper it is evident that the work on ABBs is
still at a very early stage. As a first step we plan to ex-
tend the GNU compiler collection (GCC) by new frontends
to evaluate the automatic generation of ABBs from plain
C programs, UML models and existing RT systems. As a

second step we want to investigate the mapping of ABBs
to different TT and ET single-node operating systems like
OSEK and OSEKtime [1]. In the third step the synthesised
RT system should be optimised and a highly adaptable op-
erating system like CiAO [9] should be targeted and config-
ured as optimal as possible. Finally also distributed systems
shall be taken into account. During all phases real-world RT
systems (e.g. from the automotive area) will serve as exam-
ples to check the applicability of ABBs.

7. Conclusion

In current RT systems the used RT architecture often is
hard-coded for some reason, and together with it, also the
task model is. This makes it nearly impossible to migrate
from TT to ET systems and vice versa. Moreover, the reuse
of event-handlers is not viable when the RT architecture
changes. This paper shows that there are no reasons to fix
the RT architecture in many cases. Thus, ABBs are intro-
duced to describe RT systems independent of their architec-
ture enabling the development or RT architecture indepen-
dent and reusable event-handlers. The final RT system can
then be synthesised from a set of event-handlers described
by ABBs.

References

[1] OSEK/VDX standard. http://www.osek-vdx.org/.
[2] T. P. Baker. The cyclic executive model and ada. In9th IEEE

Int. Symp. on Real-Time Systems. IEEE, 1988.
[3] M. Bordin. Automated model-based generation of

ravenscar-compliant source code. In17th Eurom. Conf. on
Real-Time Systems. IEEE, 2005.

[4] P. Chou. Software architecture synthesis for retargetable
real-time embedded systems. In5th Int. W’shop on HW/SW
Co-Design. IEEE, 1997.

[5] D. de Niz. Time weaver: a software-through-models frame-
work for embedded real-time systems. In2003 Joint LCTES
& SCOPES Conferences. ACM, 2003.

[6] Z. Gu. Synthesis of real-time implementations from
component-based software models. In26th IEEE Int. Symp.
on Real-Time Systems. IEEE, 2005.

[7] H. Kopetz. Event-triggered versus time-triggered real-time
systems. InInt. W’shop on Operating Systems of the 90s and
Beyond. Springer, 1991.

[8] J. W. S. Liu.Real-Time Systems. Prentice Hall, 2000.
[9] D. Lohmann. Architecture-Neutral Operating System Com-

ponents. 23rd ACM Symp. on OS Principles, 2003. WiP
presentation.

[10] K. Schild. Off-line scheduling of a real-time system. In
ACM Symp. on Applied Computing. ACM, 1998.

[11] T. Yokoyama. An aspect-oriented development method for
embedded control systems with time-triggered and event-
triggered processing. In11th IEEE Int. Symp. on Real-Time
and Embedded Technology and Applications. IEEE, 2005.


	. Introduction
	. Time-triggered versus Event-Triggered?
	. Non-Functional Properties
	. Functional Properties
	. Conclusion

	. Architecture Independent RT Systems
	. Atomic Basic Blocks
	. Development Process

	. Cases of Application
	. Reusable Event-Handlers
	. Optimisation
	. Scheduling

	. Related Work
	. Future Work and Evaluation
	. Conclusion

