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ABSTRACT
Offering many benefits in terms of productivity and relia-
bility, Java is becoming an attractive choice for the field of
embedded computing. However, its programming model that
relies on the capabilities of just-in-time compilation limits
the opportunities to generate highly optimized code in an
ahead-of-time compiler. In the KESO project, a Java VM
for statically-configured deeply embedded systems, we have
previously used static application knowledge to create a tai-
lored runtime environment. In this paper, we present and
discuss how this static knowledge can further be exploited
by our compiler in order to perform advanced optimizations
that would otherwise not be achievable. We conducted a case
study with the CDx real-time benchmark in which we exam-
ined the peculiarities and challenges that arise, and evaluated
the effectiveness of both standard and system-model-specific
compiler optimizations in the context of a static embedded
application model. Our results show that incorporating the
available a-priori knowledge in the compiler provides signifi-
cant improvements to both footprint and runtime, and can
additionally help the system integrator to identify consis-
tency problems between the code and a higher-level system
specification at an early development stage.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers; D.3.3 [Programming Languages]: Language Con-
structs and Features—Classes and objects; D.4.7 [Operating
Systems]: Organization and Design—Real-time systems and
embedded systems
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1. INTRODUCTION
Java is widely accepted in many computing domains. For

reasons of lower software maintenance costs, improved pro-
ductivity over traditional languages [20, 22] and better avail-
ability of trained programmers [17], Java is becoming more
attractive to fields of computing other than its traditional
target domains, such as embedded and real-time systems.

For these domains, however, the system model of Java
is rather unsuitable. Java has originally been designed for
cross-platform interoperability and the secure, sandboxed
execution of code dynamically loaded from potentially un-
trusted sources, for example for the execution within a web
browser. Its portability goals and dynamic features make it a
difficult source language for static, ahead-of-time compilers,
as native code is unportable by its nature and many powerful
compiler optimizations become impractical due to Java’s pro-
gramming model. A prominent example is method inlining,
which gets limited to few special cases in the presence of a
combination of method overriding and dynamic class loading.
The most common technique for the efficient (and portable)
execution of Java bytecode is the use of a just-in-time (JIT)
compiler on the target machine that compiles portions of
the Java program into native code during runtime of the
application and incorporates its volatile runtime state (e.g.,
the current class hierarchy) to overcome the limiting impact
of the Java system model on compiler optimizations. As
the relevant runtime state changes (e.g., through the loading
of a new class), the recompilation of parts of the program
may become necessary. In the domain of embedded and
real-time systems, JIT compilation is normally infeasible or
not the preferred option for reasons of runtime overhead and
determinism.

The system model of static embedded applications is in
sharp contrast to that of Java. Most of Java’s dynamic fea-
tures that negatively impact optimizations in ahead-of-time
compilers are not needed or undesirable, because they likewise
complicate the static verification of the program. In the con-
text of the KESO project [28], we have previously harvested
the a-priori knowledge available in statically-configured em-
bedded applications to derive the set of Java features needed
by a particular application through a static code analysis.
Based on this knowledge, KESO’s ahead-of-time Java-to-C
compiler generates a JVM variant that specifically fits the re-
quirements of a particular application. This avoids both the
overhead of unneeded features and the restrictions of fixed
Java profiles, as found in traditional approaches for scaling
Java to small devices such as the Java 2 Micro Edition [14].

In this paper, we analyze and evaluate how the knowl-



edge available in statically-configured embedded applications
about the system model and the application itself, either
explicitly expressed in the form of a system description file or
extractable from the code by means of static whole-program
analyses, can be leveraged for both traditional and new
system-model-specific compiler optimizations that can nor-
mally only be carried out by a JIT compiler.

This paper is structured as follows: In Section 2, we give a
description of the widely spread OSEK/VDX system model
that serves as the base for our case study, and the KESO JVM
that provides a Java runtime environment for this system.
Section 3 presents the case study that we performed at the
example of the CDx real-time Java benchmark, followed by
an experimental evaluation of the results in Section 4.

2. DOMAIN ANALYSIS
The class of applications in the scope of this paper are

statically-configured embedded systems. In this section,
we will first briefly introduce the properties of these ap-
plications and the surrounding market conditions, and then
give an introduction to the OSEK/VDX system model and
KESO, a JVM implementation specifically designed for the
OSEK/VDX system model.

2.1 Surrounding Conditions
By statically-configured embedded applications we refer to

applications where both the operating-system-level objects
(threads, interrupt service routines, synchronization locks,
etc.) and the entire code of the application are known ahead
of time. This type of application covers many, if not most,
traditional embedded applications from the electronic control
units found in appliances to safety-critical tasks such as the
electronic stability program (ESP) and many other electronic
functions found in modern cars. These devices are normally
mass products, subject to the immense cost pressure usual in
this market where cost differences of few cents on the single
device amount to huge values considering the whole of the
produced devices. The tolerance towards added cost is par-
ticularly limited when caused by things that do not directly
pose an added value to the customer, which is typically the
case for infrastructure software such as the operating system
(OS) or, in the case of Java, the Java runtime environment.
The automotive industry has developed an own OS standard,
OSEK/VDX [19], which defines a lightweight OS layer that
can scale with the requirements of the application.

2.2 OSEK/VDX System Model
An OSEK/VDX application consists of a fixed number of

tasks (threads) that are statically created in the system, and
interrupt service routines (ISR) that are statically assigned
to an interrupt source provided by the hardware. Tasks can
be activated (i.e., started or restarted) and terminated, but
cannot be destroyed. They are scheduled based on stati-
cally assigned priorities, with tasks of equal priority being
scheduled by first-come, first-served. A stack-based priority
ceiling protocol can be used to synchronize tasks. The locks
are also statically created in the OS and use predetermined
ceiling priorities. OSEK/VDX distinguishes two types of
tasks. Basic tasks have run-to-completion semantics and can
thus share a single stack. Extended tasks may block during
the execution to wait for an event.

Besides the code, the OSEK/VDX application needs to
provide a system description file [18] that defines the instances

of OS objects (tasks, ISRs, locks), their attributes, and
relationships between those objects. The attributes comprise
things such as the task priorities, the type of a task (basic or
extended), and the entry functions of tasks and ISRs. The
relationships among OS objects define which system objects
interact with each other, for example, which events a task
will wait for or which locks a task will acquire.

The information contained in the system description file
is used by the OSEK/VDX implementation to create an OS
variant containing statically allocated instances of the defined
OS objects. In addition, the OSEK/VDX standard defines
four scalability classes that provide standard size/functional-
ity trade-offs, of which the most suitable one can automati-
cally be selected from the information in the configuration
file. Besides these standard variants, many OSEK/VDX
implementations ship with a code generator that performs a
more sophisticated and fine-grained procedure to create an
OS variant that is specifically tailored for the application in
order to avoid unnecessary overhead.

2.3 Tailoring the JVM
With the KESO JVM [28], we adopted from OSEK/VDX

the idea of creating a tailored version of the infrastruc-
ture software that provides only the features required by
the application at hand. KESO features a Java-to-C-code
ahead-of-time compiler specifically designed for the domain
of statically-configured embedded systems. Besides the full
source code of the entire application, KESO’s compiler jino
is provided with a system configuration file that contains
all the information found in an OSEK/VDX configuration
file plus KESO-specific extensions. It uses the information
contained within that file in combination with static analyses
of the application code to determine which JVM features
of the application are needed. On the one end, this can
be rather coarse-grained features explicitly expressed in the
configuration file, for example that the application wants to
use a garbage collector (GC). On the other end, there are
features that are automatically determined from the post-
reachability-analysis code of the application, for instance
support for floating point, 64-bit integers or more elemen-
tary things such as the need for virtual method calls. Some
features are tuned on a more fine-grained level, for example
in the case of virtual method binding the dispatch tables are
only generated for methods for which jino failed to provide
a full static binding.

In this paper, we empirically investigate how this static
knowledge impacts compiler optimizations on the application
code itself, and additionally present some specific compiler
optimizations that build on the compiler’s awareness of the
system model. The base system for our case study is the
KESO JVM, to which we will first give a brief introduction.

2.4 An Overview of the KESO JVM
KESO is a Java runtime environment for deeply embedded,

statically-configured applications. Figure 1 shows the archi-
tecture of a KESO system. Originally developed with an au-
tomotive background, KESO is based on an OSEK/VDX [19]
or AUTOSAR [2] OS. KESO is, however, not limited to au-
tomotive applications and we have used it in other domains
as well, for example there is a full port of the control soft-
ware of a quad-rotor helicopter [30]. The OSEK/VDX OS
is responsible for scheduling tasks and provides the basic
synchronization and notification facilities. KESO comes with
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Figure 1: Architecture of KESO

a Java class library that maps the standard Java thread API
as far as feasible and possible to OSEK/VDX tasks. Its class
library also provides interfaces that allow low-level program-
ming in Java (e.g. writing device drivers), in particular a
RawMemoryAccess mechanism as defined in the Real-Time
Specification for Java (RTSJ) [10] and an own mechanism
that allows to map Java objects to raw memory areas.

While a number of similar AOT Java VMs for real-time
embedded systems are available [26, 24, 21], KESO is partic-
ular in that it puts a strong focus on tailoring the runtime
system according to the application’s needs.

2.4.1 System Architecture
KESO supports the isolated execution of different com-

ponents or applications. The realms of isolation are called
domains. Each system object belongs to a domain, and every
control flow is executed in the context of a domain that de-
termines which Java objects the control flow is able to access.
The isolation of domains in space is established by a strict
separation of the object heaps of the different domains and a
separate set of static fields in every domain. Domains are in
many ways similar to Java Isolates [11], but there are some
important differences. A differentiation of KESO domains
from Java Isolates is available in a previous paper [28].

Domains may export a functional interface, a so-called
Service, that can be invoked from other domains by using
a proxy object (Portal) that represents the service in the
foreign domain. Deep copying is used for parameters and
return values in portal calls to retain the heap separation.
As a copy-free alternative to the portal mechanism, KESO
also provides shared memory areas that can be accessed by
a controllable set of domains using the same programmatic
interfaces that are available for accessing raw memory areas.

2.4.2 Garbage Collection
The strict separation of the heaps and static fields leads

to disjoint object graphs in the different domains. This al-
lows garbage collection to be performed individually for each
domain. Garbage collection is an optional feature in KESO
that can be enabled on a per-domain basis. KESO supports
two flavors of garbage collection, a stop-the-world GC that
pauses the application for the duration of the garbage collec-
tion and an incremental GC that can be interrupted by the
application but requires additional synchronization overhead.
To allow the garbage collector to scan the references on the
tasks’ runtime stacks, KESO uses Henderson’s linked stack
frames [9].
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2.4.3 Toolchain
The core of KESO is jino, a Java-to-C ahead-of-time com-

piler. It acts as a driver for the javac compiler, then parses
the resulting .class files and transforms the bytecode into
an intermediate representation. After performing a number
of analyses and applying a number of transformations and
optimizations, jino emits a set of C code files along with an
OSEK/VDX system configuration file.

Choosing C as the target language enables us to make use
of the existing standard low-level optimization capabilities
present in most modern C compilers such as loop transfor-
mations – preventing us from having to reinvent the wheel.
However, the Java programming model, being object-oriented
and tailored towards dynamic JIT compilation, demands a
whole set of additional optimization techniques in order to
overcome its inherent weaknesses with respect to code perfor-
mance and efficiency and to yield competitive results. Such
techniques rely on the availability of domain-specific high-
level information: on the one hand, static knowledge that
stems directly from the application configuration; on the
other hand, information about the program code that is col-
lected and inferred. Due to the dynamic nature of Java, the
latter is normally only available at runtime. This is the case
because most of this information is complete and predictable
only as long as the program code remains unchanged, which
for instance no longer applies after a new class has been
loaded dynamically.

As dynamically modifying application code at runtime is
not a viable option in our target domain, we deliberately
omit this feature in KESO. This enables us to collect the
extensive information needed to apply advanced optimiza-
tion techniques in our ahead-of-time compiler that would
otherwise not be possible.

In general, the static knowledge used by jino for tailoring
and optimizing the application can be divided into three
categories, as pictured in Figure 2:

1. Meta-information. Many structural properties and
general considerations are predetermined through the use of
an OSEK/VDX or AUTOSAR OS as the basis upon which
the application is built. These basic “meta-properties” are
hard-wired within the compiler, fundamentally affecting its
design and its inner workings. The fact that the system
model dictates the entire system to be configured statically



constitutes the very foundation upon which KESO is built.
Other system aspects that are reflected directly within jino
are the distinction between simple and extended tasks (see
Section 2.2), the knowledge which system calls are blocking
and which are non-blocking, and the priority-based task
scheduling mechanism.

2. System configuration. The application configuration
file tells jino about the concrete setting of the application
world. Most prominently, it declares into which memory
protection domains the system is split, and for each domain
at which entry points the control flow starts. Both are
essential for the analysis of the code.

3. Application code. The program bytecode itself con-
stitutes the information that is processed and transformed
by the compiler. Effectively, the configuration determines
a specialized variant of the code base. Due to the system’s
static nature, the class hierarchy, the call graph, etc. remain
constant at runtime – it is not possible to load any additional
code a-posteriori. This allows us to perform a whole-program
analysis and aggressive optimizations ahead of time.

Starting from these three classes of static knowledge, it is
possible to collect extensive information about the program
that can be exploited in order to improve on the emitted C
code. To achieve this, a detailed whole-program data flow
analysis is needed.

2.4.4 Whole-Program Analysis
We implemented an iterative SSA-based [4, 27] work list

algorithm that combines data flow and 0CFA [25] control flow
analysis. Each domain is processed separately starting at
its configured entry points. The intermediate code is visited
from there; information is aggregated about the values, types
and validity of all instruction operands, and all instructions
are evaluated statically wherever possible. This includes both
arithmetic expressions and control-flow-related operations
such as conditional jumps or method invocations. Because
the entire code base and task configuration is known ahead-
of-time, the gathered knowledge accurately reflects the actual
state of the program at any point in time during its execution,
and can be exploited for both tailoring the runtime system
and applying aggressive optimizations.

In the following section, we will discuss the optimization
opportunities that arise through the static application knowl-
edge at the example of the CDx benchmark.

3. A CASE STUDY WITH KESO
In our case study, we investigate to which extent the over-

head added by the Java programming model, mechanisms of
object-orientation and Java programmer habits can be com-
pensated by compiler optimizations that leverage knowledge
available on the system model and the application itself.

The application we examine in our case study is the Col-
lision Detector (CDx) benchmark [12]. CDx is a family of
real-time benchmarks with variants for Java standard virtual
machines and RTSJ-compliant Java implementations. In
addition to the Java version of the benchmark (CDj), there
is a C port (CDc) of the benchmark that allows to compare
the Java variants with a C implementation. The bench-
mark simulates an application that monitors the aircraft in
a radar-controlled airspace and detects potential collisions.
The two core components of the benchmark are an air traffic
simulator that generates simulated radar frames from various
parameters such as the size of the simulated airspace and

the maximum number of planes within the airspace, and
a detector component that analyzes the radar frames for
aircraft that are closer to each other than a pre-configured
proximity radius. For resource-constrained devices, the air
traffic simulator can be replaced by a simpler online frame
generation, or pre-simulated radar frames can be compiled
into the application.

CDj is interesting in that it is an application that has been
originally developed in Java and subsequently ported to C,
not vice versa. It may be for this reason that CDj looks differ-
ent from most traditional embedded applications. It strongly
utilizes Java’s standard collection classes and programming
idioms such as short-lived objects. In contrast, C does not
provide a class library as comprehensive as that of Java,
which is one reason why embedded C applications mostly use
custom data structures and only static memory allocation or
specialized forms of dynamic memory management. From
our own experience in the automotive domain, we argue
that an application originally written in C and subsequently
ported to Java would show more similar characteristics to
the original code with respect to the use of standard library
code and memory allocation. Interestingly, an earlier investi-
gation [28] of the CDx benchmark revealed that the C port
of the benchmark shows a shift towards the characteristics of
C applications without a compulsory technical reason, most
notably the increased use of preallocated memory where
the Java version allocated memory on demand. We believe
that CDj is a good representative for a software as it could
have been developed by Java programmers and poses a good
subject for our case study.

In the remainder of this section, we will present different
optimization techniques that are based on our observations of
CDj , either by manual code analysis or as a result of profiling.
We have not yet implemented all of these optimizations,
however, most of those not implemented yet can be partially
evaluated by hand-tuning the code of the benchmark. We will
discuss the impact of the different optimizations in Section 4.

3.1 Local Optimizations
The jino Java-to-C compiler comes with a set of standard

optimizations such as method inlining, local constant propa-
gation and folding or copy propagation. As these techniques
are very common and require no extensive static application
knowledge, we will not elaborate further on them in this
paper and instead take them for granted, focusing on our
advanced whole-program optimizations.

3.2 Runtime Check Elimination
While the object-oriented programming paradigm makes it

easier to write software in a cleaner and more structured way,
its combination with strict type safety in Java initially causes
a significant overhead in both execution time and footprint.
This is the case because several operations cannot be fully
validated statically, but have to be checked at runtime, most
notably:

• For all invocations of non-static methods and accesses
to object fields, the associated object reference must
be valid, that is, non-null.

• All array accesses must be within the array’s bounds.
Consequently, corresponding checks have to be inserted in
the appropriate places.

Modern JVMs with JIT compilers are able to determine at
runtime which checks are actually necessary and which can be



omitted. This is not possible in our case, where everything
is compiled statically. However, both null- and bounds
check optimization are well-researched [16, 8, 13]. The whole-
program analysis can in many cases infer the validity and
values of an instruction’s operands. This is possible through
a combination of inter-procedural constant propagation and
further control-flow- and path-sensitive analysis techniques.

The jino compiler can omit null checks where the object
reference in question is known to always be valid, and bounds
checks where the index is known to be within the limits.

3.3 Dead-Code Elimination
Being a benchmark family rather than a single static appli-

cation, CDx offers a wide range of configuration possibilities
to produce a specialized variant according to the needs of
the user. While this flexibility is welcome in general – with
software families being very common in the domain of em-
bedded systems –, it results in different variants utilizing
different parts of the generic code base. Consequently, a
specific instance of CDx may never take certain code paths,
invoke certain methods, and even use certain classes.

Since jino produces C code as an intermediate stage, it
is possible to use function-level linking. This by itself is
however not sufficiently effective because, for instance, virtual
methods that are never actually called in the program will
still be referenced in the dispatch table and thus be preserved
by the linker [6]. Hence, we implemented advanced dead-code
elimination optimizations within jino.

As necessary high-level information about the application
code gets lost during the stages of the compilation process,
it is beneficial to detect and remove dead code at an early
point in time. Picking up an idea from Wegman and Zadeck’s
SCCP algorithm [31], finding such pieces of code in the ahead-
of-time compiler is trivial with the whole-program analysis
described in Section 2.4.4: All basic blocks, methods and
classes that were never visited are dead and can be removed;
statically predicted conditional branches can be converted
into unconditional jumps. Effectively, this optimization can
be regarded as a specialization of the application’s code base
to its concrete configuration.

3.4 Method Devirtualization
We observed that CDx, albeit not using polymorphic class

hierarchies to an excessive degree, contains a certain amount
of virtual methods, whose invocation is expensive compared
to simple function calls. With the concrete callee depending
on the dynamic type of the callee object, a lookup in the
dispatch table is required each time a virtual method is called.
If the callee candidate is known to be unique, it is however
possible to omit the lookup and use a direct call instead.

This optimization is trivial when the entire class hierarchy
of the callee object contains only one method with the ap-
propriate signature – which can be determined ahead of time
because the entire application code is known. Additional
occurrences of virtual invocations with only one unique callee
can be found thanks to the information collected by the data
flow analysis: By factoring in object allocations and casts, it
is possible to keep track of a variable’s dynamic type during
compilation. Even if the precise type cannot be identified, for
example because instances of different classes flow together
into a variable from different paths, it is still possible through
class hierarchy analysis [5] to find the most specific of their
common superclasses. In this way, the set of callee candi-

void foo(obj t ∗∗ llref , obj t ∗thisp) {
// 3 reference variables + frame link pointer
obj t ∗references [4] = { NULL, NULL, NULL };

// link to previous frame
∗ llref = references;

bar(&references [3], thisp );
}

void bar(obj t ∗∗ llref , obj t ∗thisp) {
// terminate the list ...
∗ llref = KESO EOLLREF;
// ... before calling a blocking system service
WaitEvent(EventID);
}

Listing 1: Linked Stack Frames Implementation

dates coming into question is reduced for a further amount
of call sites. For those method invocations where it boils
down to one, a devirtualization [1, 29] can be performed.
This is similar to the treeshake transformation implemented
by Fitzgerald et al. in their Marmot compiler [7]. We are
working on also incorporating the idea of Rapid Type Analy-
sis [3] to use the information about instantiated classes to
further reduce the set of executable virtual functions. Due
to the Multi-JVM architecture of KESO, our analyses yield
separate class hierarchies and call graphs for each domain.
Rapid type analysis can also be performed separately for
each domain. The resulting domain-specific type sets in
combination with the domain-specific class hierarchies and
call graphs can further support method devirtualization.

It is worth noting that many optimizations effectively go
hand in hand and affect each other. For instance, devirtual-
ization may reveal additional dead methods, while finding
and eliminating a dead code path may reveal that a certain
object reference can be left unchecked because it is valid on all
remaining incoming paths. The framework in jino combines
most of the advanced analyses and transformations into one
single pass, respectively, exploiting their interdependencies
and simultaneously improving compilation times.

3.5 Selective Use of Linked Stack Frames
As we have mentioned in Section 2.4.2, KESO uses linked

stack frames to allow the GC to scan the task stacks for
references. Listing 1 illustrates how the linked stack frames
are implemented in KESO in the generated C code. The
local reference variables of a function are stored in an array
references rather than individual variables to ensure their
physical collocation in memory. Besides the reference vari-
ables, the last element of the array contains a link pointer
that is used to link to the references of the next frame, or
contains a marker value KESO_EOLLREF to let the GC detect
the end of the linked list. To maintain the list, the function
interface is extended by a parameter llref that points to
the previous link pointer and is updated in the prologue of
a called function. Initially, the head pointer location which
is known to the GC is passed. Before calling a blocking
function, the list is terminated with the marker value.

Linked frames add directly visible overhead to the function
prologues and calls for maintenance work on the linked list
of references. In addition, the reference values need to be
initialized with null in case the GC scans the list before the



program has assigned a value to the variable. More severely,
however, is the hidden overhead: the effect on the C com-
piler’s optimizations, since alias analysis is more complicated
when multiple variables are stored as a compound rather
than individually. To reduce the overhead caused by linked
frames, we only generate them for functions that are poten-
tially active while the GC is running. In the OSEK/VDX
programming model, we can limit these as follows:

• Garbage collection is performed at slack time in KESO.
This means that all application tasks are either sus-
pended (empty stack) or blocked at that time.

• Heap space exhaustion will never cause a task to block
during an allocation. Instead, an exception will be
generated.

• Functions reachable only from basic tasks are never
active while the GC is running due to the run-to-
completion semantics of basic tasks.

• Functions reachable from extended tasks can be active
during garbage collection only if they (transitively)
invoke a blocking system service.

• All blocking system services are known to our compiler.
In OSEK/VDX, there is only a single blocking system
service, WaitEvent().

Based on these observations, we only use linked stack
frames in blocking functions, that is, functions from which a
path in the call graph to a call of the WaitEvent() service
exists. If a non-blocking function is invoked from a blocking
function, the linked frames list is not maintained in this
sub-graph of the call graph. An interesting special case are
dynamically bound method calls for which both blocking and
non-blocking candidates exist. The function interface needs
to be the same for all candidates to remain call-compatible.
This issue can easily be solved by adding the llref as an
unused parameter to the non-blocking candidates. Rafkind et
al. also restricted the use of linked stack frames to allocating
functions in the Magpie C source-to-source compiler [23]. We
can apply this technique more aggressively due to KESO’s
side-stepped garbage collection that will never cause an al-
location to be interleaved by a garbage collection. In our
target domain, tasks are often periodically executed and only
block at a shallow stack depth to wait for the next period,
while the actual periodic activity is performed in a called
method. CDj is no exception in that regard. For such appli-
cations, the periodically executed code will not require the
use of linked frames at all and therefore not suffer from the
performance penalties in our system model.

3.6 Variant-Specific Constants
Const-correct code not only helps the compiler to detect

possible programming errors in the source code, but also
forms the base for constant propagation on non-literal values,
which in turn assists many other optimization steps such as
the dead-code elimination.

Programmers are often lazy or unaware of the importance
of writing const-correct code. Sometimes, furthermore, it is
not possible for the programmer to fully qualify all constant
fields in a program, for instance if those fields are constant
only in some variants of the program. As an example, we
look at the variant configuration of the CDj benchmark,
which mostly happens in two classes containing constant
value definitions similar to Listing 2. It stands out that most
members of the Constants class are not qualified as final.
The reason in this particular case is that some variants of

public final class Constants {
public static int MAX FRAMES = 1000;
// ... more similar constants ...
}

public class Main {
private static void parse(final String [] v) {
// ...
if ((v[ i ]. equals(”MAX FRAMES”)) {
Constants.MAX FRAMES = Integer.parseInt(v[i + 1]);
}
// ...

} }

Listing 2: CDj configuration

CDj can be configured by command-line parameters that
change the values of the members of the Constants class.
In configurations for embedded devices, the command-line
configuration of the code is not used, however, and the code
that writes to these fields is not reachable.

We propose an analysis step that runs after the reachabil-
ity analysis to determine which static fields initialized with
a constant expression retain their initially assigned value
throughout the runtime of the program. Initially, the anal-
ysis considers fields to which at most one write operation
that resides in the static initializer of the field’s class exists
in the live code base. As opposed to programmer-declared
non-blank static final fields, regular static fields that are
assigned a constant expression are initialized in the static ini-
tializer. The analysis furthermore only considers fields where
the initialization is not dominated by a read of the same
field, be it in the static initializer itself or (transitively) in a
method that is (directly or indirectly) invoked from a basic
block dominating the initialization. Otherwise, a read that
dominates the initialization might wrongly observe the field’s
initialized value in violation of the sequential consistency.

This step needs to be embedded in an iterative compiler
framework, as the results of the analysis support other analy-
ses which may in turn lead to new fields that retain a constant
value due to more code having been identified as being dead.

3.7 Compile-Time Bug Detection
In addition to providing the infrastructure for optimiza-

tions that aim at increasing the performance or lowering the
footprint of the generated code, the information gathered in
the static code analysis can also be used to detect certain
potential bugs in the program code. Warning the developer
early at compile time and allowing him or her to review the
situation is important especially in safety-critical systems. In
the following, we discuss two examples where the knowledge
gathered by the static compiler analysis can be leveraged
to provide the developer or system integrator with informa-
tion on the code that allows him or her to cross-check the
properties of the code with the intended properties.

3.7.1 System Configuration Cross-Checking
As discussed earlier, an OSEK/VDX (and a KESO) appli-

cation not only consists of code but additionally comes with
a system description file. This description contains OS object
configuration and instantiation, but also some properties that
provide guarantees given by the programmer on the behavior
of application entities such as tasks. The OSEK/VDX sys-



tem generator uses this knowledge to generate an OS variant
that is specifically tuned for the given application. On the
other hand, if the application violates the properties assured
by the definitions in the system configuration to the system
generator, the runtime behavior is undefined according to the
OSEK/VDX specification [19]. This is comparable to using
a const qualifier in C code that is subsequently overridden
and violated by using a type cast. The generated code does
not necessarily still function as expected.

Basic Tasks. Basic tasks are tasks with run-to-completion
semantics. In OSEK/VDX, this means that a basic task must
never block to wait for an event. The system description
defines for each task whether it is a basic or an extended
task. The OSEK/VDX scheduling model allows basic tasks
to share a single stack whereas extended tasks need to be
provided with own stacks. The information gathered by jino
to restrict the use of linked stack frames allows to cross-check
whether the entry functions of the basic tasks have been
marked as blocking functions. In that case, jino is able to
produce a warning that allows the developer to check whether
the system description is incorrect or whether jino produced
a false positive, as the blocking path is actually dead but
was not recognized as such by the analysis.

System Object Use and Service Protection. The system
description also contains information on what system objects
a control flow interacts with, for example the resources (i.e.,
locks) it will acquire at runtime, which is used to statically
compute the locks’ ceiling priorities. KESO extends on
the standard definitions by introducing service protection
that provides a runtime mechanism to inhibit the use of
system objects in violation to the definitions in the system
description. AUTOSAR OS provides a similar mechanism.
The control-flow-specific reachability information gathered
by our analysis framework can be used to check whether a
control flow accesses system objects only in the way defined
by the system configuration. In addition, it can also check
the service protection constraints at compile time in many
cases, which eliminates the overhead of the runtime check
otherwise needed. As before, this analysis may produce false
positives, so jino only outputs a warning that needs to be
checked by the developer.

3.7.2 Analysis of used raw memory areas
The RawMemoryAccess API [10] provides a way for Java

applications to access memory regions at a specific physical
memory address. This mechanism is often sufficient to write
device drivers in Java if the device can be configured by
memory-mapped device registers. The mechanism, however,
also potentially poses a problem to Java’s memory safety, if
the raw memory region happens to overlap with a managed
memory region of the Java runtime such as the heap. If the
VM supports isolation of different components like KESO
does, there may also be undesired interference of different
protection domains accessing the same physical memory re-
gion. With the control-flow-specific reachability information
at hand, jino can tell which raw memory regions are ac-
cessible from which domains1. This information is on the
one hand used by jino to check the raw memory ranges for

1KESO requires compile-time constants to be used when cre-
ating a raw memory region. We believe that this is sufficient
for the intended purpose of writing device drivers.

intersection with the regular RAM regions (extracted from
the linker file’s memory description), which is signalled as an
error. On the other hand, a list of the raw memory address
ranges that are reachable by each domain can be provided
to the developer, who can check with the target’s datasheet
whether these regions match the mappings of the respective
devices. Also, access by multiple domains to the same raw
memory area is detected by this mechanism, aiding the de-
veloper in finding potentially problematic shared access to a
device.

4. RESULTS
We use version 1.2 of the CDj benchmark for our evaluation.

The evaluation is split in two parts: In Section 4.2, we test
the effectiveness of our optimizations mainly with respect
to the execution time by running a CDj configuration on a
microcontroller typical for the target domain. Due to the
memory constraints of the target controller, however, we are
not able to run the full simulator task on our microcontroller
and therefore only use a single-domain configuration with a
detector task that is provided with radar frames generated
using CDj ’s simple On-the-Go frame generator. For the
evaluation of the domain- and control-flow-sensitive portions
of our analysis, we test a two-domain configuration with one
domain containing the simulator and the other containing the
detector component on an x86 platform in Section 4.1. As the
characteristics of the x86 architecture are not representative
for our target domain, we will mostly focus on relative and
architecture-independent metrics as far as execution time is
concerned, whereas the footprint is evaluated using binaries
generated for the microcontroller used in Section 4.2.

4.1 Multi-Domain Configuration
In the following, we analyze and discuss the results of

our optimizations on the two-domain configuration of CDj .
The evaluation examines the concrete optimizations and the
way they affect the resulting C code, as well as assesses
their eventual effects on the deployment and execution of
the application binary.

4.1.1 Dead-Code Elimination and Devirtualization
In order to measure the effectiveness of dead-code elimina-

tion and devirtualization, we counted the number of method
invocations at three stages in the compiler. The results for
each stage are depicted in Figure 3(a), distinguished between
non-virtual and virtual method calls:

1. In the application bytecode, more than half of all invo-
cations are virtual. This is a rather difficult starting situation
for optimizations that is owed to the extensive use of the
Java class library in CDj .

2. After method inlining has been performed, the number
of statically bound invocations has shrunk significantly. Of
the virtual calls, on the contrary, only a very small number
could be inlined because the existence of multiple candidates
prevents this type of optimization.

3. The combined dead-code elimination and method devir-
tualization pass produces two effects: On the one hand, the
total number of call sites is reduced because dead basic blocks
are discarded. On the other hand, a significant amount of vir-
tual invocations are converted into non-virtual ones. At this
stage, it would be beneficial to re-execute the inlining pass
because it would find several more suitable methods. This
is not happening at the moment since we have yet to finish
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Figure 3: Code-Size-Related Optimization Results

adapting the compiler to the new optimization framework.

4.1.2 Runtime Check Elimination
The null-check omission is fairly effective: The data flow

analysis proves 78 % of all object accesses to always oper-
ate on a valid reference, eliminating the need to check the
operand for validity during execution. This is mainly enabled
by the inter-procedural aspect of the analysis, because both
actual arguments and return value at a call site are connected
to the formal arguments and return value of the callee.

When it comes to array accesses, the picture is more
diverse: A mere 49 % are found to be within bounds. The
remainder, for which runtime checks are emitted, includes
many operations on collection classes such as ArrayList and
HashMap that contain a variably-sized array. In these cases,
the compiler has a tough time trying to prove the legality of
loads from or stores to the array.

We also counted the system object lookups (see Section
3.7.1). In the case of CDj , 13 out of the 16 lookups could be
evaluated statically and the service protection mechanism
could be disabled in these places.

The omission of runtime checks has a directly correlated
impact on the code size, which we will evaluate and discuss
in the following section. Its effect on the actual execution
speed of the program, however, is by far more complex to
estimate. Even little optimizations in “hot spots” of the code
can yield massive performance gains whereas huge improve-
ments in code that is only executed once can have negligible
repercussions – therefore the percentage of eliminated checks
per se has only a limited expressiveness in this respect.

For this reason, we examined how many checks are evalu-
ated when the CDj application is executed with 10,000 radar
frames (i.e., iterations). The results are shown separately for
the simulator and the detector part in Figure 4 since the two
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Figure 4: Runtime Checks During Execution

parts exhibit vastly different characteristics.
It can be noticed that the overwhelming majority of all

checks is performed in the simulator, which generates the
radar frames for consumption by the detector. The largest
portion (over 95 %) of these checks is carried out within only a
few methods of the following classes: String, StringBuilder,
StringBuffer, Long and Yylex. These classes involve the
creation and manipulation of short-lived string objects for
lexing and parsing aircraft information. This is a behavioral
pattern that is rather uncommon in real-world embedded
systems, thus the results have only limited significance for
our targeted field of application.

The detector component, which is closer to typical “em-
bedded” code, performs no advanced string operations and
consequently does not contribute significantly to the number
of visited checks. Of both null- and array bounds checks,
43–44 % are elided, respectively. Most of the remaining
checks are performed in small methods that are frequently
invoked. These methods include HashMap and ArrayList

element accesses, the computation of hash codes and the
comparison of Aircraft objects. Such checks are obviously
hard to elide.

4.1.3 Memory Footprint
To analyze the actual effect these optimizations have on

space consumption in practice, we determined the segment
sizes of the ELF binaries with the aid of the size utility.
The results are visualized in Figure 3(b).

With all optimizations enabled, the footprint of the text
segment is reduced by about 7 %. The effect of the omission
of redundant runtime checks lies roughly in the same order
of magnitude as that of the removal of dead code and the
remaining advanced optimizations. The data segment is
shrunk by 2.7 % due to the elimination of unused static



fields. Further improvement opportunities to reduce the
memory footprint are discussed in the following section at
the example of the single-domain variant of CDj .

4.2 Execution Time
We run our experiments on an Infineon TriCore TC1796

microcontroller clocked at 150 MHz. Our board is equipped
with 2 MiB of Flash ROM and 1 MiB of SRAM. We use
CiAO [15] as OS, an own AUTOSAR OS implementation.
Our CDj configuration uses six airplanes. We run the colli-
sion detector on 10,000 frames. The collision detector task
is periodically released with a period of 40 ms. In addition,
CDj contains two additional tasks, which mainly perform
initialization work and output the benchmarks results upon
completion of the benchmark. Both of these tasks are blocked
during the entire execution of the benchmark. Our GC task
is configured with the lowest priority in the system and uses
the slack time the detector task leaves in each period. We
only use KESO’s stop-the-world collector in our benchmarks.
A comparison of KESO’s garbage collectors using the CDj

benchmark is available in a previous paper [28].
Figure 5 shows the results of our execution time measure-

ments. Figure 5(a) shows the result with the current default
optimizations, which includes the use of the new optimization
framework. We will consider the other variants relative to
this baseline. Figure 5(b) shows the execution times for a
variant that uses linked stack frames for all methods. The
impact on both execution time (50 %) and code size (22.9 %)
is significant and shows how severely the innocent looking
differences affect the C compiler’s code optimizations.

The analysis to identify variant-specific constant values
as discussed in Section 3.6 is not yet implemented in the
jino compiler. To get an impression of the effect that this
optimization would provide for the CDj code, we created a
hand-tuned variant of the CDj code by marking all fields
of the Constants class as final and commenting out the
(dead) function that writes these fields. Figure 5(c) shows
that the execution time improves only marginally by about
1 % with these changes, however, the dead-code elimination
is able to identify more dead code and consequently the
code size is reduced by 15.9 % and the statically allocated
data shrinks by 36.6 %. The latter is mostly a consequence
of string constants being eliminated that are used in some
output code that is disabled in the particular configuration.

5. CONCLUSIONS
In this paper, we performed a case study on the real-

time embedded benchmark CDj to determine the extent to
which static application knowledge can aid both standard
and system-model-specific compiler optimizations in a Java
ahead-of-time compiler. The system model that we used as
a basis is the widely spread OSEK/VDX operating system
standard. While predominantly used in the automotive in-
dustry, we believe that the system model of OSEK/VDX is
representative for many static embedded applications. We
used the KESO JVM, which was specifically designed for this
application domain, as the basis for our evaluation and ex-
tended it by a new iterative compiler-optimization framework.
Our results show that the static knowledge could significantly
improve on both the execution time and footprint of the CDj

benchmark. We did, however, also find that parts of CDj ,
most notably the simulator component, contain code portions
that we consider quite atypical for deeply embedded appli-

cations, such as the lexical analyzer in the simulator. The
lion’s share of hot runtime checks that could not be statically
optimized belongs to these portions of the code. We leave as
future work additional framework improvements and an eval-
uation of the effectiveness of these optimizations on a code
base that has not originally been written in Java, but was
later ported to it and shows a more static characteristic than
the CDj benchmark. Besides cost-oriented optimizations,
we have also reviewed how the information gathered by the
static analyses can be used to provide consistency checking
between the high-level application properties denoted in an
external system configuration file and the actual code base
to the system integrator, which can help detecting problems
at an early stage.
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