
SLOTH: Threads as Interrupts∗

Wanja Hofer, Daniel Lohmann, Fabian Scheler, Wolfgang Schröder-Preikschat
Friedrich–Alexander University Erlangen–Nuremberg, Germany
E-mail: {hofer,lohmann,scheler,wosch}@cs.fau.de

Appeared in: Proceedings of the 30th IEEE Real-Time Systems Symposium (RTSS ’09),
pages 215–228, IEEE Computer Society, 2009, ISBN 978-0-7695-3875-4

Abstract—Traditional operating systems differentiate between
threads, which are managed by the kernel scheduler, and in-
terrupt handlers, which are scheduled by the hardware. This
approach is not only asymmetrical in its nature, but also
introduces problems relevant to real-time systems because low-
priority interrupt handlers can interrupt high-priority threads.

We propose to internally design all threads as interrupts,
thereby simplifying the managed control-flow abstractions and
letting the hardware interrupt subsystem do most of the schedul-
ing work. The resulting design of our very light-weight SLOTH
system is suitable for the implementation of a wide class of em-
bedded real-time systems, which we describe with the example of
the OSEK-OS specification. We show that the design conciseness
has a positive impact on the system performance, its memory
footprint, and its overall maintainability.

I. INTRODUCTION

One of the core responsibilities of an operating-system
kernel is the management of control flows in the system. Tra-
ditionally, these encompass synchronously executed threads,
and asynchronously triggered interrupt handlers. The latter
ones are usually signaled by hardware devices and have an
implicitly higher priority than synchronous control flows by
being able to interrupt the CPU at any time. This bifid
priority space—divided up into interrupt priorities and thread
priorities—induces a problem termed rate-monotonic priority
inversion: Interrupt-handler control flows that have a semanti-
cally lower priority than a real-time thread can interrupt and
delay the execution of that real-time thread [4].

In previous work, we have tackled that problem by using a
coprocessor that pre-handles all interrupts [18]. In this paper,
we show how to overcome rate-monotonic priority inversion
by making use of more sophisticated interrupt systems as
available on many newer hardware platforms, without the
need for a coprocessor. In our SLOTH1 system, we propose
to internally design every control flow in the system as
an interrupt—even regular threads—by implementing thread-
related system calls using the interrupt system. The SLOTH
approach has the following advantages:

• It implements a unified priority space, allowing for arbi-
trary distribution of priorities to both thread and interrupt
control flows.

∗ This work was partly supported by the German Research Council
(DFG) under grants no. SCHR 603/4 and SCHR 603/7-1. Wanja Hofer was
supported by the German Academic Exchange Service (DAAD) under grant
no. D/09/40595.

1The name honors both the lazy animal breed and the deadly sin.

• The kernel implementation can be kept extremely concise
and is therefore well maintainable and subject to easy and
comprehensive testing.

• By letting the hardware schedule the control flows, the
performance of the system calls and context switches
is very high compared to regular, purely software-based
thread implementations, providing for both very low and
deterministic overhead.

At the same time, the application programmer can still use
the notion of a thread as a unit of decomposition; the API that
SLOTH offers remains the same as in a traditional implemen-
tation, eliminating the need for porting.

We have implemented the conformance class BCC1 of
the OSEK–operating-system specification [17], which targets
event-driven embedded real-time systems, for the Infineon-
TriCore microcontroller [5], which features an interrupt sub-
system that fulfills the requirements for a SLOTH system.
This way, we can show that our SLOTH design can be
implemented using state-of-the-art commodity hardware, and
we can evaluate the advantages of such a design.

II. DESIGN

In a seminal paper entitled Interrupts as Threads [7], Klei-
man and Eykholt describe the implementation of control flows
in the Solaris-2 kernel, in which interrupt handlers can become
full-fledged threads if they need to block. We propose quite
the opposite approach, which treats all threads as interrupt
handlers and thereby lets the hardware handle most of the
scheduling work implicitly.

A. Overview of OSEK OS

Our kernel design targets an embedded, event-driven real-
time system. In order to simplify the description, we use
the terminology and system-service grouping as specified by
the OSEK-OS standard [17], an operating-system specification
widely used in the automotive domain. The feature diagram
in Figure 1 gives an overview of the features of an OSEK
system.

Among the offered control-flow abstractions, tasks (tradi-
tionally called threads) are managed by the OS scheduler,
whereas interrupt service routines (ISRs) are triggered by the
hardware. The OS is oblivious of category-1 ISRs, which are
not allowed to use its system services, whereas category-2
ISRs have to be synchronized with the kernel since they are
allowed to use system functions. Whether a task is preempt-
able by higher-priority tasks or not is configured globally



OSEK OS

Control Flows

ISRs Cat. 2

Kernel Sync

ISRs Cat. 1 Tasks

Full Preemption Mixed Preemption No Preemption Multiple Tasks Per Prio

BCC2, ECC2

Multiple Activations

BCC2, ECC2

Alarms

Activate Task Set Event

ECC1, ECC2

Exec Callback

Coordination

Resources

BCC2, ECC1, ECC2

Events

ECC1, ECC2

Fig. 1. Feature diagram of the OSEK–operating-system specification. Feature types include mandatory features (filled circle), optional features (hollow
circle), minimum-one feature sets (filled arc), and exactly-one feature sets (hollow arc). Features not yet integrated in the SLOTH design are depicted in gray
color. If a particular feature is mandatory only in conformance classes other than the basic BCC1, this information is given below that feature.

(full preemption or no preemption) or locally on a task-by-
task basis (mixed preemption). Furthermore, whether multiple
activations of a task can be stored by the OS and whether
it supports multiple tasks with the same priority are optional
system features. Alarms are timer abstractions that can activate
a task, execute a callback function, or set an event upon expiry
after a specified period of time. To wait for an event is the
only possibility for a task to become blocked; it is unblocked
when that event is set by another control flow. The other
coordination abstraction—resources—is used to synchronize
critical sections within the application by mutual exclusion.

OSEK also defines four conformance classes (BCC1, BCC2,
ECC1, ECC2), which define minimum requirements on which
of the optional features have to be provided (see also Figure 1).
In our SLOTH design, we target the OSEK conformance class
BCC1. Thus, we have a statically configured system with
static task priorities (no task creation and altering of the
task priorities at run time is possible) and run-to-completion
tasks only (i.e., tasks cannot block by waiting for an event),
supporting only one task per priority level. Apart from that, the
application can be as complex as any other OSEK application,
and it is configured and programmed using the same OSEK
system API that any software implementation offers, so no
porting is required.

B. SLOTH Design Overview
An overview of our design is given in Figure 2. Tasks

and ISRs are represented by an abstract interrupt source that
has an appropriately configured priority. The corresponding
request is triggered either synchronously by the CPU when
the ActivateTask() system service is invoked, or asyn-
chronously by connected hardware devices. Additionally, tasks
that are configured to be activated by OSEK alarms after a
specified time period are represented by interrupt sources that
are connected to the timer system.

The scheduling of the system is done completely in hard-
ware. First, an IRQ arbitration unit decides which of the at-
tached interrupt sources (and, therefore, which of the attached

IRQ Source
Task1

prio=1
request

IRQ Source
ISR2

prio=2
request

IRQ Source
Task3

prio=3
request

IRQ Source
Task4

prio=4
request

Hardware
Periphery

Timer
System

HW IRQ

Alarm Exp.

IRQ
Arbi-

tration
Unit

CPU

curprio=X

Act(T1)

IRQ Vector
Table

task1()

isr2()

task3()

task4()

Fig. 2. Design of a SLOTH system, using interrupt handlers for the
implementation of threads. The interrupt sources have a statically configured
priority and are either triggered synchronously by the CPU through a system-
service call (e.g., Task1), through hardware-periphery IRQs (e.g., ISR2), or
through the timer system after setting a task alarm (e.g., Task4).

control flows) has the highest priority. After that, the CPU
is interrupted by an interrupt request, but only if its current
priority is lower than the one of the requested control flow.
In that case, the corresponding task or ISR is dispatched by
looking it up in the vector table. Note that the current priority
level of the CPU does not necessarily have to be the one of
the executing task. The CPU priority level is also altered for
synchronization purposes—for instance, in order to implement
resources for mutual exclusion (see Section II-E).

The rest of this section details the design of typical
embedded–operating-system services on the example of the
major system-service groups offered by the OSEK operating
system. In parallel, refer to Figure 3 for an example control
flow in a SLOTH system. It uses the application configuration
as depicted in Figure 2; that is, Task1, ISR2, Task3, and Task4
have the priorities 1, 2, 3, and 4, respectively.



CPU Prio Level

t

0

1

2

3

4

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

init()

enable()

Task1
GetRes(Res1)

Task1 E
ISR2

RelRes(Res1)

ISR2
SetAlarm(Al1)

iret

Task1 Term()

idle()

Task4E
Alarm1

Act(Task1)

Term()

Task1

Fig. 3. Example control flow in a SLOTH system. The execution of most system calls leads to an implicit or explicit altering of the current CPU priority
level, which then leads to an automatic and correct scheduling and dispatching of the control flows by the hardware.

C. Task Management

In SLOTH, tasks (OSEK’s name for threads) are identified
by their priority; that is, a task’s ID is the same as its
priority. Activating a task corresponds to merely triggering
the corresponding interrupt source. The resulting interrupt
request is then immediately handled if the priority of the
new task is higher than the one performing the activation,
given that the currently running task is configured to be
preemptable. Termination of a task is a simple return from the
interrupt handler, which then leads to an automatic dispatch
of the pending task with the next-highest priority. For task
chaining, the specification demands that the task performing
the chain operation is completed before the chained task starts
to execute. In SLOTH, this behavior is ensured by disabling
interrupts for a short and bounded time, then activating the task
to be chained, and then returning from the interrupt handler,
which implicitly re-activates interrupts.

In the example depicted in Figure 3, when Task1 terminates
at t7, it restores the previous priority 0 by executing a return-
from-interrupt instruction. Likewise, when Task4 terminates
at t10, it also tries to restore the previous priority 0, which
leads to an automatic scheduling of Task1 first, because it is
still pending with priority 1. Its activation by Task4 at t9 was
automatically delayed, because of the lower priority of Task1.

D. Interrupt Handling

In our SLOTH system, tasks and those kinds of ISRs that
are allowed to perform system calls (named category-2 ISRs in
OSEK) are completely identical, thereby unifying the priority
space and allowing for mixed priorities between them. Only
those ISRs that are guaranteed not to perform any system
calls (category-1 ISRs) have priorities higher than all tasks
and category-2 ISRs. Hence, category-2 interrupts can be sus-
pended by setting the current CPU priority level to the highest
priority of all category-2 ISRs. All interrupts (including the
ones of category 1) can be suspended or disabled by the
application by setting the CPU priority level to the highest

priority of all ISRs, or by disabling interrupts completely.
Both kinds of ISRs are dispatched by the hardware when-

ever the CPU priority level is below the one of the interrupt
request. In the example control flow in Figure 3, for instance,
ISR2 is not dispatched until Task1 lowers its priority to 1
by releasing Resource1 at t4, although ISR2 was already
requested at t3.When ISR2 terminates at t6, it executes a
regular return-from-interrupt instruction and thereby implicitly
re-actives the pending control flow with the next-highest
priority, Task1.

E. Resource Management
Resources (OSEK’s terminology for mutex synchronization

objects) are used to protect critical sections. In order to avoid
deadlocks and priority inversion, OSEK prescribes a stack-
based priority ceiling protocol similar to the stack resource
policy by Baker [1]. This protocol mandates immediately
raising a task’s priority to the resource ceiling priority upon
acquiring the resource, and lowering it to the original priority
upon releasing it. This way, tasks can never become blocked
upon resource acquisition and the acquisition will always
succeed; otherwise, another task with a higher priority (gained
by acquiring that same resource) would be running instead.

In our SLOTH kernel, a resource ID is equal to its ceiling
priority—that is, the highest priority of all tasks and category-
2 ISRs that can acquire it. Thus, acquiring a resource means
simply raising the current CPU priority level to the ceiling
priority (i.e., the resource ID), and releasing it means re-setting
the level to the original value. Since multiple resources can be
acquired, the previous priority has to be saved on a stack.
Because of the static system configuration, the stack usage
induced by resource acquisition can be bounded at compile
time.

In the example sketched in Figure 3, since Resource1 can be
acquired by both Task1 and Task3 (not active in the example
control flow), its ceiling priority is 3. Thus, when Task1
acquires it at t2, it raises the CPU priority level to 3, and
it tries to re-set it to the previous priority 1 upon releasing



it at t4, leading to the dispatching of the pending ISR2 as
described in Section II-D.

F. Alarms

Alarms are offered by the OSEK operating system to enable
the application to take action after a specified time budget
has elapsed. If an alarm is configured to activate a task, an
interrupt source that is connected to the hardware timer system
is chosen for that task and configured with its priority. The
service call setting an alarm can then be simply implemented
by programming the connected hardware timer appropriately;
the timing parameters have to correspond to the ones provided
to the system call. When the timer expires, the configured
task is then activated automatically by triggering the interrupt
source, leading to preemption if the currently running task
has a lower priority. Since most of these actions are done by
hardware, the alarm-service implementation itself can be kept
very light-weight.

In the example in Figure 3, ISR2 sets an alarm at t5,
which is configured to activate Task4 upon expiry. When the
hardware timer fires at t8, it automatically activates Task4,
because the corresponding interrupt source has the priority 4
of Task4.

If an alarm is configured to execute a callback function,
that function can be treated the same way—as a special, high-
priority task. Callback functions were originally introduced in
OSEK in order to offer a very light-weight reaction possibility,
but with SLOTH’s light-weight thread design, this is not an
issue to be concerned about (see also Section V).

G. Nonpreemptive Systems

The SLOTH design as described in this paper targets a
preemptive system, in which each activation of a higher-
priority task leads to a rescheduling and dispatching. In order
to implement a nonpreemptive system, only a few details have
to be adjusted in the design.

First, every nonpreemptable task starts at the priority level
of the highest-priority task in the system instead of at its
own priority. This way, when a task activates a higher-priority
task, that task is not dispatched immediately. Second, an
explicit point of rescheduling (e.g., the OSEK system service
Schedule()) is implemented by lowering the priority to
the original task priority before raising it again. This way,
any pending tasks of higher priority are allowed to run and
to complete at this point before the original task is executed
again. Note that, in a preemptive system, Schedule() is
effectively empty since rescheduling is always performed
immediately anyway.

Using the same idea, the special scheduler resource
RES_SCHEDULER is implemented by setting its ceiling pri-
ority to the one of the highest-priority task in the system.
By acquiring this virtual resource for a limited period of time,
preemptive tasks can delay preemption in critical sections until
after releasing the resource—as demanded by the specification.
Groups of tasks that do not preempt each other within groups
but do preempt each other between groups can be designed the

same way; for this purpose, OSEK offers internal resources.
By letting each task run with the priority of the highest-priority
task in its group (i.e., by acquiring this internal resource), pre-
emption within the group is delayed until the task reschedules
explicitly. This rescheduling system call temporarily lowers
the current priority to the task’s original priority—like in a
completely nonpreemptive system as described above.

H. Multiple Task Activations

The optional OSEK feature to support multiple activations
of the same task can be easily integrated by an additional acti-
vation counter per task. When activating a task, in addition to
requesting an interrupt, the corresponding counter is increased.
Upon termination of the task, the counter is simply decreased,
and—if the number of activations is greater than zero—the
interrupt is requested again before really terminating the task.

This mechanism only works for tasks activated through the
corresponding system call; it does not work for real ISRs
that are triggered by hardware periphery, since to the best of
our knowledge there is no interrupt controller that can store
more than one activation. Because SLOTH implements tasks
activated by alarms by letting the timer system simply set the
interrupt-request bit (see Section II-F), those tasks have only
limited multiple-activation support in SLOTH.

I. Summary of the SLOTH Thread Abstraction

Compared to traditional OS thread implementations, SLOTH
threads are different in several points.

First, SLOTH threads run to completion and are only pre-
empted by higher-priority threads. Conventional threads can
wait for an event and block, letting lower-priority threads run.
This is a limitation that we want to tackle in future work (see
also Section VII), but which still allows for a broad range of
applications (see also Section V).

SLOTH’s run-to-completion property leads to a strictly
stack-like control-flow dispatching, which is also illustrated
in Figure 3. This way, SLOTH can use only a single
shared stack—the interrupt stack—for all its threads, and the
preempted-thread context is stored on that stack. Traditional
threads have a stack of their own and have their context saved
by the kernel in an additional structure.

Traditional threaded OS kernels maintain a software ready
queue and running pointer, and they need additional informa-
tion in software, such as the priorities of the threads, to make
scheduling decisions whenever the state of one the threads
changes, possibly leading to a new thread being dispatched.
SLOTH has all this information implicit in the interrupt hard-
ware subsystem, with the ready queue being represented by the
interrupt-pending bits of the hardware, relying on the hardware
to do the scheduling and the dispatching.

To the application programmer, all of these differences are
hidden beneath the same thread API; SLOTH currently offers
the same OSEK task abstraction and system services like any
other, software-based implementation.



J. Requirements on the Hardware Interrupt System

For our approach to be feasible, we have two requirements
on the interrupt subsystem of the hardware platform that our
SLOTH kernel is implemented on:

1) Interrupt priorities: The interrupt system shall offer as
many different interrupt priorities as there are threads and
interrupt handlers in the system.

2) Interrupt triggering: The interrupt system shall support
manual, software-based triggering of interrupts. This can
be offered through a special instruction or through the
modification of corresponding hardware registers.

Note that these are the only requirements for a SLOTH imple-
mentation. Some platforms fulfill these requirements natively
(such as the Infineon TriCore detailed in Section III-A, or the
ARM Cortex-M3), whereas others have an external interrupt
controller that provides the corresponding functionality (such
as the APIC present on all modern Intel-x86 systems).

III. IMPLEMENTATION

We have implemented our SLOTH approach for the In-
fineon TriCore [5], an embedded microcontroller platform
commonly used in the automotive domain. We shortly describe
the relevant features of the platform before sketching our
implementation.

A. The Infineon-TriCore Platform

The TriCore platform has a sophisticated interrupt subsys-
tem that fulfills our requirements as stated in Section II-J.

Interrupt sources are represented by service request nodes
(SRNs), which encapsulate all the relevant properties such
as priority, enable status, and request status. All SRNs are
connected to an interrupt arbitration unit (IAU) through a
special bus for exchanging priority information in order to
find a precedence among the pending interrupts. This process,
called arbitration, takes a defined number of system-bus
cycles, which itself depends on the system clock frequency
and the priority range of the SRNs actually competing in the
arbitration. Hence, the fewer tasks and ISRs are configured in
a system, the fewer arbitration cycles are needed to prioritize
the concurrent requests.

Most of the SRNs are connected to an actual hardware
source (e.g., the general-purpose timer array of the TC1796
derivative features 92 SRNs), but there are special SRNs
available for software-only access (named CPU_SRCx). Addi-
tionally, hardware-connected SRNs that are not used in a given
application can also be used to implement threads as interrupts,
because every SRN has its registers memory-mapped, allowing
for software-based interrupt triggering as required by SLOTH
(see Section II-J).

B. Task-Activation Implementation

The implementation of the SLOTH design as sketched in
Section II is very straight-forward on the TriCore platform.
However, special attention has to be paid to the synchronous
task-activation mechanism.

Since a task is implemented as an interrupt handler, a
prolog is included in the interrupt vector that saves the context
of the interrupted task (which is a single instruction on the
TriCore), re-enables interrupts, and then jumps to the actual
task function. If a task wants to terminate, this corresponds
to a simple return-from-interrupt instruction, which restores
the previous CPU priority level and implicitly schedules and
dispatches the pending control flows in the system. Before the
actual return, the context of the interrupted task is restored
first.

Synchronous task activation is performed by requesting the
corresponding interrupt using the appropriate SRN. Basically,
this is compiled to a single store instruction to a memory-
mapped register. However, it takes a while until the interrupt
request is propagated to the CPU, depending on the current
state of the arbitration system. Since an activation of a
higher-priority task is supposed to happen synchronously in
a preemptive system, this activation has to be synchronized.
This is done by first disabling interrupts, and by then reading
back the request bit in order to synchronize the hardware
and software [6]. After that, nop instructions are inserted
to accommodate for the worst-case latency, which arises if
an arbitration round has just begun. The number of nop
instructions to be inserted is calculated and bounded statically,
depending on the number of arbitration rounds and the number
of cycles per arbitration round as demanded by the application
configuration (i.e., number of tasks and system frequency)2.
The subsequent enable-interrupts instruction is then the de-
fined, synchronous point of preemption:

void ActivateTask(TaskType id)
{

_disable();
setr(id); /* set service request flag */
srr(id); /* read back to sync HW/SW */
/* worst case: wait for 2 arbitrations */
nopsForOneArb();
nopsForOneArb();
_enable(); /* defined preemption point */

}

The same applies to the chaining of another task: The execut-
ing task relies on the chained task being executed immediately
after it terminates if that new task has the highest priority in the
system at that point. As described in Section II-C, interrupts
are also disabled before the activation in order to prevent the
new task from running until the old one has terminated.

Even when a lower-priority task is activated, this situation
may require synchronization. Consider, for instance, that di-
rectly after the (nonsynchronized) activation of a lower-priority
task, the priority level is lowered by terminating the running
task. This has to be the defined point for the context switch,
and not when the interrupt actually occurs at the CPU. If
the activation is not synchronized, a lowest-priority task may
execute for a few cycles after the termination of the high-
priority task and before the interrupt dispatches the activated

2The timing properties of the TriCore platform that are needed for this
calculation are exactly defined by Infineon in an application note [6].



task—which is a clear violation of the specification. Hence,
every task activation is synchronized with nop timing as
described above, independently of its priority.

All of the cases described in this section where interrupts
need to be suspended temporarily for synchronization purposes
only disable them for a short and bounded amount of time.
That way, that time can be accounted for during the schedu-
lability and latency analysis of the whole real-time system.
The number of introduced nop instructions varies between 8
and 22, depending on the configuration, and is effectively time
when the CPU cannot do useful work (although the interrupt
system is performing the priority arbitration during that time).
However, this is a small price to pay compared to the overhead
of a traditional, software-based scheduler implementation (see
also Section IV).

Note that after an interrupt request has been triggered,
its source—a periphery device or the CPU itself—and the
requested type of control flow—task, ISR, or callback—is
completely oblivious to the CPU; it simply and automatically
dispatches the corresponding control flow if the current CPU
priority is below the requested priority.

C. Application Configuration and
System Generation

Since the system is statically configured and tailored to
the needs of the application, this information can be used
to generate static dispatching code that is highly optimized
(see Figure 4). As the configuration describes the map-
ping from task IDs to interrupt sources, the essence of
the ActivateTask() implementation (i.e., its subfunction
setr()), for instance, is an if–else cascade that sets the
request bit in the appropriate SRN depending on the task-ID
parameter, which is also its priority. This implementation and
the corresponding application calls can be statically analyzed
and optimized by the compiler, resulting in an inlined piece of
code consisting of a single instruction—namely the one that
sets the correct bit. Similar code is generated for querying that
bit to see if a task is in ready state, for setting an alarm that
activates a specific task upon expiration, and for initializing
the SRNs with the request bit already set, depending on
the auto-start properties of the corresponding tasks. These
implementations are also extremely light-weight since they are
subject to the compiler’s static analysis.

Furthermore, the interrupt vector table needs to be generated
to jump to the correct task functions from the interrupt
handlers of the different priorities as configured for the current
application.

Additionally, a couple of system-relevant constants are ex-
tracted from the application configuration (see also Figure 4):

• The task IDs are set to their configured priorities, and the
resource IDs are set to their ceiling priorities depending
on the tasks that are configured to potentially acquire
them.

• The ceiling priority of the virtual resource
RES_SCHEDULER is set to the highest priority of
all configured tasks.

• The number of needed arbitration cycles is derived from
the configured system frequency and the priorities of the
configured tasks, and the corresponding nop timing for
synchronous task activation is calculated.

D. System Startup

Upon startup of the SLOTH system (here, in main(), after
the start-up code has initialized the stack, the interrupt vectors,
and some platform-specific registers), the interrupt system
needs to be initialized accordingly. This boot process basically
encompasses the initialization of the SRNs according to the
priorities in the application configuration; the corresponding
code can easily be generated as described in Section III-C.
If the configuration has any tasks declared to be auto-started
upon startup, the request bit in the corresponding SRNs is set
in addition to the priority. Note that the system is started with
a CPU priority level of 0 but with interrupts still disabled;
hence, these auto-start task activations will not take effect
until interrupts are enabled after the system initialization is
complete (see also t1 in Figure 3).

The initial CPU priority level of 0 in main() leads to a
fallback to that routine whenever there is no ISR or task ready
to be scheduled—otherwise, the pending priority is greater
than 0. Thus, appropriate idling action can be taken in an
infinite loop in main(), putting the microcontroller unit to
sleep or in a low-power mode until an interrupt (representing
a control flow ready to be dispatched) requires servicing (see
also t7 and t8 in Figure 3).

Additional initialization of the general-purpose timer array
and the I/O-line–sharing unit of the Tricore is needed if the
application uses alarms to activate tasks or execute callbacks.

IV. EVALUATION

Since the design of our SLOTH system aims at making more
use of existing hardware features than other operating systems,
the software implementation is accordingly very concise.

A. Lines of Code

The whole system implementing the OSEK conformance
class BCC1 for the TriCore-TC1796 board as described above
takes less than 200 source lines of code to be implemented3.
This number includes code that is generated from the appli-
cation configuration (see also Figure 4) with one instance per
task, resource, and alarm configured; additional code for more
instances is similar and adds to the number of lines of code,
but not to its complexity. The start-up code for the platform is
not included in those 200 lines of code; it was basically taken
as supplied by the compiler (tricore-gcc by HighTec;
programmed in assembly).

B. Memory Footprint

Due to the concise system code base, the resulting footprint
of the compiled system image is also small; the kernel
implementing the conformance class BCC1 takes about 700

3Logical, semicolon-terminated lines; measured with CCCC [9], version
3.pre84.



// application config
Task1: prio 1, auto-start,

accesses Res1
ISR2: prio 2
Task3: prio 3,

accesses Res1
Task4: prio 4
Alarm1: activates Task4

// consts.h
enum {
Task1 = 1, // prio
ISR2 = 2, // prio
...
Res1 = 3, // ceiling prio
RES_SCHEDULER = 4, // max prio
ARBROUNDS = 2, // prios 1-15
CYCPERROUND = 1, // low freq

};

// vectab.h
VECTAB_BEGIN()
ENTRY(1, functionTask1)
ENTRY(2, functionISR2)
...
VECTAB_END()

// gen.h
void init() {
CPU_SRC0.SRPN = 1; // prio
CPU_SRC0.SETR = 1; // auto-start
...

}
void setr(TaskType id) {
if (id == 1)
CPU_SRC0.SETR = 1;

else if (id == 3)
...

}

Fig. 4. SLOTH application configuration and system generation.

bytes4. This number again reflects the whole kernel with one
task, resource, and alarm instance; additional instances can add
to the memory footprint because additional interrupt handlers
in the vector table are needed for additional tasks, for instance.
The compiled start-up code as provided by the compiler takes
up an additional 1,000 bytes, which can be reduced to about
500 bytes by tailoring its initialization functionality to the one
actually needed by SLOTH.

Note that due to the system’s hardware proximity, most
system calls are very short and therefore subject to function
inlining. Consider, for instance, the setr() function (see
generated code in Figure 4), which is the essence of the
system call ActivateTask() (see implementation sketch
in Section II-C). Since in many static applications, the system-
call parameter is constant at compile time, the dispatching
through the if–else cascade can be statically optimized by
the compiler. The result is a single store instruction to the
corresponding memory-mapped register (without the following
nop synchronization). Additionally, the functionality of the
operating system is tailored to the application’s needs by
excluding system functions that are not referenced by the
application; this is done through function-level–linking support
by the compiler and linker.

C. Execution Performance

In order to assess the quantitative effects of our SLOTH
approach on the operating-system kernel, we have performed
an analysis of run times of selected scenarios in a preemptive
system with the features of the OSEK conformance class
BCC1 (i.e., without events, without multiple tasks per priority,
and without multiple activations). The selected scenarios em-
compass those system calls that are implemented differently

4Compiled with tricore-gcc by HighTec, version 3.4.5, with -O3
optimizations.

in SLOTH because of its hardware-based nature. The other
system calls will have similar performance as in a traditional,
software-based kernel, as well as the application itself. The
evaluated scenarios include:
1) Synchronously activating a task of lower priority,

does not lead to dispatching: execution time of the
ActivateTask() system service.

2) Synchronously activating a task of higher priority, does
lead to dispatching: execution time from the point before
ActivateTask() to the first user instruction of the
activated task.

3) Terminating a task and returning to the previously
running task: execution time from the point before
TerminateTask() to the point after the task was dis-
patched.

4) Chaining a task: execution time from the point before
ChainTask() to the first user instruction of the chained
task.

5) Acquiring a resource: execution time of the
GetResource() system service.

6) Releasing a resource without inducing another task to be
dispatched: execution time of the ReleaseResource()
system service.

7) Releasing a resource with inducing another task to
be dispatched: execution time from the point before
ReleaseResource() to the first user instruction of the
dispatched task.

We have evaluated all of those scenarios with two different
interrupt-system configurations that reflect the best case and
the worst case regarding the interrupt-arbitration latency on
the TriCore platform (see also Section III-A):
A) Best case (minimum number of arbitration cycles): 1

arbitration round (suitable for up to 3 interrupt priorities),
1 bus cycle per arbitration round (only good for lower



1) 2) 3) 4) 5) 6) 7)
Act() Act() Term() Chain() GetRes() RelRes() RelRes()
w/o dispatch w/ dispatch w/ dispatch w/ dispatch w/o dispatch w/o dispatch w/ dispatch

SLOTH A) (best case) 34 60 14 67 19 14 36

SLOTH B) (worst case) 48 74 14 81 19 14 36

CiAO 75 206 107 139 19 66 204

TABLE I
SLOTH BEST-CASE AND WORST-CASE PERFORMANCE IN SELECTED SCENARIOS, COMPARED TO PERFORMANCE USING THE CIAO OS. DEPICTED IS THE

NUMBER OF 20-NS CLOCK CYCLES NEEDED TO EXECUTE THE PARTICULAR TEST CASE.

system frequencies).
B) Worst case (maximum number of arbitration cycles); 4

arbitration round (suitable for up to 255 interrupt prior-
ities), 2 bus cycles per arbitration round (also good for
high system frequencies).

The measurement results for SLOTH are depicted in Table I5.
For comparison purposes, we have deployed and measured the
same application scenarios on CiAO, a configurable, OSEK-
like embedded operating system for which an implementation
for the TriCore platform is also available. CiAO has a tra-
ditional software scheduler, and its competitive performance
compared to other commercial implementations has previously
been published [12]. For the CiAO tests, we have configured
the operating system to provide the minimal amount of fea-
tures necessary for the scenarios so that it provides the same
capabilities that SLOTH does. Since both CiAO and SLOTH
have the same OSEK API, the test applications run are the
same.

Because nop timing is required in SLOTH for synchronous
task dispatching (see also Section III-B), the scenarios 1),
2), and 4) depend on the hardware-arbitration configuration,
with the extremes being the best-case configuration A) and
the worst-case configuration B). The other scenarios only
alter the priority level of the CPU, which is independent
of the number of arbitration cycles; hence, the run times
for SLOTH are the same for both configurations. Note that
scenario 1) differs in the configurations A) and B) although
it does not lead to dispatching. This is because, as argued in
Section III-B, situations may arise where synchronization is
necessary nevertheless.

Compared to CiAO, SLOTH performs equally well or better
in all scenarios. Especially the scenarios 2), 3), 4), and 7),
all of which include a scheduling and dispatch operation, are
significantly faster on SLOTH, which relies on the interrupt
system to perform these tasks. Depending on the hardware
configuration and whether a new task is activated or a running
one terminates, SLOTH only needs between 280 ns and 960
ns for a task switch (including the actual context switch) on
a 50-MHz system.

5Measurements were performed on a TriCore TC1796B with 50 MHz
system frequency and CPU frequency (cycle time of 20 ns). The run times
were obtained with a TRACE32 hardware debugging and tracing unit by
Lauterbach and averaged over 5,000 iterations each.

V. DISCUSSION

The SLOTH system design, relying on extensive use of the
hardware interrupt system, leads to a small kernel bearing
several advantages over traditional kernel designs, with a good
range of application fields nevertheless.

In its current shape, SLOTH does not support blocking
functionality for threads. It can therefore exploit the resulting
strictly stack-based nature to implement its dispatcher using
interrupt levels. As can be seen from the results of the
evaluation in Section IV, this does not only lead to a concise
system design, but also to a concise implementation. The
small kernel code base is very well manageable and therefore
maintainable with regard to possible requirement adaptations.
Additionally, it is an ideal candidate to verification, a property
of utmost importance to many real-time systems of the class
targeted by SLOTH.

Furthermore, the evaluation revealed that the memory foot-
print of a SLOTH implementation is extremely small, which is
another important property for the domain of deeply embedded
systems, where single superfluous bytes in memory demand
can lead to significant overall cost increase. Because of the
strictly stacked nature of SLOTH, stack-sharing techniques can
be used to reduce the stack part of the application’s RAM
demand to a minimum; the dispatcher only uses a single
interrupt stack from the very beginning of the system startup.
Moreover, the increased use of hardware functionality leads
to a superior system performance compared to traditional,
software-based implementations, which was shown in the
evaluation in Section IV.

The fact that the SLOTH design maps control flows that
are of different kinds in other systems (e.g., OSEK tasks,
category-1 ISRs, category-2 ISRs, and callbacks) to a single
abstraction has a major influence on the system conciseness,
leading to the advantages described above. Additionally, the
system synchronization—a major concern in all concurrent
systems—is tremendously simplified, because the adjustment
of the current CPU priority level is the single measure needed
for all kinds of synchronization demands. This includes both
demands by the application itself and demands internal to
the system to keep its data structures from being corrupted
by asynchronous control flows. The application demands are
satisfied by raising the CPU priority level to the resource ceil-
ing priority to acquire a resource, by raising it to the highest
level of all configured tasks to disable preemption in a critical



section (this is prescribed in OSEK by the special resource
RES_SCHEDULER), by raising it to the highest level of all
category-2 ISRs to implement SuspendOSInterrupts(),
and by raising it to the highest level of all ISRs to im-
plement SuspendAllInterrupts(). The system-internal
demands to keep the kernel synchronized are implemented
by raising the level to the highest priority of all tasks and
category-2 ISRs (both of which can access system data struc-
tures) configured in a given system.

SLOTH’s unified control-flow design also introduces an
additional degree of freedom for the system designer, who
can decide upon the system’s priority space independent of
the synchronous/asynchronous nature of the distinct control
flows. In other systems, asynchrononous interrupt handlers
always have precedence over synchronous, scheduler-managed
threads, which leads to a bifid priority space bearing the prob-
lem of rate-monotonic priority inversion [4], amongst others6.
Furthermore, functionality that is described as optional in the
specification because of its complexity can be offered along
the way. For instance, the OSEK-OS specification says that the
participation of category-2 ISRs in the priority ceiling protocol
for resources (see Section II-E) is optional. If interrupts and
threads are designed the same way like in SLOTH, they can
automatically take part in that protocol, allowing for more
complex application synchronization possibilities.

Additional types of control flows that were introduced to
offer more light-weight alternatives to the traditional threads
and ISRs (like OSEK callbacks and category-1 ISRs) are
superfluous in SLOTH systems because the offered control-
flow type already has a very low overhead to begin with. In
fact, SLOTH can offer OSEK tasks and category-2 ISRs at the
price of an OSEK callback or category-1 ISR.

Despite its simple design, SLOTH is suitable for the imple-
mentation of a wide range of real-time systems. This includes
event-triggered systems with fixed priorities, as targeted by
the widely-spread OSEK-OS specification, for instance. The
missing blocking functionality can be tolerated by many real-
world applications, which avoid making use of that feature
because of reasons of memory demand (e.g., stack sharing is
hampered) and analyzability of the system behavior. SLOTH
is suitable to implement the most well-known fixed-priority
scheduling algorithms—like the rate-monotonic algorithm [10]
and the deadline-monotonic algorithm [11], for instance.

Legacy applications that are programmed using the API
described in the OSEK standard can be used with SLOTH
without modifications, since SLOTH implements the OSEK
specification. The existing application configuration, including
task priorities and other properties (also defined by OSEK,
in its OSEK implementation language [16]), can also be
used unmodified by the SLOTH generator to produce the
configuration-dependent code (see also Section III-C). Hence,
no porting is needed for an OSEK application to benefit from

6In fact, this problem is the reason why programmers are taught to keep
ISRs short. In SLOTH, the ISRs can be long, since they reside in the same
priority space as the system tasks.

SLOTH’s advantages, and the application programmer can rely
on the programming model and abstractions he is used to.

VI. RELATED WORK

We are not aware of any work that is really similar to our
approach in handling threads as interrupts.

Vice versa, Kleiman and Eykholt [7] proposed to handle
interrupts as full threads so that interrupt handlers can use
system services if they need to. They can even wait for an
operating-system event and block, leading to the dispatching of
another thread that is ready. This model is implemented in the
Solaris kernel for desktop and server systems and was adapted
by Lohmann et al. for an embedded-system kernel [13].
However, the overhead introduced by their approach leads to
interrupt handlers having a performance overhead similar to
that of threads, whereas our approach gives threads the (lower)
overhead of interrupt handlers.

There are several approaches to aid the operating-system
scheduler by using hardware abstractions; however, all of
them rely on customized hardware. All of those approaches—
including cs2 [14], FASTCHART [8], Silicon TRON [15],
HW-RTOS [3], and Atalanta [19]—move operating-system
functionality to the hardware level by synthesizing special
circuits on FPGA boards and offering that functionality on a
co-processor–like basis. Our approach, however, is applicable
to commodity off-the-shelf hardware.

As previously mentioned, some of the implications of
stack-like control-flow scheduling as used in SLOTH (and as
prescribed by OSEK BCC1) were investigated by Baker. This
includes the possibility for efficient process stack allocation
by means of stack sharing and the stack resource policy to
avoid priority inversion [1], [2]. Our implementation uses both
techniques and can benefit from them.

VII. FUTURE WORK

Our current system design supports the features of the
OSEK conformance class BCC1; its main shortcoming is the
missing support for blocking by events, which do not fit in with
the current stack-oriented design. In order to be compatible
to the classes ECC1, ECC2, and BCC2, we plan to carefully
sketch a design for event support and support for multiple tasks
per priority7 (see also Figure 1). Both of those features are
rather simple to implement in software—which we could do
to integrate the functionality in our SLOTH system—, but we
aim for a more sophisticated design that preserves the benefits
of an operating system implementing threads as interrupts.
For instance, the peripheral control processor of the Infineon-
TriCore platform can be configured to be the primary service
provider for all interrupts. This co-processor could then be
used to implement part of that additional functionality by
filtering the events and interrupting the main CPU only when
needed.

Furthermore, we plan to investigate the applicability to
and suitability of other hardware platforms for our SLOTH

7This is especially problematic together with multiple activations, since the
activation order within a priority class is prescribed to be preserved.



approach. For instance, all modern Intel-x86 systems have an
advanced programmable interrupt controller (APIC) available,
which can compensate for the interrupt-system shortcom-
ings of the x86 CPU architecture. By programming the I/O
APIC accordingly and by using inter-processor interrupts sent
through the processor’s local APIC, we are positive that we can
implement our design on that well-known platform. We also
want to investigate what kinds of features hardware platforms
have to offer to support our SLOTH concept in an ideal way.
This includes the analysis of available hardware features and
their shortcomings with respect to our approach.

Finally, we want to explore the feasibility to extend our
SLOTH design to multiprocessor systems, and we want to in-
vestigate whether similar approaches can be used to implement
time-triggered systems.

VIII. SUMMARY

We have presented our SLOTH operating-system design,
which uses interrupt handlers as its universal control-
flow abstraction—also to implement synchronously activated
threads. This model allows for a simple implementation of all
major services expected from a statically configured, event-
driven operating system, providing the same programming
model and interface, which we have shown using the example
of the OSEK-OS specification. As a side effect, the resulting
unified priority space completely avoids the real-time problem
of rate-monotonic priority inversion.

In order to evaluate the properties of the SLOTH design,
we have implemented it on the Infineon-TriCore platform.
We have shown that the unification of the control flows in
the system has a significant impact on the operating system’s
conciseness in the design, in its implementation code, and in its
compiled memory footprint. Furthermore, since SLOTH uses
the hardware interrupt system instead of software-implemented
routines to schedule the system’s control flows, the resulting
performance is more than competitive.

In our opinion, the results of our SLOTH work should
encourage OS engineers to make better use of the hardware
abstractions that a given platform offers. Especially in the
domain of embedded OSes, where a small footprint and
efficient execution are crucial, a small limitation in portability
can often be traded for an improvement of those properties.

REFERENCES

[1] Theodore P. Baker. A stack-based resource allocation policy for realtime
processes. In Proceedings of the 11th International Conference on Real-
Time Systems (RTSS ’90), pages 191–200, Washington, DC, USA, Dec
1990. IEEE Computer Society Press.

[2] Theodore P. Baker. Stack-based scheduling of realtime processes. Real-
Time Systems Journal, 3(1):67–99, 1991.

[3] Sathish Chandra, Francesco Regazzoni, and Marcello Lajolo. Hard-
ware/software partitioning of operating systems: A behavioral synthesis
approach. In Proceedings of the 16th ACM Great Lakes Symposium on
VLSI (GLSVLSI ’06), pages 324–329, New York, NY, USA, 2006. ACM
Press.

[4] Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz.
Predictable interrupt management for real time kernels over conventional
PC hardware. In Proceedings of the 12th IEEE International Symposium
on Real-Time and Embedded Technology and Applications (RTAS ’06),
pages 14–23, Los Alamitos, CA, USA, 2006. IEEE Computer Society
Press.

[5] Infineon Technologies AG, St.-Martin-Str. 53, 81669 München, Ger-
many. TriCore 1 User’s Manual (V1.3.5), Volume 1: Core Architecture,
February 2005.

[6] Infineon Technologies AG, St.-Martin-Str. 53, 81669 München, Ger-
many. AP32009, TC17x6/TC17x7 – Safe Cancellation of Service
Requests, July 2008.

[7] Steve Kleiman and Joe Eykholt. Interrupts as threads. ACM SIGOPS
Operating Systems Review, 29(2):21–26, April 1995.

[8] Lennart Lindh and Frank Stanischewski. FASTCHART – a fast time
deterministic CPU and hardware based real-time-kernel. In Proceedings
of the 1991 Euromicro Workshop on Real-Time Systems, pages 36–40,
Jun 1991.

[9] Tim Littlefair. CCCC - C and C++ Code Counter homepage. http:
//cccc.sourceforge.net/.

[10] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM,
20(1):46–61, 1973.

[11] Jane W. S. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000.

[12] Daniel Lohmann, Wanja Hofer, Wolfgang Schröder-Preikschat, Jochen
Streicher, and Olaf Spinczyk. CiAO: An aspect-oriented operating-
system family for resource-constrained embedded systems. In Proceed-
ings of the 2009 USENIX Annual Technical Conference, pages 215–228,
Berkeley, CA, USA, June 2009. USENIX Association.

[13] Daniel Lohmann, Jochen Streicher, Olaf Spinczyk, and Wolfgang
Schröder-Preikschat. Interrupt synchronization in the CiAO operating
system. In Proceedings of the 6th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software (AOSD-ACP4IS
’07), New York, NY, USA, 2007. ACM Press.

[14] Andrew Morton and Wayne M. Loucks. A hardware/software kernel for
system on chip designs. In Proceedings of the 2004 ACM Symposium
on Applied Computing (SAC ’04), pages 869–875, New York, NY, USA,
2004. ACM Press.

[15] Takumi Nakano, Andy Utama, Mitsuyoshi Itabashi, Akichika Shiomi,
and Masaharu Imai. Hardware implementation of a real-time operat-
ing system. In Proceedings of the 12th TRON Project International
Symposium (TRON ’95), pages 34–42, Nov 1995.

[16] OSEK/VDX Group. OSEK implementation language specification 2.5.
Technical report, OSEK/VDX Group, 2004. http://portal.osek-vdx.org/
files/pdf/specs/oil25.pdf, visited 2009-09-09.

[17] OSEK/VDX Group. Operating system specification 2.2.3. Technical
report, OSEK/VDX Group, February 2005. http://portal.osek-vdx.org/
files/pdf/specs/os223.pdf, visited 2011-08-17.

[18] Fabian Scheler, Wanja Hofer, Benjamin Oechslein, Rudi Pfister, Wolf-
gang Schröder-Preikschat, and Daniel Lohmann. Parallel, hardware-
supported interrupt handling in an event-triggered real-time operating
system. In Proceedings of the 2009 International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES
’09), pages 59–67, New York, NY, USA, 2009. ACM Press.

[19] Di-Shi Sun, Douglas M. Blough, and Vincent John Mooney III. Atalanta:
A new multiprocessor RTOS kernel for system-on-a-chip applications.
Technical report, Georgia Institute of Technology, 2002.

http://cccc.sourceforge.net/
http://cccc.sourceforge.net/
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

	Introduction
	Design
	Overview of OSEK OS
	Sloth Design Overview
	Task Management
	Interrupt Handling
	Resource Management
	Alarms
	Nonpreemptive Systems
	Multiple Task Activations
	Summary of the Sloth Thread Abstraction
	Requirements on the Hardware Interrupt System

	Implementation
	The Infineon-TriCore Platform
	Task-Activation Implementation
	Application Configuration andSystem Generation
	System Startup

	Evaluation
	Lines of Code
	Memory Footprint
	Execution Performance

	Discussion
	Related Work
	Future Work
	Summary
	References

