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ABSTRACT

Java still is a rather exotic language in the field of real-time
and particularly embedded systems, though it could provide
productivity and especially safety and dependability benefits
over the dominating language C. The reasons for the lack of
acceptance of Java in the embedded world are the high re-
source consumption caused by the Java runtime environment
and lacking language features for low-level programming.

KESO is a JVM under LGPL license that was specifically
designed for the domain of statically-configured deeply em-
bedded systems. KESO provides a sensible selection of Java
features useful to the majority of embedded applications and
safe and convenient constructs for low-level programming
in Java. A key feature of KESO is its Multi-JVM archi-
tecture, which allows the isolated cohabitation of different
applications on one hardware platform.
The resource consumption of applications developed on

the base of KESO is comparable to C applications, and its
mechanisms for communicating among isolated components
are efficient and encourage the actual utilization of spatial
isolation.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Compil-
ers; D.3.3 [Programming Languages]: Language Con-
structs and Features—Classes and objects; D.4.7 [Operating

Systems]: Organization and Design—Real-time systems and
embedded systems; D.4.5 [Operating Systems]: Reliabil-
ity—memory protection
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Reliability, Design, Languages
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1. INTRODUCTION
Embedded software is most commonly developed in low-

level languages such as C or even assembler. One reason
for this is that in many application domains the embedded
system is part of a mass product (e.g., the automotive sector),
which results in an immense cost pressure. C comes with a
slim runtime system and is thus very resource efficient. In
addition, C provides programming constructs that allow to
conveniently perform low-level tasks such as programming
hardware registers. Unfortunately, the powerful mechanisms
that make C attractive to embedded systems programmers
are also prone to programming errors. Modern languages
such as Java avoid many of these issues and were found to
improve the productivity, the development process and the
dependability and maintainability of the resulting software
product [15, 17]. However, among embedded developers,
Java has the reputation of being expensive and unsuited for
low-level programming.

Additionally, many embedded systems perform safety crit-
ical tasks. Software components are mostly not isolated from
each other and possess full access to the memory, where-
fore a bug in one software component can easily spread to
other components. Memory protection hardware is not avail-
able on most low-cost microcontroller units. Additionally,
many embedded real-time operating systems do not support
hardware-based memory protection and embedded program-
mers are overstrained with managing their memory in a way
that allows region-based hardware protection to be applied.

In this paper, we present an open-source solution to these
issues. KESO [24] is a Java Virtual Machine (JVM) that has
been designed for the domain of deeply embedded systems
with real-time constraints in mind. The focus of KESO is
on providing memory protection and in particular spatial
isolation of software components or different applications
that are cohabited on a microcontroller platform. Besides
this focus, KESO provides most of the high-level features
that make Java a productive and maintainable language. We
investigated existing JVMs for the embedded domain and
performed a careful Java feature selection to allow KESO
to run on even the smallest low-cost 8-bit microcontrollers.
KESO provides safe and convenient abstractions for perform-
ing low-level tasks such as programming device drivers, and
efficient mechanisms for communicating between spatially
isolated software components.
The remainder of this paper is structured as follows: In

Section 2 we give an overview on KESO’s architecture and
discuss the key design decisions. Section 3 presents the native
interface that allows performing potentially unsafe operations

109



Peripheral 
Device Access

(KNI)

Domain A

Static Fields

Heap

System Objects

TaskA1 TaskA2 Alarm1 Resource

Microcontroller

OSEK / AUTOSAR OS

Domain BServicePortal

OSEK API 
(KNI)

Shared 
Memory

Domain Zero (TCB)

GC Task

Control Flows

TaskA1 ISR1TaskA2

Figure 1: The KESO architecture

and safe abstractions provided with KESO that are built on
top of this interface. Section 4 presents the available inter-
domain communication mechanisms. Section 5 provides an
evaluation that is meant to show that the overhead inferred by
the use of KESO is a reasonable price for the benefits gained.
Appendix A contains instructions on obtaining KESO and
running a demo program.

2. ARCHITECTURE
KESO allows several Java applications to safely coexist

on a microcontroller by providing a Java Virtual Machine
(JVM) instance for each application. The KESO architecture
is depicted in Figure 1. In this section, we will give an
overview on the different architectural components that a
KESO system is composed of and present and discuss the
key design decisions that make KESO suitable for its target
domain.

2.1 Overview
The fundamental structural component in a KESO system

is the protection domain, which defines a realm of protection
and enables different applications to peacefully coexist on
a microcontroller with communication limited to a set of
well-defined and safe communication channels. From the
perspective of the application, each domain appears to be
a JVM of its own, which is why this architecture is also
referred to as a Multi-JVM. Domains cannot be nested.

Domains are containers of control flows (i.e., tasks/threads
and interrupt service routines (ISR)) and system objects
(i.e., instances of operating system abstractions such as re-
sources/locks or timers/alarms). Actions on these system
objects are also limited to control flows within the same
domain, except for system objects that are explicitly made
available to other domains. We elaborate on KESO’s imple-
mentation of service protection in more detail in Section 3.2.
The special domain Zero is part of the trusted computing base
(TCB) and contains privileged control flows of the runtime
environment such as the garbage collector.

KESO provides several mechanisms that enable domains to
interact with their environment. The KESO Native Interface
(KNI) enables unsafe operations such as configuring periph-
eral hardware or interfacing with native libraries and the
operating system API. To communicate with other protection
domains, KESO provides an RPC-like, control-flow-oriented
mechanism called portals and a safe shared memory abstrac-

tion for the purpose of working on larger amounts of shared
data.

2.2 Establishment of Spatial Isolation
Spatial isolation ensures that control flows are only able to

access memory of data regions belonging to the domain in the
context of which the control flow is being executed. Therefore,
each piece of data can be logically assigned to exactly one
domain. In Java, type safety ensures that programs can only
access memory regions to which they were given an explicit
reference; the type of the reference also determines, in which
way a program can access the memory region pointed to by
the reference. To achieve spatial isolation, KESO ensures
that a reference value is never present in more than a single
domain. Besides objects on the heap, there are static class
fields, which form the second part of global data available in
Java. KESO maintains an own instance of these fields within
every domain. This constructively ensures that memory
accesses are limited to the current protection context, even
though there is no hardware protection mechanism that
enforces these constraints. To maintain this isolation, all
inter-domain communication mechanisms must ensure that
no reference values can be propagated to another domain.

2.3 Target Domain
KESO targets statically configured applications to be run

on even deeply embedded systems, possibly under real-time
constraints. On the low end, an example for such a platform
is the Atmel 8-bit AVR architecture, a line of microprocessors
whose derivates scale very fine-grained in the cost/resources
tradeoff. The smallest derivate that we have so far run
KESO on is the ATmega8535 device that is equipped with 8
KiB of Flash ROM and 544 bytes internal SRAM. Resource-
awareness was therefore a crucial factor in many of the design
decisions that we took. For more demanding applications,
KESO can also be used on more powerful 32-bit platforms
such as Infineon’s Tricore architecture.
KESO does not implement thread scheduling and thread

synchronization but uses an existing real-time operating sys-
tem (RTOS) to do so. KESO itself makes few assumptions on
the underlying scheduling model. For the garbage collector to
work as assumed, it requires priority-based scheduling, which
should be fulfilled by any RTOS. The currently available
backend for KESO requires an OSEK/VDX [14]-compatible
operating system (or its successor AUTOSAR OS [1]) as
the underlying base system. OSEK/VDX systems originate
from the automotive sector and are the predominant system
software in current cars, however, the scheduling model of
OSEK/VDX is suitable for other domains of embedded soft-
ware as well. OSEK/VDX-compatible systems, including
emulations for commodity operating systems, are available
in both commercial and free variants [2, 20, 11] for a wide
variety of architectures.

An OSEK/VDX operating system is little more than a
scheduler based on static priorities. The immediate ceil-
ing priority protocol (referred to as priority ceiling emula-
tion by the Real-Time Specification for Java [3]) is used for
synchronization; the locks are referred to as resources in
OSEK/VDX-terminology. A wait-notify mechanism that al-
lows control flows to block during execution called events and
a time-based notification mechanism called alarms complete
the functionality of the OSEK/VDX system. A key element
of OSEK/VDX systems is their completely static nature: All
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system entities (i.e., the control flows (tasks), synchroniza-
tion resources, alarms, etc.) and their relationships (e.g.,
which task locks which resources at runtime) are specified in
an OIL [13] configuration file and are known at compile time.
The static nature supports determinism and analyzability
and is additionally used by the code generators that are
usually shipped with an OSEK/VDX operating system to
generate an operating system variant that is tailored towards
the application at hand.

2.4 Feature Selection
Like other Java platforms for embedded systems, KESO

does not support the full spectrum of features provided by
the Java 2 Standard platform (J2SE). We decided for the
following restrictions either because the concept imposes an
unreasonable overhead, or because of the limited use in our
static target domain. Looking at C++ embedded software we
observed that comparable concepts in C++ (e.g., exceptions,
runtime type information) are mostly not used either because
of the imposed overhead or impaired predictability.

2.4.1 Static Applications

Like OSEK/VDX, KESO requires static applications, which
is a common setting in the embedded and particularly the
real-time domain. Consequently, KESO does not support
dynamic class loading and requires all code to be known at
compile time. KESO also does not support the Java reflec-
tion mechanism, on the one hand for the overhead imposed
by the extended runtime type information that this would
require, but on the other hand also because the use of Java
reflection severely affects the analyzability of the program.

As a result of these restrictions, KESO is able to perform
various static analyses when compiling the program such as
dead code elimination or devirtualization of virtual method
calls, which enables KESO to generate code small enough to
be executed on tiny microcontrollers.

2.4.2 Error Handling

KESO does not support the fully featured exception han-
dling mechanism. Instead, we consider the rise of an ex-
ception as a fatal error for whose handling a global error
handling routine is called. This is an adoption of the Er-
rorHook concept specified in the OSEK/VDX standard. This
includes exceptions raised by the runtime environment such
as failed null reference or array bounds checks. Full ex-
ception handling could be provided as an optional feature
without affecting the runtime cost of applications that do
not need this feature, but this is currently not implemented.

2.4.3 Class Library

The class library provided with KESO currently only sup-
ports a small subset of the Java standard class library; many
features provided by the standard library are of limited use
in embedded applications and costly in their implementation.
As an example, KESO comes with a simplified StringBuffer

class—even the code size of this simplified version often ac-
counts for 50% of the total size of the actual application. The
current functionality is mostly derived by implementation
of standard Java classes as required by ongoing application
projects and not proposed as an alternative standard API.
Common Java APIs for embedded systems are not fully
suited for KESO and could thus only partially be supported.
To give two examples, the API of CLDC [10] supports the

dynamic creation of new threads, which is by design not
possible in KESO, while the Java Card [21] API does not
support multiple threads at all and is designed for smart
card applications. To ease portability we aim at supporting
the CLDC API to the possible extent in the future.

2.5 Ahead-of-Time Compilation
The user applications are developed in Java and available

as Java bytecode after having been processed by a Java
compiler. Normally, this bytecode is interpreted or just-in-
time compiled by the JVM at runtime. The interpreter or
JIT compiler significantly adds to the complexity and size of
the required runtime environment and introduces temporal
overhead compared to the execution of native code. There
are some embedded JVMs that took this dynamic approach;
a prominent representative is SquawkVM [19], whose primary
target platform is the Sun SPOT sensor node. Looking at
the specifications of this sensor node (180 MHz 32-bit ARM9,
4 MiB Flash ROM, 512 KiB RAM) it becomes clear, that
this sensor node is much more powerful than low-cost sensor
nodes such as the Crossbow MICA2 (7.37 MHz 8-bit AVR,
128 KiB Flash ROM, 4 KiB RAM). For 8-bit AVR processors,
there is also a bytecode interpreting JVM, NanoVM [6]; due
to the size of the runtime, NanoVM is designed to take up
the entire Flash ROM of its target processor (ATmega8) and
loads the actual application bytecode from the EEPROM of
the device (which comprises 512 bytes on the ATmega8).
For these reasons, we opted for generating native code

ahead of time, which enables us to achieve a very slim run-
time environment and performance comparable to that of ap-
plications written in languages such as C. Instead of directly
compiling the Java bytecode to native code, our compiler
jino emits ISO-C90 code, which has some advantages over
directly generating native code:

• No need for a jino backend for each supported target
platform. A standard C compiler is available for almost
any of the target platforms.

• The available C compilers allow to create highly op-
timized code at the function level. We can therefore
concentrate on high-level optimizations in jino and
leave the low-level optimizations to the C compiler.

• C source code is easier to read than native code, which
facilitates debugging.

• A separate compiler backend for each target platform
increases jino’s complexity and increases the probability
of software bugs.

• Existing tools (e.g., WCET analysis) operating on C
code remain applicable.

The generated C code does not only contain the compiled
class files, but also the KESO runtime data structures. More-
over, additional code is inserted to retain the properties of a
JVM, such as null reference checks and array bounds checks,
and the code of other services of the KESO runtime environ-
ment, such as garbage collection and portal services. The
generated KESO runtime is tailored towards the application’s
requirements, so the infrastructure code and data required
for features such as floating point arithmetic or the support
for multiple domains will only be added to the runtime if
used by the application.
There are also other JVMs such as FijiVM [16] that do

ahead-of-time compilation instead of the traditional bytecode
interpretation at runtime.
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2.6 Memory Management
Explicit management of dynamically allocated memory

(i.e., by use of functions such as malloc and free) is vul-
nerable to programming errors such as neglected or false
memory release operations causing memory leaks or dangling
pointers. This is a severe issue for any type-safe language
since memory cannot safely be reallocated as long as there
exist dangling references that provide the application with a
possibility to access the memory area with its previous type.

Therefore, a JVM that provides dynamic memory manage-
ment also needs to provide an implicit memory management
strategy, also known as garbage collection, which reclaims
memory objects automatically but only after having ensured
that no references exist to these objects within the applica-
tion.

Garbage collection frightens off many embedded developers
and is under the reputation of being unsuited in the area of
deeply embedded systems. One reason for this is that typical
garbage collection techniques add noticeable overhead to the
system: besides the code required for the garbage collection
algorithm itself, the garbage collector (GC) requires runtime
data structures that enable the GC to scan all the references
existing within the application1. Another, more severe issue
is that most garbage collection techniques are not suitable
for hard real-time systems: Either the GC does not actively
fight external fragmentation, which imposes difficulties in
giving allocation guarantees, or, particularly for moving (i.e.,
defragmenting) GCs, needs to stop the application until all
references within the application of a moved object have been
updated, which may cause unacceptable pause times. Real-
time GC is a research area of its own, but there exist GCs,
that are suited for being deployed under real-time constraints,
such as the GC of JamaicaVM [18]. On the other hand, many
real-time applications get along with purely static memory
allocation, which also eases the verification required for this
kind of application.
KESO supports different heap management strategies.

While KESO conceptually only requires the logical separation
of different domains’ heap areas, we decided to physically
separate the heaps rather than allocating objects from a
common heap. While this static partitioning of the available
memory may seem inappropriate at a first glance, it offers
some benefits over a shared heap:

• The static partitioning allows to give heap space guar-
antees on a per domain basis.

• Domains can opt for different heap management strate-
gies. This allows to mix applications with different
dynamic memory requirements in a system and to
choose the best-suited strategy for each application.

• Objects of one domain are physically grouped in mem-
ory. This allows to additionally apply hardware-based
memory protection on targets that are equipped with
a memory protection unit and an AUTOSAR OS that
supports this type of protection (e.g., in combination
with CiAO’s memory protection [12]), and increases
the robustness with respect to hardware failures.

• Since domains do not share any common references,
garbage collection can be performed separately for each
domain. This reduces the working set of the GC reduc-

1There are also conservative GCs that use heuristics to dis-
tinguish references from primitive data, but these can give
no guarantees that all unused memory objects will in fact be
reclaimed.

ing the time required for one GC run and also reduces
the set of control flows that the GC needs to synchronize
with to those of the domain that the garbage collection
is performed in.

In the remainder of this section, we briefly present the
heap management strategies currently available in KESO.

2.6.1 Pseudo-Static Allocation

For many embedded applications, dynamic memory man-
agement is not required at all. The Java language does,
however, not allow a static allocation of objects. For such
applications, KESO provides a simple heap strategy that
does not provide garbage collection at all. The advantage
of this heap implementation is the short, constant and thus
easily predictable time required for the allocation of an ob-
ject. However, since there is no way of releasing the memory
of objects that are not required anymore, the application
should only allocate memory objects during the initialization
phase.

2.6.2 Garbage Collection

In addition to the simple strategy, two precise, tracing,
non-moving mark-and-sweep garbage collection techniques
are available in KESO: A throughput optimized GC and an
incremental latency aware GC. Since both garbage collectors
do not address the fragmentation issue, they are not suitable
for deployment in hard real-time scenarios without further
assumptions. The working principle of the two GCs is the
same.

Working Principle.
The garbage collection is run by a separate control flow,

the GC task, that is part of the trusted domain Zero. This
single task is responsible for the garbage collection in all
domains that use the particular heap management strategy,
but only processes the heap of one domain at a time. The GC
task is assigned the lowest priority in the system, thus the
slack time of the system is used to perform garbage collection
runs. This is a good moment to perform a garbage collection,
since most tasks will be suspended and only the stacks of
blocked tasks need to be scanned.
A GC run is performed in the two traditional phases of

mark-and-sweep GCs: In the scan-and-mark phase, the live
set of objects is determined by scanning all the reference
values present in the application, and the parts of the heap
occupied by these live objects are marked. Subsequently, in
the sweep phase, the memory of all dead objects is reclaimed
(i.e., the parts of the heap that have not been marked in the
first phase).
The throughput optimized GC stops all activities within

the domain for the entire run of the GC. While this may im-
pose a high pause time, the GC does not need to synchronize
with the application and thus yields a high throughput. The
incremental GC can be interrupted during a GC run. All
critical sections within the incremental GC where interrupt
handling needs to be suspended are of constant complex-
ity, so the worst-case interrupt handling latency can easily
be predicted. This GC uses OSEK/VDX resources when
scanning the stack of a task to synchronize with this task.
Tasks with a priority higher than that of the task whose
stack is being scanned can continue to run, which prevents
unbounded priority inversion.
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Reference Scanning.
The scan phase starts from a root set of references and

then transitively proceeds by following all inner references
of discovered live objects. All discovered objects are marked
(colored) to prevent the repeated scanning during one GC
run. The root set is comprised by the static reference fields
and local reference variables on the stacks of blocked tasks.
The GC needs to be able to find these references in memory
with as little overhead as possible. We have solved this issue
by

• Grouping all static reference fields of a domain into an
array that can simply be traversed.

• Using a bidirectional object layout as proposed by
SableVM [4] that physically groups reference fields
of objects in memory, even when inheritance is being
used.

• Grouping all local reference variables in a stackframe,
and building a linked list that links the groups of the
different stack frames. The list is maintained in the
prologues and epilogues of the methods.

3. NATIVE INTERFACE
Embedded software often directly interacts with hardware

devices, for which in most cases it needs to access memory at
specific addresses at which the device registers are mapped
into the address space. In addition, particularly to provide a
migration path, software may want to make use of existing
native libraries or driver packages, or access the operating
system’s services, which also is a C API in most cases. These
actions are not directly possible with the feature set given
by the Java language, on the one hand for reasons of safety
and on the other hand simply because Java has not been
designed as a language for low-level systems programming.
There are several approaches for interacting with native

code from Java code. The standard solution is the Java
Native Interface [7] (JNI). The JNI provides high compat-
ibility between different JVM implementations and native
libraries, but also involves extensive resource efforts. There-
fore, the KESO Native Interface (KNI) was developed for
KESO, which is written in Java and presents a resource sav-
ing solution. The KNI can be used to access the OSEK/VDX
services, shared memory or peripheral devices.

3.1 Concept
The KNI adopts concepts from aspect-oriented program-

ming [9] (AOP). AOP allows transforming a code base by
applying advice at certain joinpoints in the control flow.
These joinpoints are most commonly sites of method calls or
the bodies of methods. Joinpoints are specified by pointcut
expressions, which in simple terms are wildcard patterns
that match on the function signatures of the methods to be
advised. The advice code can then add to or replace the orig-
inal code at the joinpoint. This code transformation can be
performed statically or at runtime by a tool that is referred
to as a weaver. In the static case, the weaver performs a
source-to-source transformation in the original programming
language. The compound of pointcut expressions and advice
code to give at the resulting joinpoints is called aspect.
The KNI does not use an external weaver tool and its

functionality is limited compared to real aspect weavers.
Aspects are plugged into the compiler. The KNI provides
functionality for affecting method calls and the generated
code for method bodies as well as slicing classes (i.e., adding

fields to Java classes). For method invocation joinpoints,
the advice code is provided with the context of the call,
for example, it can directly access immediate values passed
to the method at the specific call. Advice given via the
KNI can directly affect the emitted C code for the joinpoint.
Additionally, since the aspects are directly plugged into the
compiler, the advice code is exposed the full internal API and
state of the compiler, which makes the KNI a very powerful
mechanism.

The downside is that the KNI has to be used with care as
it also weakens the protection concept. Code provided by
the KNI must be considered part of the trusted code base.
Thus, a KNI invocation complies with switching to privileged
mode due to a system call in an operating system kernel with
hardware-based memory protection. In this mode, memory
protection is deactivated and so only few code fragments shall
be implemented in the native section of the application. It is
sensible to propagate simple and primitive functions via the
KNI such as specific machine instructions like reading and
writing device registers. This is—in contrast to JNI usage—
associated with a minimal overhead only. Another issue is
that code generated by KNI advice code is not subject to
the static analyses performed by the compiler. For example,
KNI advice must inform the compiler on possibly required
methods and types that would otherwise be removed by the
dead code elimination step.
In the remainder of this section, we will present KESO’s

OSEK/VDX API including its service protection mecha-
nism and the mechanism to configure peripheral devices
from KESO, both of which are implemented using the KNI
mechanism.

3.2 OSEK/VDX API with Service Protection
OSEK/VDX system services are provided as static meth-

ods of service classes to the Java applications. The services
are categorized according to the OSEK/VDX specification,
and a service class provides the services for each class (e.g.,
there is a class TaskService that provides all task-related
OSEK/VDX services).
For some system services, it is desirable to restrict the

access on a per domain basis to guarantee that the domain
isolation is not weakened by the ability to abuse system
services. As an example, an OSEK/VDX resource could
be used to synchronize the concurrent access to a shared
data structure by two tasks within the same domain. In
this case, a malfunctioning task of another domain could
accidentally occupy the resource permanently and prevent
the other tasks from running, spreading the error to the other
domain. In this case, restricting access to the resource to a
specific domain is desirable. On the other hand, OSEK/VDX
resources could also be used to synchronize access to a shared
memory area used by tasks of different domains. To allow for
such a scenario, the access to OSEK/VDX system objects
can selectively be granted to other domains in the static
configuration.

OSEK/VDX uses scalar values to identify system objects
such as tasks or resources. The identifiers are necessary
for parameterized system services. OSEK/VDX systems
do not support the integration of different applications on
one MCU and thus do not provide service protection. In
AUTOSAR, service protection is available as an optional
feature. In KESO, access restrictions are enforced on the
Java language level by encapsulating OSEK/VDX identifiers
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1 package atmega128;
2 import keso.core.∗;

4 public class PortA implements MemoryMappedObject {
5 // PortA consists of three 8−bit registers (unsigned)
6 public MT U8 PINA; // address 0x39
7 public MT U8 DDRA; // address 0x3a
8 public MT U8 PORTA; // address 0x3b

10 // create a mapping of this class at base address 0x39
11 public final static PortA regs = (PortA)
12 MemoryService.mapStaticDeviceMemory(0x39,
13 ”atmega128/PortA”);

15 // configures one port PIN as output PIN
16 public static void setOutput(byte pinNumber) {
17 regs .DDRA.or(1 << pinNumber);
18 }

20 // the class can contain more methods and also regular
21 // fields that do not become part of the mapping
22 }

Figure 2: Memory-Mapped Objects

into objects. These system objects are statically allocated
at system creation time. System objects have to be used as
parameters to the system services on the Java level instead
of the scalar OSEK/VDX identifiers.
The user application can retrieve a system object by its

name using a name service. The name service will only
provide system objects that belong to the effective domain
of the requesting task or where access from that domain has
explicitly been granted in the configuration. Thus, the access
to OSEK/VDX system services is effectively restricted by
restricting the access to the system objects that are required
as parameters. Since the object abstraction imposes some
overhead to the system calls that is required to extract the
OSEK/VDX scalar identifier, object abstractions have only
been created for service classes where access restrictions were
found reasonable, that is, for tasks, resources and alarms.
Otherwise, the scalar OSEK/VDX identifiers are also used on
the Java level. The identifiers are accessible by name similar
to OSEK/VDX and provided as constant static values of a
class that is automatically generated from the configuration
file.
Because system objects are not allocated from any do-

main’s heap memory, are not mutable and do not contain
any reference fields, they can safely be accessed from different
domains without impairing the spatial isolation.

3.3 Peripheral Access
The KESO memory service allows to efficiently access

raw untyped memory regions by using the KNI to realize
peripheral device access. Registers of peripheral devices are
often mapped into the address space of the MCU. Thereby it
is possible to control these devices by normal load and store
instructions. KESO provides the mechanism of memory-
mapped objects for accessing such device registers that aims
at the same time to be safe and convenient in use.
Memory-mapped objects describe the layout of a specific

region in memory and are comparable to C structs with
a more fine-grained access control. Figure 2 shows a small
example as it could be used to access the general purpose

TickerService

+roundtrip(): void

<<anonymous>>

+roundtrip():void 

TickerServiceImpl

+roundtrip(): void
-foo(int):void

<<auto-generated>>

Figure 3: TickerService Class Hierarchy

I/O Port A of an ATmega128 MCU.
The layout of the memory region is defined in a regular

Java class that contains fields of special memory types (MT_
prefix). KESO provides memory types for registers of dif-
ferent bit widths and access rights. For example, the type
MT_U8 represents an unsigned 8-bit value that is readable and
writable, MT_U32RO stands for an unsigned 32-bit read-only
value, and MT_SPACE32 could be used for 32-bits that are re-
served in the address space, become part of the mapping (i.e.,
shift the address of subsequently defined memory type fields)
but cannot be accessed by the application. The memory
types are classes that contain methods that enable typical
accesses such as reading or writing the value and convenience
operations such as applying bit-operations on the value. To
not affect the soundness of the type system, there are no
methods for reading or writing reference values to device
memory. In the example in Figure 2, the GPIO register Port
A is comprised by three 8-bit registers that are consecutively
mapped into the address space at the addresses 0x39–0x3b
(lines 6–8). The mapping is then created by calling an API
function that creates an instance mapped to the given base
address (lines 11–13). The memory-mapped class can also
contain regular fields that do not become part of the mapping
and methods that provide the external interface to the class
if the registers should not be directly accessed from outside
the class. For example, a driver class could be mapped to
only the registers needed by the driver, not directly exposing
the actual registers to other classes (by assigning private

visibility). In the example, the setOutput() method pro-
vides an interface for the application to configure a certain
PIN of the port as an output pin. The body of the method
illustrates how the register is actually accessed.

4. INTER-DOMAIN COMMUNICATION
Most sensible applications that are cohabited on a micro-

controller do not execute completely independent from one
another but need a way to communicate. KESO provides two
mechanisms for inter-domain communication; an RPC-like
mechanism referred to as portals and shared memory for
sharing larger amounts of data. We briefly present both
mechanisms in this section.

4.1 The Portal Mechanism
Portals are the primary inter-domain communication mech-

anism in KESO. A domain can export a named service that
can be imported and subsequently used from other domains.
A service definition consists of a name that the client do-
mains will use to refer to that service, a Java interface and an
implementation of that interface. The relationships between
client and service domains are statically configured in the
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1 public void foo() {
2 TickerService srv =
3 (TickerService) PortalService .lookup(”TickerService”);
4 for (int i=0;i<count;i++) { srv.roundtrip (); }
5 }

Figure 4: Retrieving a portal and invoking a service

configuration file. Only domains that explicitly import the
service in the configuration file are able to use the service at
runtime. For each service, jino statically allocates a service
object in the service domain, which is an instance of the
service’s implementation class. For the client domains, jino
creates a portal (commonly also known as proxy object). The
type of the portal is an automatically generated class that
implements the service interface with stub functions that
perform the appropriate changes of the protection context.
Figure 3 shows an example for a service interface and

implementation. The service implementation may contain
additional methods not part of the service interface, which
are not made available to client domains.

4.1.1 Service Protection

Service protection is available for portals to prevent use by
unexpected client domains at runtime. The concept is the
same as that used for the OSEK/VDX API. A lightweight
name service must be used in the client domain for retrieving
the portal object. The name service will return a null

reference in domains that did not import the service. In
the service domain the name service will directly return
the actual service object. Figure 4 shows an example for
retrieving the portal for a service named TickerService. The
lookup method needs to be provided with a String constant,
the string does not exist at runtime. The actual lookup is
compiled to a simple array lookup.

4.1.2 Parameter Passing

In Java, primitive parameters of a method invocation
are passed by-value, while objects are passed by-reference.
Applying the by-reference invocation semantic for portal
calls would violate domain isolation, since references must
not cross domain boundaries. To avoid this issue, a copy
of the referenced object along with its transitive closure
is created on the heap of the service domain and used in
the execution. KESO provides a special marker interface
NonCopyable to mark classes whose instances should not be
copied during a portal call. For these objects, the reference is
instead replaced by a null reference. The classes of all system
objects implement this interface, since system objects must
not be copied to other domains to retain service protection.

The duplication of objects leads to a higher resource con-
sumption, makes the portal call potentially costly and nor-
mally introduces the need for a garbage collector in the
service domain. Moreover, changes to the copied object are
not propagated back to the client domain, which is not com-
pliant with the by-reference invocation semantics and may
cause unexpected behavior for the programmer.
The developer must be aware of these issues when using

the portal mechanism. A simple solution is the exclusive
usage of primitive data types when invoking portal services.

Heap

Memory Object

SHM area 
base address

size

Domain A

Heap

Memory Object
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size
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Shared Memory 
Area

Ref Counter

Figure 5: Memory Objects

4.1.3 Task Migration

KESO portals can be used to allow a task the execution of
code within the context of the service domain via a limited
set of portal services offered by that domain.
From a conceptual perspective, one would then assume

that the code executed in the service domain is executed by a
service task belonging to that domain. Implementing such an
approach in a way that prevents priority inversion is complex
and expensive in an OSEK/VDX system. Therefore, no
service tasks are created at all and the portal call is actually
handled by the invoking OSEK/VDX task, which is—for the
duration of the portal call—migrated to the service domain.
Instead of a real task switch, the effective domain of the
task is changed. In KESO, this means updating two memory
words in the simplest case. Migration of a task means that
the protection context of the control flow changes. No data
is migrated during this process. Thus, as long as a task
executes in the context of a service domain, it cannot access
data of its original domain. Task migration does therefore
not affect the spatial isolation of domains.

4.2 Shared Memory
Portals may be inconvenient and costly if two domains

need to cooperate on a larger amount of data, since all the
data would need to be copied during the portal call. For
such situations, KESO provides a low-level shared memory
mechanism, where two or more domains can jointly access
a common area of memory that is allocated from a special
memory pool outside any domain’s heap. Figure 5 shows
the principle of the shared memory mechanism in KESO.
The shared memory area is accessed through memory objects,
that store address and size of the shared memory area and
provide an interface for reading and writing primitive data
types from and to the shared memory area. Accesses to the
shared memory are bounds checked. The application has
to handle synchronization of possibly concurrent accesses
to the shared memory area itself (e.g., by using a global
OSEK/VDX resource). The concept and API of KESO’s
memory objects is very similar to RawMemoryAccess found in the
RTSJ.
The shared memory area is a raw data area and not a

regular Java object. The address of the shared memory area
is a primitive data field from the view of the Java world.
To establish a shared memory area, the memory object is
initially allocated within one of the participating domains.
To enable other domains to access the shared memory area,
the memory object can be passed to another domain through
a portal. The memory object itself is small and will be
duplicated to the heap of the service domain. The cloned
memory object internally refers to the same shared memory
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area as the original object and enables the service domain to
access the shared memory area.

Reference counting is used to release shared memory areas.
The reference counter is increased whenever a memory object
referring to the area is cloned (e.g., during a portal call).
The reference counter is decreased when a referring memory
object is reclaimed by the garbage collector.

4.3 Comparison to Java Isolates
Application isolation in Java has been standardized in JSR

121 [8], the Java Isolate API. Isolates are conceptually very
similar to KESO’s domains. The reason that KESO uses a
different terminology is due to historical reasons and stems
from the JX [5] project, on which KESO is conceptually based.
Java Isolates also require the logical separation of different
applications’ object heaps. The main difference between
Isolates and domains is that Isolates are dynamically created
while domains are statically configured. KESO does currently
not support the Isolate API because there is no application
accessible runtime state of a domain and since there is no
dynamic creation and destruction of domains, we believe
that such state would be of limited use to applications.

Inter-domain communication in the Isolate API is based on
message-oriented unidirectional links that can be established
among different isolates. The data exchange through such a
link is based on the low level of an array of bytes. Serializable
objects can be transferred by serializing them to a byte array.
As with KESO’s portals objects are therefore copied when
they need to be passed to a different protection context. This
is a direct consequence of the logical heap separation. KESO’s
portal interface is more convenient for the programmer to use
than the link mechanism of the Isolate API where the user
has to care for packing data in an array of bytes for sending
it and to reassemble the application level data structure
from an array of bytes on the receiver side. This explicit
conversion of the data may also lead to the data being copied
more often than needed. KESO’s mechanism is similar in
use to Java’s Remote Method Invocation mechanism, but
the programmer has to be aware of the difference between a
portal call where object parameters are copied to the target
domain and a regular method call where objects are passed
by reference.

5. EVALUATION
In this section, we will give a brief evaluation that is meant

to show that the overhead imposed by KESO is tolerable
and KESO is applicable for being deployed on the targeted
platforms.

5.1 Overhead to C Applications
To get an impression of the cost compared to applica-

tions developed in C, we ported the flight attitude control
algorithm of the I4Copter [23] quadrocopter to Java. The
main control unit on the quadrocopter is an Infineon Tricore
TC1796 device (150 MHz CPU clock, 75 MHz system clock,
1 MiB MRAM). The original C variant is generated from
a Simulink model using Real-Time Workshop. To ensure
comparability, the code of the Java port is as close to the
original code as possible with the Java language. An example
for a C construct that could not directly be mapped to Java
code is stack-allocated arrays, which need to be allocated
from the heap in Java.
The control algorithm is responsible for calculating the
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Figure 6: Quadrocopter Attitude Control

thrust values for the four rotor engines of the quadrocopter.
The inputs of the control algorithm are various sensor values
from sensors such as gyroscopes and accelerometers. The
algorithm is periodically executed every 9 ms and uses single
precision floating point arithmetic.

5.1.1 Execution Time Overhead

To measure the overhead in execution time of KESO, we
recorded a trace of the sensor values that serve as input to
the control algorithm during a flight. We verified that both
the C variant and our Java port output the same actuator
values for these samples. For our measurement, we replayed
200 of these data samples and measured the execution time
of the algorithm for each sample.
Figure 6(a) shows the execution time in µs for each data

set and different KESO variants as well as the original C
variant. The dotted lines (scaled against the right y axis)
show the overhead factor of the KESO variant drawn by the
respective continuous line with respect to the C version. The
default variant emitted by KESO took 23% longer to compute
the actuator values than the original C variant. While we
expected some overhead caused by the runtime checks (mostly
null and array bound checks) present in the KESO variant,
this seemed rather much. To determine the overhead of the
runtime checks, we generated a second KESO variant without
these checks, which still has a time overhead of 18% compared
to the C version. Further investigating the remaining cost
difference, we found that our own implementations of the
trigonometric functions in the Math class were not as efficient
as their counterparts in the C library. A KESO variant that
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also uses the trigonometric functions of the C library only
has an overhead of 4% over the C version. We confirmed
that the overhead caused by the runtime checks in this test
is about 5–6% by additionally omitting the runtime checks
from the variant that uses the C library functions resulting
in a variant that provides a throughput that is on par with
the C version. The overhead factor is constant within the
accuracy of the measurement, since all runtime checks are of
constant complexity.

5.1.2 Footprint

Figure 6(b) shows a comparison of the footprint of the
original C code and the different KESO configurations, split
in the size of the text, data and bss segments. The images
that served as basis to the measurement do not include the
sample data sets that were included in the execution time
measurements. We used KESO’s limited error reporting
mode, where only the type of an exception is provided to the
error handler instead the of the full method signature and
bytecode position.
The code size of the default KESO variant is 4.7 KiB

smaller than the C version. This is again a result of the
trigonometric functions of the C library, which are more
efficient than our Java implementations but also noticeably
larger in code size. Looking at the KESO variant without
runtime checks, we see that the runtime checks contribute
0.6 KiB (3%) to the code size. The KESO variant that uses
the C math library is 1.5 KiB (7%) larger in code size than
the C implementation, 0.6 KiB of which are caused by the
runtime checks and the remaining 900 bytes by the KESO
infrastructure code.

The initialized data section shows an overhead of 20 bytes
for the KESO versions using the C math library over the
C version, which are used for KESO’s statically initialized
management data (e.g., system objects). The normal KESO
variant’s data segment is much smaller than that of the C
variant. This difference is caused by a large data structure
for impure data that is included from the C library, in this
case because the trigonometric functions make use of the C
library’s errno variable for error reporting.
Finally, the difference in the bss segment is due to the 1

KiB heap area that was configured for the KESO application
and is statically allocated by KESO.

5.1.3 Conclusion

These results are consistent with those of an earlier eval-
uated prototype application [24]. In both applications, the
overhead in code size is less than 10%. Given that KESO
could also provide more efficient implementations of the li-
brary functions (or simply use the C library’s function via
the KNI), the overhead in execution time is less than 10%
as well.

5.2 Inter-Domain Communication Cost
Another important measure is the cost of inter-domain

communication, since it determines the extent to which soft-
ware developers will actually be placing software components
in different protection domains. We performed a few mi-
crobenchmarks on the cost of different variants of portal calls
and compare them to the cost of a regular virtual method
call (i.e., the case without spatially isolated components)
and also a non-trusted function call in the CiAO OS [12]
(i.e., spatial isolation enforced by region-based hardware pro-

Call Type Execution Time
portal call 3.78 µs

regular virtual method call 3.12 µs

CiAO non-trusted function 33.88 µs

portal call (2 int params) 4.28 µs

portal call (3 int params) 4.60 µs

portal call (1 element linked list) 30.54 µs

portal call (2 element linked list) 57.06 µs

portal call (3 element linked list) 85.44 µs

Table 1: Execution Time for Portal Calls

tection). All measurements were performed on an Infineon
Tricore TC1796 MCU clocked at 50 MHz. Table 1 shows the
results of these microbenchmarks. The method bodies of all
target methods were empty. We thus only measure the cost
of the protection domain context switch that is performed
on a portal call.

5.2.1 Comparison with other Types of Protection

For comparing the cost of a portal call to the cases of no
spatial isolation and hardware-based spatial isolation, we
use the simplest form of a function that does not take any
parameters and not return a value. The portal call intro-
duces an overhead of 21% over the regular virtual method
call. This overhead is caused by service protection (i.e., the
check, if the calling domain is a valid client to the service)
and the change of the running task’s effective domain. For
comparison, we have also included the cost of a comparable
non-trusted function call in a CiAO operating system, which
is comparable to a portal call but with domains isolated by
hardware-based memory protection rather than constructive
software-based memory protection. This measurement shows
that the cost of a software-protection context switch is sig-
nificantly less than that of an MPU reconfiguration that is
needed in the case of CiAO.

5.2.2 Portal Calls with Parameters

We also measured the time needed for portal calls with
both primitive and reference parameters. In the case of
primitive parameters, the added cost is the same as for any
regular function that is expanded with parameters. The cost
depends on the actions that the C compiler needs to take
in order to prepare the parameters according to the ABI.
The measured overhead therefore mainly depends on the
C compiler and the ABI and is not caused by the portal
mechanism.
For portal calls with reference parameters, we passed the

head pointer of a linked list of size 1–3. During the portal
call, a complex routine that copies the referenced object and
all transitively reachable objects to the heap of the target
domain is invoked. The cost of the call is dominated by this
operation and increased by an order of magnitude compared
to the portal calls with only primitive parameters.

6. SUMMARY AND CONCLUSION
In this paper, we presented KESO, an LGPL-licensed open-

source Multi-JVM for statically configured applications. By
exploiting the available ahead-of-time knowledge on the ap-
plication to generate a tailored JVM variant, KESO can be
used on even smallest microcontrollers. The KESO Native
Interface provides a lightweight solution to the need of most
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embedded applications to program devices and interact with
native APIs. KESO comes with safe abstractions built on top
of the KNI for accessing operating system services, includ-
ing language-based service protection, and memory-mapped
hardware device registers. For communication between pro-
tection domains, KESO provides the high-level RPC-like
portal mechanism that allows tasks to perform select actions
within a different protection context with their original prior-
ity. For larger amounts of data, a shared-memory abstraction
provides copy-free cooperation on a raw-memory area.
We believe that KESO enables developers of software for

deeply embedded systems to benefit from the use of a modern
high-level language, memory protection on low-cost microcon-
trollers without the need for dedicated protection hardware,
and spatial isolation of software components at a reasonable
price. Our preliminary evaluation shows that the resource
requirements of KESO applications are comparable to that
of applications written in C. With restrictions regarding im-
plicit dynamic memory management, KESO is also suited
for deployment in real-time settings.
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APPENDIX

A. DEMO INSTRUCTIONS
This section provides information on running a KESO

demo program. The aim of this program is to be simple in
application logic while still illustrating how to use most of
the core functionalities that KESO provides. To be able to
try the demo without requiring microcontroller hardware,
we chose the Crossbow MICA2 sensor node as the target
platform for our demo, for which the free simulator avrora [22]
is available. This sensor node is equipped with an 8-bit AVR
ATmega128 microprocessor (128 KiB Flash ROM, 4 KiB
SRAM). As OSEK/VDX operating system for the AVR we
use JOSEK, which is also freely available.
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Figure 7: Traffic Lights Application

A.1 TrafficLight Demo Application
The demo application is a (fictive) traffic light control

application, that uses the 3 LEDs of the MICA2 to display
the current state of the traffic light. The scenario is that of a
crosswalk where the light directed towards the pedestrians is
normally red and only changes state upon explicit signaling.
Since the MICA2 node lacks a button, we use the serial port
of the node to signal the external signal change request.
The structure of the demo application is shown in Fig-

ure 7. The application consists of two protection domains,
where one contains the logic for controlling the traffic light
(trafficLightControl) and the other (remoteControl) the user
interaction over the serial port.

The trafficLightControl domain contains a task tlTask that
performs changes to the state of the traffic light that need
to be performed at certain times. Whenever the traffic light
enters a state that only lasts for a certain time span, the
alarm tlAlarm is configured to trigger at the respective time.
The trigger action of the alarm is to activate tlTask.

The remoteControl domain interacts with the user over the
serial port. The driver for the serial port is also located in
this domain. The domain contains two interrupt service rou-
tines, which handle the hardware events of received (rx isr)
and sent (tx isr) bytes over the serial connection. Whenever
rx isr detects a valid incoming command, it activates the
task rcTask to process the command. rcTask cannot directly
modify the state of the traffic light controller, since it resides
in a different domain, nor can it directly windup tlAlarm,
as the system object of tlAlarm is configured to be accessi-
ble only within the trafficLightControl domain. Therefore,
the trafficLightControl domain exports a service, which is
described by the Interface TrafficLightServiceInterface

and implemented in the class TrafficLightService. The
remoteControl domain imports this service, which enables
rcTask to execute the exported methods in the protection
context of the trafficLightControl domain.

To configure the state of the LEDs and to interact with the
serial port, tlTask and the serial port driver use a memory
mapped object to access the memory-mapped device registers
of the ATmega128 MCU.

A.2 System Requirements
We assume a Linux system with common development

utilities such as GNU make already installed (tested on
Ubuntu 10.04 Desktop Ed.). Besides these, KESO needs a

Sun-compatible Java development kit, version 1.5 or higher
(tested with OpenJDK 1.6) and the Java Compiler Compiler
JavaCC, version 4.1 or higher. For the demo, the development
toolchain for the AVR architecture (avr-binutils, avr-gcc, avr-
libc) is also needed.

A.3 Installation, Build and Run Instructions
This section contains brief instructions from downloading

KESO to running the demo application. More detailed in-
structions, including sample commands to type, are available
online at http://www4.cs.fau.de/Research/KESO.

To ease the installation, we have bundled the source code
of KESO along with binary versions of JOSEK and avrora
for the purpose of this demo. The bundle is available
for download at http://www4.cs.fau.de/Research/KESO/

keso_jtres10.tar.gz. Unpacking the archive will create a
new directory keso, which we will refer to as the KESO root
directory. To setup the needed environment variables inside
the active shell, source the script bin/setup.bash from the
KESO root directory and ensure that the script does not re-
port any errors. In particular, the JDK environment variable
needs to be set to the installation directory of the JDK to
be used prior to running the setup script.

To compile the jino and run it to translate the Java sources
of the demo application to C code change to the src subdi-
rectory and run GNU make. The created C sources will
be created in the subdirectory tmp/TrafficLight_Mica2.
Change to that directory and run GNU make to compile
the C source code to a binary image that is ready to be
loaded onto a MICA2 sensor node. To run the demo appli-
cation in the avrora simulator, execute the command avrora

-platform=mica2 -monitors=real-time,leds,serial keso_main.od. Be-
fore starting the execution, avrora waits for a TCP connection
on port 2390, which will be the remote for the serial port of
the MICA2 node. Use a tool such as netcat to interact with
the demo application: nc localhost 2390. You should now see
the greeting of the demo application output by the netcat
command and can now send commands to the application by
typing to the netcat window. The only supported command
is the request for a signal switch, which is issued by typing
the character S. All other characters will be ignored by the
demo application. The switch request is either accepted or
rejected by the control application, depending on whether
the traffic light is currently in the red state or not. In either
case, the application will give feedback on the serial port.

A.4 Files of Interest
The source and configuration files that belong to the demo

application have been commented so that they should be
easily understandable. These files are (all paths relative to
the src directory):

• rc/trafficlight_mica.kcl: Configuration file of the
demo application. The structure of this file is very
similar to the OSEK/VDX OIL [13] format, which is
used to configure OSEK/VDX operating systems.

• libs/mica2_trafficlight: This directory contains the
source files of the application: the implementation of
the tasks and the service.

• libs/avr/.../ATMega128.java: This class contains the
memory-mapped object for the ATmega128’s device
registers. It was automatically generated from the cor-
responding avr-libc header file.
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