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ABSTRACT
The domain of operating systems has often been mentioned as an
“ideal candidate” for the application of AOP; fundamental policies
we find in these systems, such as synchronization or preemption,
seem to be inherently cross-cutting in their implementation. Their
clear separation into dedicated aspect modules should facilitate bet-
ter evolvability and – the focus of this paper – configurability. Our
experience with applying AOP to the domain of highly configurable
embedded operating systems has shown, however, that these advan-
tages can by no means be taken for granted. To reveal maximum
configurability of central system policies, aspects and their potential
interactions with the system have to be taken into account much
earlier, that is, “from the very beginning”. We propose the analy-
sis and design process of aspect-aware development, which leads
to such an “aspect-friendly” system structure and demonstrate its
feasibility on the example of CiAO, an AUTOSAR-OS-compliant
operating system that provides configurability of all fundamental
system policies by means of AOP.
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1. INTRODUCTION

Throughout the entire operating-system design cycle,
we must be careful to separate policy decisions from
implementation details (mechanisms). This separation
allows maximum flexibility if policy decisions are to be
changed later. (Silberschatz et al., “Operating System
Concepts”, p. 72, 2005)

When, more than a decade ago, the advent of aspect-oriented pro-
gramming (AOP) promised a new dimension of separation of con-
cerns in software systems, operating systems were among the targets
that were first mentioned for the new approach [16]. AOP is ap-
pealing for this domain, as fundamental operating-system concerns,
such as synchronization, preemption, prefetching, or monitoring
seem to be inherently cross-cutting. Their clear separation into
dedicated aspect modules would facilitate better evolvability and
configurability of operating-system policies [5, 8, 1]. As operating-
system engineers in the domain of embedded systems – a domain
for which configurability is of utmost importance – we immediately
became excited when we first heard about AOP at ECOOP ’97. This
triggered the design and development of the AspectC++ language
and tool suite [26] and extensive studies with aspects in the PURE
and eCos operating system families [25, 21].

Now, ten years later, our research activities on applying AOP
to the domain of configurable operating systems have culminated
in the development of CiAO (CiAO is Aspect-Oriented) – the first
operating system family that has been designed and developed with
AOP concepts from scratch. By the application of AOP, CiAO
reaches excellent configurability, a good separation of concerns,
and very low resource consumption in the resulting systems, which
outperforms leading commercial implementations [20]. On the
path to CiAO, however, we had to learn a lot. The separation and
configuration of fundamental operating system policies by aspects
turned out to be surprisingly challenging. To reveal maximum
benefits, the incorporation of AOP (as a programming paradigm)
had to be reflected in the system’s design much deeper than we had
initially expected; the no-overhead integration and configuration
of even low-level operating system concerns by aspects required a
decent level of pragmatism.

About This Paper
In this paper, we describe our experiences with applying AOP to the
domain of configurable operating systems for resource-constrained
embedded devices – and how they led to the analysis and design
method of aspect-aware operating system development that we came
up with for CiAO. In particular, we make the following contribu-
tions:
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• We describe, on the example of two case studies, typical
particularities of system software that in practice hinder better
configurability by AOP and analyze the fundamental issues
behind them (Section 2).

• We provide a new analysis and design method and a set of
fundamental design principles to improve on the situation
(Section 3). We have evaluated our method with AUTOSAR
OS [4], the dominant operating system standard for automo-
tive applications.

Our contribution is rounded up by a detailed discussion of the partic-
ularities of and requirements on AOP in general for the development
of configurable system software (Section 4). In Section 5 we de-
scribe related work and finally conclude with the pros and cons that
AOP offers for this particular domain (Section 6).

2. ANALYSIS AND BACKGROUND
System software provides no business value of its own. Its sole

purpose is to ease the development and integration of applications
– that is, to serve application developers and integrators with the
“right” set of abstractions for their particular problems.

2.1 Embedded Operating Systems
This is a challenge especially in the domain of small (“deeply”)

embedded systems, which are subject to an enormous hardware-
cost pressure. System software for this domain has to cope not
only with strict resource constraints, but also with a broad variety
of application requirements and platforms. For instance, power-
train applications are typically safety-critical and have to deal with
real-time requirements, while car body systems are far less criti-
cal. Hardware platforms range from 8-bit to 32-bit systems. Some
applications require a task model with synchronization and commu-
nication primitives, whereas others are much simpler control loops.
Thus, to allow for reuse, an operating system for the embedded sys-
tems domain has to be designed and developed as a software family
– that is, for configurability (provide alternatives) and tailorabil-
ity (leave out as much as possible). Furthermore, resource-saving
static configuration mechanisms are strongly favored over dynamic
(re-)configuration.

This necessity for best-possible configurability and tailorability
was the reason we considered AOP to be so promising: It facil-
itates separation of many more concerns than the traditional im-
plementation techniques. We especially sought for a technique to
implement even fundamental internal “architectural” policies of an
operating system kernel in a configurable and tailorable manner.
Some examples for such fundamental policies are: Synchronization
of kernel components (explicit vs. implicit, fine-grained vs. coarse-
grained, hardware-supported), Interaction between kernel compo-
nents (message-based vs. procedure-based), Preemption of control
flows inside the kernel (fully-preemptive, at dedicated preemption
points, no preemption until the kernel is left), and Protection of ker-
nel components against invalid access and behavior (coarse-grained
vs. fine-grained vs. no memory protection, deadline monitoring,
parameter validation).

Such fundamental internal policies define what is commonly re-
ferred to as the architecture of an operating system, like micro-kernel
(message-based interaction, implicit synchronization, fine-grained
protection) or monolith (procedure-based interaction, explicit syn-
chronization, coarse-grained protection). Their implementation,
however, is notoriously cross-cutting and, hence, often hard-wired
into the system – our call for AOP.

2.2 Early AOP Experiences
Our initial experiences with employing aspect to improve on the

situation in the PURE and eCos operating system families, were,
despite many success stories [25, 21], double edged: When it comes
to the actual implementation, apparently orthogonal concerns (such
as Interaction, Synchronization, and Preemption) often turned out to
induce hidden functional dependencies and unexpected ambiguities
on the join-point level. The following two examples from PURE
and eCos illustrate some of the more problematic cases.

2.2.1 Device-Driver Invocation in PURE
In the late nineties, our research group developed the PURE

family of operating systems for deeply embedded devices [6]. With
more than 250 configurable features and a kernel memory footprint
between 434 B and >100 KiB, PURE offers excellent scalability.
We achieved this scalability without a single #ifdef in the C++
code by a design approach that put old ideas from HABERMANN

and PARNAS (functional dependencies and functional hierarchies
[13, 23]) to an extreme and that mapped functional layers to C++
classes.

PURE, however, did not offer configurability of fundamental
system policies. Later, we applied AspectC++ to improve on the
configurability of its architectural system policies, among them
Interrupt Synchronization and Interaction between application code
and device drivers [25]. This worked successfully in the first case;
however, we ran into unexpected difficulties in the second case.

The scenario was as follows: In the default config-
uration, the invocation of device-driver services (such as
FloppyDriver::readBlock()) is implemented by plain method
calls, explicitly synchronized on a per-driver basis by mutex ob-
jects. A (more micro-kernel–like) architectural alternative for
this implementation of Interaction and Synchronization is to em-
ploy message passing and active servers: Each device driver is
a mini server that runs a message loop in its own thread. In [25],
the ServerSync aspect implements this alternative (well encapsu-
lated and transparently for application and device-driver develop-
ers) by the introduction of a Thread object into each driver class
plus a piece of around-advice that intercepts all noninternal calls
to device-driver services (call(“% FloppyDriver::%(...)”) &&

!within(“FloppyDriver”)) to transform them into messages that
are sent to and dispatched by the introduced thread.

A significant side effect of the ServerSync aspect is that
(by employing threads) it induces a new functional dependency
FloppyDriver → Scheduler, which had not been reflected in the
original PURE design. Such ex post changes to the functional hier-
archy of an operating system are risky; they may induce dependency
cycles or otherwise invalidate correctness assumptions of the sys-
tem’s design [13, 23].

In our initial tests and analyses for [25], this new dependency
was apparently compatible to the existing design; FloppyDriver
and Scheduler were completely unrelated before. Later, however,
we realized that both concerns indirectly interact with each other –
via another policy we had not explicitly considered before: Initial-
ization. If device drivers employ threads, the Scheduler has to be
initialized before the driver objects – whereas in the default con-
figuration the order of initialization does not matter. The latter is
the correctness assumption that is invalidated by the ServerSync

aspect. The problem: PURE implements the Initialization of system
components (such as Scheduler and FloppyDriver) by means of
C++ global instance construction, for which the order is undefined
across different compilation units; it cannot be influenced by as-
pects, such as ServerSync. In the end it turned out to be technically
impossible to turn Interaction (and several other architectural poli-
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void Cyg_Alarm::enable() {
// Prevent DSR execution
Cyg_Scheduler::lock();
if( !enabled ){
// ensure the alarm time is in our future:
synchronize();
enabled = true;
counter->add_alarm(this);

}
// Unlock the scheduler and propagate
// DSRs. (No thread was set ready, so
// this is no point of preemption.)
Cyg_Scheduler::unlock();

}

void Cyg_Mutex::unlock() {
// Prevent preemption and DSR execution
Cyg_Scheduler::lock();
if( !queue.empty() ) {
Cyg_Thread *thread = queue.dequeue();
thread->set_wake_reason(Cyg_Thread::DONE);
thread->wake();

}
locked = false;
owner = NULL;
// Unlock the scheduler, propagate DSRs
// and maybe switch threads
Cyg_Scheduler::unlock();

}

Figure 1: Join point ambiguity in the eCos kernel. Because Cyg_Scheduler::unlock() is not only used to enforce Synchronization, but
also Preemption, the related execution join points are ambiguous.

cies) into fully configurable features by means of aspects due to (1)
hidden dependencies to other policies that (2) were designed in an

“AOP-unfriendly” way.

2.2.2 Synchronization and Preemption in eCos
eCos, the embedded Configurable operating system [9, 22] is

an industry-strength and broadly accepted open-source operating
system family for the embedded systems domain. Including all
optional packages, eCos offers more than 750 configuration options;
the kernel itself consists of 5,000 lines of C++ code and offers nearly
100 configuration options, which are technically implemented by
means of the C preprocessor – an “#ifdef hell”.

As part of a larger case study about the run-time and memory
effects of AOP, we refactored 16 eCos configuration options and ker-
nel policies from conditional compilation into aspects – and thereby
achieved a much better separation of concerns without extra run-time
and memory costs [21]. One of these polices was Synchronization,
which in eCos enforces mutual exclusion between threads and in-
kernel interrupt handlers (called deferred service routines, DSRs) in
order to ensure consistency of kernel state. Although only required
if both threads and DSRs are actually employed by the application
(many embedded applications use only either one), Synchronization
is a mandatory feature in eCos that always causes run-time and
memory costs. This is probably due to its implementation, which
homogeneously cross-cuts large parts of the kernel source base:
Each kernel function (as shown in Figure 1) is wrapped by calls
to Cyg_Scheduler::lock() and Cyg_Scheduler::unlock() (187
invocations in total).

Extracting and separating Synchronization into an aspect was
straightforward and clearly improved the clarity of the code [21].
However, our further attempts to thereby also improve the tailorabil-
ity of eCos (turning Synchronization into a truly optional feature
should be simple if implemented by an aspect) have failed. The
eCos developers exploited the fact that Cyg_Scheduler::unlock()
is called by all kernel functions immediately before the kernel is left
to piggyback the enforcement of another central kernel policy on
it. Cyg_Scheduler::unlock() does not only re-enable DSR propa-
gation (Synchronization), it also activates the scheduler to possibly
preempt the running thread (Preemption). The result of this “clever
optimization” is ambiguity: Apparently, all 101 invocations of
Cyg_Scheduler::unlock() that can be found in the kernel sources
represent a point of Synchronization (like in Cyg_Alarm::enable()

in Figure 1), but only 51 of them also represent a point of Pre-
emption, for which the scheduler activation is actually necessary
(like in Cyg_Mutex::unlock()). However, both concerns are not
distinguishable on the join-point level; leaving out the enforcement
of Synchronization would partly remove Preemption as well – even

though both policies are conceptually independent concerns and all
Synchronization code has been well encapsulated into an aspect.

2.3 Lessons Learned – A Summary
The respective “show stoppers” we encountered in the described

PURE and eCos problem cases may appear to be very specific.
Nevertheless, they exemplify some general issues we have found
over the years in our attempts to achieve the configurability of even
fundamental system policies in operating systems:

Hidden concerns caused by correctness assumptions that mani-
fest only implicitly in the specification, in the design and –
especially – in the implementation of the operating system.

Missing join points caused by optimizations, low-level code, and
a generally “aspect-unfriendly” design and implementation.

The Initialization and Preemption policies in PURE and eCos, re-
spectively, are examples for (partly) hidden concerns. Conceptually
orthogonal to the rest of the system, their concrete realization causes
hidden functional dependencies with respect to other concerns. How-
ever, even though eventually revealed and theoretically resolvable, it
turned out as technically impossible to actually resolve these issues
by the aspects, because of missing join points in the system’s design
and implementation.

2.3.1 Hidden Concerns
Hidden concerns can probably be found in any type of software,

but operating systems are particularly prone to them. In our ex-
perience, they are often caused by the (comparatively complex)
internal control-flow interaction schemes: With interrupts, DSRs,
and threads, even small operating systems, like PURE and eCos,
support at least three different types of control flows, all of which
bear specific (and often subtle) interaction constraints. Interrupts
and DSRs, for instance, must never block, whereas threads have
to be aware of preemption and interruption at any time. Features
that have been designed and implemented with implicit assump-
tions in this respect (like “this code is {never | always} invoked
on {interrupt | thread | ...} level”) can be found in every operating
system. These assumptions, however, are often invalidated if we
implement fundamental system policies as configurable features: A
developer implementing the Threading concern, for instance, typi-
cally does this under the assumption that the context-switching code
is never invoked from the interrupt level; hence, it does not have
to be interrupt-safe. Now consider a IRQThreads policy aspect that
reduces interrupt latencies by mapping interrupt requests to thread
activations (a strategy implemented, for instance, by Solaris [17]).
If IRQThreads is applied, the original assumption is no longer valid.
This is not per se an issue if (1) the aspect developer is aware of
this fact, and (2) it is possible to resolve the new dependency by
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augmenting the context-switching code by an aspect in order to
make it interrupt-safe.

2.3.2 Missing Join Points
The latter could be achieved, for instance, by a piece of advice that

disables (re-enables) interrupts before (after) each context switch
– but only if all respective thread transitions are exposed as unam-
biguous join-points to which aspects safely can bind. In theory,
missing join-points should never be an issue: “Just program like
you always do, and we’ll be able to add the aspects later” [11]. In
practice, the obliviousness principle in the form as postulated by
FILMAN and FRIEDMAN has probably not passed the reality check
for any type of software. However, in our experience, the problem of
missing join-points is particularly challenging in operating systems:
The context-switching code, for instance, may be scattered over the
scheduler implementation for optimization purposes (the case in
eCos). Parts of it are typically written in assembly language, which
does not expose join-points for aspects written in a high-level lan-
guage, such as AspectC++. In other cases, join-points are exposed
by fragile near-hardware code – to which aspects better do not bind,
because the transformations performed by the aspect weaver will
probably break this code. A further issue are join-point ambiguities
like we found in eCos.

Join-point ambiguities seem to be a general problem of optimized
systems code: ÅBERG and colleagues found a similar situation in
the Linux scheduling code and had to enhance their pointcut lan-
guage by temporal logic [1] to disambiguate scheduling events at
run time with stateful aspects (very similar to the later tracematches
[2]). Besides the additional run-time overhead such approach in-
duces it also effectively results in some sort of late binding of the
respective features (such as Preemption and Synchronization). This
spoils dead-code elimination and, thereby, the original goal: To
remove unneeded functionality from the resulting binary. Embed-
ded systems engineers consider such overheads as unacceptable –
especially if a static solution would be possible.

We expected all these problems to become even more severe if
we want to configure many fundamental policies.

3. THE CIAO APPROACH
Based on our experiences with using AOP in the PURE and

eCos operating systems, we have developed an integrated analysis
and development approach for operating systems. Our approach
provides for (1) the early identification of hidden concerns and (2)
their aspect-aware design and implementation.

The overall goal is to reach configurability even of fundamental
system policies, whose implementation is highly cross-cutting and
interacting in traditional operating systems. Furthermore, by using
aspects for the implementation of system configurability, we want
to reach a more fine-grained level of configuration possibilities –
without trading off efficiency in terms of resource usage. Since
hardware resource usage is crucial in most embedded systems, our
precondition here is to aim at overhead-free configurability, as it
would be possible with traditional conditional compilation.

In order to keep the investigation of the suitability of AOP for
operating system engineering as independent as possible, we de-
cided to start with a publicly available standard in the domain –
AUTOSAR OS [4, 3]. This way, the choice of OS abstractions and
system services and their functionality is not biased by the intended
AOP implementation. In fact, AUTOSAR OS is very C-focused,
and most implementations are therefore also in C, configured by
some kind of code preprocessor. We briefly introduce AUTOSAR
in Section 3.1, followed by a description of how we analyzed the
specification for crosscutting with a method called Concern Impact

Analysis (see Section 3.2). After that, we present our concept of
aspect-aware operating system development in Section 3.3.

3.1 AUTOSAR OS
AUTOSAR is an initiative formed by all major automotive manu-

facturers and suppliers like BMW, Ford, Toyota, and Bosch. Their
goal is to standardize the interfaces and functionality of the oper-
ating system and drivers in automotive microcontrollers in order
to facilitate application development in the domain. The operating
system standard, AUTOSAR OS [4, 3] describes a kernel that is
completely statically configured; the overall system configuration is
known at compile time.

AUTOSAR OS offers different kinds of abstractions to the ap-
plication programmer. Among the control flows, there are tasks
(named threads in other operating systems) and hooks, which are
callback functions invoked when the corresponding internal point
in the system is reached (e.g., upon a task switch, or upon a pro-
tection violation). Interrupt services routines (ISRs) are invoked
asynchronously by the hardware; ISRs of category 1 must not use
OS services, whereas ISRs of category 2 are allowed to invoke the
kernel and must therefore be synchronized with the kernel in order
not to corrupt kernel state. Tasks and ISRs themselves can synchro-
nize by acquiring and releasing AUTOSAR resources; AUTOSAR
events can be used for task and ISR notification. AUTOSAR alarms
allow the application to take action after a specified amount of time
has elapsed.

The main point that distinguishes AUTOSAR OS from other
operating systems in the domain is its configurable support for
properties of architectural kinds. These include the decision to make
the system fully-, mixed-, or non-preemptable, and different levels
of protection between AUTOSAR applications. Protection entails
memory protection to prevent memory corruption, timing protection
to ensure that applications will not miss their deadlines because
of another, misbehaving application, and service protection, which
checks for correct usage and context of system-service invocation.

3.2 Concern Impact Analysis
In order to be able to design an aspect-aware system, the developer

not only has to scope the system’s functionality in the analysis phase,
but he also needs to assess the effect of configurable concerns on
the system. This raised awareness of the different concerns in the
system and their relationships to each other are the main goal of
our specialized analysis process named Concern Impact Analysis
(CIA; see Figure 2). CIA eventually aims to provide the information
necessary to map the initially abstract concerns (c and d in Figure 2)
to design and implementation artifacts such as classes or aspects
(g–l in Figure 2).

In a first step, the developer scrutinizes the given requirements
in the form of a specification or abstract requirements list, mining
it for distinguishable concerns in the target domain. This includes
concerns that will be kept configurable (and therefore omissible) in
the final program family, but also concerns that are fundamental to
all system variants. To some extent, this subprocess requires the
knowledge of a domain expert, who will also be able to identify con-
cerns that are internal to a system. Such internal concerns are rarely
mentioned explicitly in a requirements or specification document;
nevertheless, many of them are vital to a working software system.
The overall outcome of the first step is a list of identified explicit con-
cerns plus a preliminary list of identified internal concerns, both of
which serve as a basis for the following impact analysis. Obviously,
the concern list is a super set of all features that could be present
in a system; it is subject to tailoring by the system configurator by
excluding features from the configuration.
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Figure 2: The process of Concern Impact Analysis (CIA) to aid aspect awareness in the system design
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GetActiveApplicationMode() ⊕ �� �� ��
StartOS() ⊕ �� �� �� ��
ShutdownOS() ⊕ �� �� �� ��
ActivateTask() ⊕ �� �� �� �� �� ��
TerminateTask() ⊕ �� �� �� ��
ChainTask() ⊕ �� �� �� �� �� ��
Schedule() ⊕ �� �� �� ��
GetTaskID() ⊕ �� �� ��
GetTaskState() ⊕ �� �� �� �� ��
EnableAllInterrupts() ⊕ �� �� ��
DisableAllInterrupts() ⊕ �� ��
ResumeAllInterrupts() ⊕ �� �� ��
SuspendAllInterrupts() ⊕ �� ��
ResumeOSInterrupts() ⊕ �� �� ��
SuspendOSInterrupts() ⊕ �� ��
GetISRID() ⊕ �� ��
DisableInterruptSource() ⊕ �� �� �� �� ��
EnableInterruptSource() ⊕ �� �� �� �� ��
GetResource() ⊕ �� �� �� �� �� ��
ReleaseResource() ⊕ �� �� �� �� �� �� ��
SetEvent() ⊕ �� �� �� �� �� ��
ClearEvent() ⊕ �� �� ��
GetEvent() ⊕ �� �� �� �� ��
WaitEvent() ⊕ �� �� �� ��
IncrementCounter() ⊕ �� �� �� �� �� ��
GetAlarmBase() ⊕ �� �� �� �� ��
GetAlarm() ⊕ �� �� �� �� ��
SetRelAlarm() ⊕ �� �� �� �� �� ��
SetAbsAlarm() ⊕ �� �� �� �� �� ��
CancelAlarm() ⊕ �� �� �� �� ��
StartScheduleTableRel() ⊕ �� �� �� �� �� ��
StartScheduleTableAbs() ⊕ �� �� �� �� �� ��
StopScheduleTable() ⊕ �� �� �� �� ��
NextScheduleTable() ⊕ �� �� �� �� ��
SetScheduleTableAsync() ⊕ �� �� �� �� ��
SyncScheduleTable() ⊕ �� �� �� �� ��
GetScheduleTableStatus() ⊕ �� �� �� �� ��
GetApplicationID() ⊕ �� ��
TerminateApplication() �� ⊕ �� ��
CallTrustedFunction() �� ⊕ �� ��
CheckObjectAccess() ⊕ �� �� �� ��
CheckObjectOwnership() ⊕ �� ��
CheckISRMemoryAccess() ⊕ �� �� �� ��
CheckTaskMemoryAccess() ⊕ �� �� �� ��
AppModeType ⊕ � �

TaskType ⊕ � � � � � � � �

ISR category 2 ⊕ � � �

ResourceType ⊕ � �

AlarmType /ScheduleTableType � � ⊕ � � � �

ApplicationType ⊕ �

alarm expiry �� �� �� ��
category 2 ISR execution � � ��
system startup �� �� ��
system shutdown ��
protection violation ��
task switch � �� �� �
application switch �� ��
uncontrolled task end ��
user �→ kernel transition �� ��
kernel �→ user transition �� ��

Table 1: Influence of configurable concerns (columns) on system services, system types, and internal events (rows) in AUTOSAR OS.
Kind of influence: ⊕ = introduction of a service or type, � = impact on a type, �� /�� /� = impact before / after / around a service or internal
event.
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3.2.1 Cross-Cut Table
The main CIA step is the actual analysis of the impact each

concern has on the system to be built (see step 2 in Figure 2). The
impact is classified and visualized in a cross-cut table matrix (e
in Figure 2) as exemplified in Table 1 with the analysis of the
AUTOSAR OS specification and the design of CiAO.

As a starting point for the cross-cut table (which is, to some
degree, comparable to a design structure matrix [7]), the columns
list the concerns as identified in the first step, whereas the rows
above the double line list the API of the system to be built, in this
case AUTOSAR OS. The API includes both system services (listed
in semantic groups in Table 1) as well as instantiable system types.
The events listed below the double line include system-internal
transitions that are of importance to one concern or the other. This
list of transitions does not form until the actual analysis of the
concerns takes place, which is when the need to list these transitions
emerges.

In order to populate the cross-cut table, in an iterative process,
each concern is analyzed for its impact on the system to be. This
mainly entails three types of impact:

1. Extension of the system API by a service or a type. Some
concerns are reflected in a system’s interface to the using
components, since without them, certain services cannot be
offered by the system. Thus, those concerns introduce API
services and types, denoted by a ⊕ sign in the cross-cut table.

2. Modification of a system service or its functionality. Sev-
eral concerns will not affect the system’s external interface,
but they will alter or adapt its functionality. Usually, this
adaptation only affects the execution or invocation of well-
selected services, which is denoted by a ��, ��, or � sign in
the corresponding row and column in the table. If besides
that, a concern needs to be notified of additional events that
are internal to the system, that event is listed in an additional
row below the double line and marked to be influenced by the
given concern.

3. Extension of a system type. In some cases, a concern will not
introduce a new type to be able to fulfill its duty, but it will
instead need to extend an existing API type as introduced by
another concern. This type-internal extension is denoted by
a � sign in the cross-cut table.

We are aware of the fact that producing the cross-cut table means
thinking about the concerns’ implementation to some degree already
in the analysis phase. However, we think that this is crucial to be
able to design a complex configurable software system in an aspect-
aware manner, because it is the cross-cut table that enables the
developer to make informed decisions about the system architecture.
Furthermore, forcing the developer to think about the impact of
each concern will reveal additional internal concerns that were
previously hidden in the requirements (see feedback loop from
step 2 in Figure 2). A typical example from the operating systems
domain is kernel synchronization, which is rarely mentioned but
vital to keeping kernel state consistent if interrupt service routines
are allowed to call system services. Revealing and analyzing such
concerns in the early analysis stage makes the subsequent design
process respect them explicitly.

Consider, for instance, the different sets of concerns as depicted
in Table 1 (vertical analysis view). The system abstraction concerns
each canonically extend the system API by the corresponding sys-
tem services and types of the given abstraction, since they extend the
system functionally. Note that each system service is introduced by

exactly one concern (i.e., exactly one ⊕ sign per service/type row).
The architectural concerns, however, which all implement some
form of protection mechanism, mostly influence and enhance exist-
ing system services. Some of them are highly cross-cutting (e.g.,
consider the column corresponding to the concern “wrong context”,
which checks for the correct invocation context of a system service
call), whereas others have a very selective influence on the system
(e.g., consider the concern “nontrusted shutdown”, which prevents
nontrusted application from shutting down the whole system). By
making the type of influence and its locality and dimension explicit
in the cross-cut table diagram, the concerns can be directly consid-
ered to be modeled as a class or an aspect in the aspect-aware design
step (see Section 3.3). Highly cross-cutting concerns, for instance,
will probably benefit the most from AOP quantification mechanisms
and are likely candidates for an aspect module implementation.

On the other hand, consider the system services and types as
depicted in Table 1 (horizontal analysis view). Note that not a
single service is influenced by only one concern; in fact, system
services such as ReleaseResource() are influenced by as many as
eight concerns! Hence, such “hot spot” services require special
attention in the design, and potential aspect implementations of
influencing concerns need to be carefully ordered not to break each
other’s functionality.

Ultimately, a comprehensive analysis with a comprehensive im-
pact table like the one in Table 1 will provide an ideal basis for the
aspect-aware design of the system concerns, making the implemen-
tation a straight-forward step.

3.2.2 Concern Hierarchy
The second artifact to be output by the impact analysis step be-

sides the cross-cut table is a concern hierarchy (f in Figure 2). Due
to space constraints, we have omitted the resulting concern hier-
archy of CiAO from this paper. However, a concern hierarchy is
basically a functional hierarchy [13] enriched by influence relation-
ships between the different (sub) concerns. It describes, on the one
hand, which concern uses which other concerns: This means that the
respective concerns are tightly coupled – the functional correctness
of the using concern depends on the one of the used concern. On the
other hand, an extension to functional hierarchies, a concern might
only influence other concerns: This indicates a loose coupling; if
one of the target concerns is not included in a given system configu-
ration, the source concern will still be able to fulfill its specification
semantically.

We found that a concern that extends one or more system types
(denoted by a � sign in the cross-cut table) typically uses the con-
cerns that introduce the respective types. In AUTOSAR OS, for
instance, events are generally task bound, hence, the Events concern
uses the Tasks concern. This is already indicated in Table 1 by the
fact that Events extends TaskType, which is introduced by Tasks.

A concern that modifies system services only, on the other hand,
usually influences the respective target concerns. The Interrupts dis-
abled concern, for instance, ensures for a number of system services
(among them GetResource() and ReleaseResource()) that they
are not invoked while running on interrupt level (with interrupts dis-
abled). If some influenced concern (e.g., Resources) is not present
in the current configuration, this property is implicitly true for its
services.

3.3 Aspect-Aware Design
Eventually, the system’s concerns and their interactions have been

identified and described as far as possible. The goal of the following
step 3 (Figure 2) is then to compose the gained knowledge into a
model of classes, aspects, and, where necessary, explicit join points
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Figure 3: Layered structure of CiAO. Depicted are the three
fundamental layers of the CiAO architecture with a selection of their
sublayers, components, abstractions, and aspects (depicted with
rounded corners).

(documents g–l). Based on our experience with PURE and eCos, this
process is guided by three fundamental principles of aspect-aware
software development:

The principle of loose coupling. Make sure that aspects can hook
into all facets of the static and dynamic integration of system
components. The binding of components, but also their instan-
tiation (e.g, placement in a certain memory region) and the
time and order of their initialization should all be established
(or at least be influenceable) by aspects.

The principle of visible transitions. Make sure that aspects can
hook into all control flows that run through the system. All
control-flow transitions into, out of, and within the system
should be influenceable by aspects. For this they have to
be represented on the join-point level as statically evaluable,
unambiguous join-point shadows.

The principle of minimal extensions. Make sure that aspects can
extend all features provided by the system on a fine granularity.
System components and system abstractions should be fine-
grained, sparse, and extensible by aspects.

All subsequent design and implementation decisions are evaluated
with respect to these three principles.

3.3.1 CiAO Architecture
The first steps towards aspect-awareness are already made in the

architecture of the system: Like most operating systems, CiAO is
based on a layered architecture, in which each layer is implemented
using the functionality of the layers below (Figure 3). The only
exceptions from this are the aspects implementing architectural
policies, which may take effect across multiple layers.

On the coarse level, we have three layers. From bottom up these
are: the hardware layer (hw, hardware programming interface), the
system layer (os, the operating system itself), and the interface layer
(ciao or as, the (configurable) application programming interface).

This architecture is aspect-aware in the sense that layers do not
only serve as conceptual levels of abstraction, but also as a means
to provide cross-layer control-flow transitions on the join-point
level (visible transitions). Each layer is modeled as a top-level C++
namespace or class, which makes it easy to grasp such transitions
by pointcuts, like the following AspectC++ pointcut yields all join
points where a system-layer component (namespace os) accesses
the hardware (namespace hw):

pointcut OStoHW() = call("% hw::...::%(...)")

&& within("% os::...::%(...)");

Control-flow transitions down the layer hierarchy (such as the
invocation of some system service) are established by method calls;
aspects can interfere with these transitions by giving advice to a
pointcut like OStoHW. Transitions up the hierarchy (upcalls, such as
a thread start or a signal delivery) are modeled as explicit join-point
shadows and only established by aspects (loose coupling). In the
case of CiAO, aspects thereby can hook into all transitions into and
out of the system layer that are visible on the static join-point level
(visible transitions).

3.3.2 Classes and Aspects
With respect to the three design principles: Which concerns are

best to be implemented as classes and which as aspects? With
respect to loose coupling, we came up with the following general
rule: Some concern is implemented as a class if – and only if – it
represents a distinguishable run-time–instantiable concept of the
system, otherwise it is realized as an aspect.

In the case of CiAO, this holds in particular for the system ab-
stractions taken from the system specification document and iden-
tified during concern analysis. System abstractions (AppModeType,
TaskType, and so on) are directly listed in the cross-cut table (Ta-
ble 1, column 1) and represent the OS-managed entities that are
instantiated on behalf of the application. Furthermore modeled as
classes are the system components, which horizontally subdivide
the architectural layers and represent its functional sub-domains
(such as the Scheduler or the AlarmManager in the system layer,
see Figure 3). Their identification is guided by the concern hierarchy,
but also requires a decent amount of expert knowledge regarding
(potential) synchronization and protection domains. The point, how-
ever, is: All classes that represent system abstractions and system
components are sparse or even empty, that is, they implement only
the minimal base of the respective concern (minimal extensions).
Their major purpose is to provide a distinct scope for introductions
of cross-component interactions (visible transitions). All further
features are “filled in” by the aspects. During the development of
CiAO we came up with three idiomatic roles of aspects:

1. Extension aspects add additional features to a system abstrac-
tion or component (minimal extensions), such as extending
the scheduler by means for task synchronization (e.g., AU-
TOSAR OS resources).

2. Policy aspects “glue” otherwise unrelated system abstrac-
tions or components together to implement some kernel policy
(loose coupling), such as activating the scheduler from a peri-
odic timer to implement time-triggered preemptive schedul-
ing.

3. Upcall aspects bind behavior defined by higher layers to
events produced in lower layers of the system, such as binding
a driver function to interrupt events.

Extension aspects can be identified in the cross-cut table by the fact
that they affect especially the static structure, typically by intro-
ducing some system services. Most extension aspects accompany
some system abstraction (e.g., ResourceType); they integrate the
actual implementation of the respective concern (Resources) into the
system components (Scheduler) and extend the interface layer by
the corresponding services (GetResource(), ReleaseResource()).

Policy aspects, in contrast, lead to a different system behavior. In
the cross-cut table they can be identified by seeking concerns that
(mostly) affect the dynamic structure of the system, like Preemption.
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ISR cat. 1 support 1 m 2+m 2+m API, OS control | m ISR bindings
ISR cat. 2 support 1 n 5+n 5+n API, OS control, scheduler | n ISR bindings
Resource support 1 1 3 5 scheduler, API, task | PCP policy implementation
Resource tracking 1 3 4 task, ISR | monitoring of Get/ReleaseResource
Event support 1 5 5 scheduler, API, task, alarm | trigger action JP
Full preemption 1 2 6 | 3 points of rescheduling
Mixed preemption 1 3 7 task | 3 points of rescheduling for task / ISR
Wrong context check 1 1 s | s service calls
Interrupts disabled check 1 1 30 | all services except interrupt services
Invalid parameters check 1 1 25 | services with an OS object parameter
Error hook 1 2 30 scheduler | 29 services
Protection hook 1 1 2 2 API | default policy implementation
Startup / shutdown hook 1 2 2 | explicit hooks
Pre-task / post-task hook 1 2 2 | explicit hooks

Table 2: Selected CiAO-AS kernel concerns implemented as aspects with number of affected join points. Listed are selected kernel
concerns that are implemented as extension, policy, or upcall aspects, together with the related pieces of advice (not including order advice),
the affected number of join points, and a short explanation for the purpose of each join point (separated by “|” into introductions of extension
slices | advice-based binding).

Upcall aspects realize loose coupling with respect to upcalls, as
described in Section 3.3.1. They are invisible in the cross-cut table,
as most of them do not manifest before the implementation phase.

Table 2 displays an excerpt of the list of AUTOSAR OS concerns
that are implemented as aspects in CiAO. The first three columns list
for each concern the number of extension, policy, and upcall aspects
that implement the concern. (The resource-support aspect and the
protection-hook aspect have both an extension and a policy facet.)
The majority of concerns contribute to the set of policy aspects
(12 aspects), which is followed by the set of extension aspects (9
aspects). The number of upcall aspects (3+n+m) differs from these
in so far as it does not only depend on the system configuration,
but also on the application configuration: Each specified ISR in
the application is bound with the respective interrupt source in the
kernel or hardware access layer (HAL) by its own upcall aspect.
These aspects are, however, not to be provided by the application
developer; they are generated automatically from the application
configuration.

3.3.3 Explicit Join Points
By consequent application of the fundamental principles of aspect-

aware development in the architecture and design of the system,
CiAO already offers a rich join-point interface “by structure”. Nev-
ertheless, in many cases the implicit join-point interface is not ample
enough. This has conceptual as well as technical reasons:

1. Implicit join points are inherently implementation dependent.
Their amount – but especially their semantics – may be in-
consistent between different implementations of the same
concept. This is absolutely acceptable for component-specific
extension aspects, as these aspects have to know the compo-
nent they extend anyway. It is, however, not satisfying for
system aspects that implement more general policies.

2. Some semantically important control-flow transitions are not
visible at the join-point level because they do not occur on the
boundary of function calls or executions. In other cases, their
place of occurrence is configuration-dependent, or there are
multiple places of occurrence. For example, user �→ kernel
transitions might occur if a kernel function is called, when a

trap handler is activated, or during task switching to another
task. However, in CiAO, this is a matter of configuration.

3. Several semantically important control-flow transitions are
not available as join points because of technical reasons. This
is often the case with low-level system abstractions, such as
interrupt handlers or the implementation of the context switch
mechanism.

For these reasons, many CiAO components and layers provide fur-
thermore a well-defined explicit join-point interface that defines
one or several explicit join points. An explicit join point is a named
join point in the kernel control flow that bears precisely defined
semantics and can safely be advised. Technically, explicit join
points are implemented as empty methods – provided for the sole
purpose that aspects can bind to them. The join-point provider
invokes these methods at run time, either directly or indirectly by
component-specific adapter aspects.

Conceptually, explicit join-point interfaces can be compared to
hooks or interceptor interfaces in other component models. An
advantage of explicit join points is, however, their low overhead. In
most cases (that is, when they do not have to be triggered from parts
written in assembly language) they can be implemented as empty
inline methods, which get optimized away by the compiler if no
aspect binds to them. Another advantage is the inherent support for
1 : n relationships – handler chaining for shared interrupt sources,
for instance, is supported “out of the box”.

We distinguish between upcall join points and transition join
points. The former are the interface that upcall aspects bind to;
the incarnations of hardware interrupts or threads, for instance, are
provided in this realm. Another example is the system initialization
handler hw::hal::init(), which is invoked during system startup.
Upcall join points manifest naturally in a bottom-up development
process.

Transition join points, in contrast, mark events that are important
for the implementation of system policies. They are typically iden-
tified during concern analysis and can be taken directly from the
bottom of the cross-cut table. An example we can find there (Ta-
ble 1) are the already mentioned user �→ kernel transitions, which in
CiAO are provided as explict join points os::krn::enterKernel()
and os::krn::leaveKernel(). Other examples include transitions
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Figure 4: Self-integration of components. Depicted is the
CiAO component initialization scheme. Every system com-
ponent integrates itself into the system initialization handler
hw::hal::init() by an accompanying _Init upcall aspect.

from thread level to interrupt level, or the context switch from
one thread to another. These transitions often have multiple and
implementation-dependent sources (m : n relationships); or they oc-
cur in fragile, low-level parts of the implementation. By representing
them as explicit join points, providers and publishers of transition
events can be decoupled.

3.4 Problems Revisited in CiAO
The following two examples from CiAO resemble some of the

issues we encountered in PURE and eCos (namely, hidden concerns
and missing join points, see Section 2.3), in the sense that they
demonstrate how such problems can be avoided by applying the
principles of aspect-aware software development.

3.4.1 Self-Integration of Components
The key to loose coupling of policies and components is to pro-

vide the necessary explicit join points and then establish all bind-
ings by advice. Figure 4 shows this on the example of component
initialization: Every system component (which are singletons by
definition) has an accompanying _Init aspect that gives advice
to the system initialization handler hal::init() (an explicit join
point) to invoke the component’s init() method at system startup
time. Thereby, the startup code does not have to know which com-
ponents are present in the actual CiAO configuration. Nevertheless
this flexibility does not come at a price, as all initialization code
gets bound and inlined at compile time. This is not only more effi-
cient than the initialization concept used in PURE (which was based
on global instance construction, see Section 2.2.1), it also is a lot
more flexible. Component initialization thereby becomes a visible
transition, which we can further influence it by additional aspects:
Consider, for instance, an (optional) extension aspect Serial0Ext
that extends the serial driver from Figure 4 by a task of its own (e.g.,
for some background protocol handling). Similar to the ServerSync
aspect in the PURE study (Section 2.2.1), this aspect effectively
inserts a new functional dependency between the serial driver and
the scheduler; the serial driver now uses the scheduler. The con-
sequence for the implementation is that the scheduler has now to
be initialized before the serial driver. In AspectC++, we can real-
ize this new constraint relatively easy by employing order-advice
[26]. Additional to the extension of the class Serial0, the aspect
Serial0Ext can specify a partial invocation order for the foreign as-
pects Sched_Init and Serial0_Init at the join point execution(
"void hw::hal::init()" ):

aspect Serial0Ext {

...

advice execution( "void hw::hal::init()" ): order(

"Sched_Init", "Serial0_Init" );

};

Essentially, the aspect thereby re-establishes a correct functional
hierarchy of the system. This is possible because of the application
of the principles of loose coupling and visible transitions.

3.4.2 Self-Integration of Policies
Another common use case for advice-based binding in CiAO

is the self-integration of policies. Self-integration of policies is
crucial for the aspired decoupling of policies and mechanisms. Most
policy implementations induce new interactions between (otherwise
unrelated) components. This may, again, lead to new functional
dependencies that we also have to deal with. Figure 5 demonstrates
self-integration of policies by the example of two variants of the
CiAO preemption policy (which, to some degree, resembles the
issues we found in eCos, see Section 2.2.2):

Generally, system components report the need for rescheduling
(and, thus, potential preemption of the running task) by calling
Sched::setNeedReschedule(). The actual activation of the sched-
uler is, however, delayed:

(a) The aspect Sched_LeaveBinding in Figure 5.a implements
a simple delayed activation policy for a cooperative system; with
this policy, preemption is only possible at the return from some
system service. Technically, this is realized by binding the scheduler
activation (Sched::reschedule()) to the explicit tranistion join
point leaveKernel(), which is guaranteed to be triggered if some
thread returns from the kernel.

(b) The aspect Sched_ASTBinding in Figure 5.b implements a
more sophisticated delayed activation policy for an interruptive sys-
tem; with this policy, preemption can also be triggered by interrupts.
Technically, this is realized by binding the scheduler activation to the
function AST0::ast(), which is the handler of an asynchronous sys-
tem trap1 (AST). Additionally, the triggering of the AST is bound to
setNeedReschedule(). The fact that the scheduler is now activated
from AST0::ast() leads to a new functional dependency, which
has the consequence that the kernel now has to be synchronized on
AST level. We can, however, easily enforce this constraint with
additional pieces of advice that are given by the Kernel_ASTSync

aspect:

aspect Kernel_ASTSync {

advice execution( "os::krn::enterKernel()" ) : before() {

AST0::Inst().disable(); // delay scheduling

}

advice execution( "os::krn::leaveKernel()" ) : after() {

AST0::Inst().enable(); // point of rescheduling

}

};

By visible transitions and advice-based binding we have achieved
a completley loose coupling of the scheduler component and the
preemption policy in the implementation. This makes it very easy to
provide numerous variants of either concern an embedded systems
engineer can choose from.

4. DISCUSSION
We discuss the combination of AOP and operating systems in

general, how our approach can be applied to other system software,
and the lessons learned with respect to language and tooling.

1An AST is a low-priority interrupt that can be triggered by higher-
prority interrupts or the kernel to delay activities, such as scheduling,
to a later point in time (e.g., when the kernel is left).
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Figure 5: Self-integration of policies. Depicted are two alternatives for the delayed preemption policy in CiAO. (a) The aspect
Sched_LeaveBinding binds to leaveKernel() to activate the scheduler when some task leaves the kernel (cooperative system). (b) The
aspect Sched_LeaveBinding binds to the handler of an asynchronous system trap (AST) to activate the scheduler when all (potentially nested)
interrupt handlers have terminated (interruptive system).

4.1 AOP and Operating Systems

4.1.1 Aspects as First-Class Entities
AOP has been facing much critique in the sense that aspects (in

contrast to classes) do not represent real domain concepts, but (only)
“aspects of programming”. STEIMANN details this in [27]: “literally
all aspects discussed in the literature are technical in nature: authen-
tication, caching, distribution, logging, persistence, synchronization,
transaction management, etc.”

There might be some truth in this for the kind of software
STEIMANN had in mind when writing his paper, but for the domain
of system software, we have to clearly rebut this argument: System
software is very technical in nature, too; the above mentioned “tech-
nical” aspects are text-book examples for the dominant concerns of
system-software development! In the specification of AUTOSAR
OS [3], for instance, we can find the requirement OS093:

If interrupts are disabled and any OS services, ex-
cluding the interrupt services, are called outside of
hook routines, then the operating system shall return
E_OS_DISABLEDINT.

This requirement (which maps to the Interrupts disabled concern in
Table 1) translates almost “literally” to an AspectC++ aspect:

aspect DisabledIntCheck { // implements OS093

advice call( pcOSServices() && !pcInterruptServices() )

&& !within( pcHookRoutines() ) : around() {

if( interruptsDisabled() )

*tjp->result() = E_OS_DISABLEDINT;

else

tjp->proceed();

} };

So for our domain, we can assess that aspects lead to a much more
natural separation of domain-specific concepts – if considered as
first-class design elements from the very beginning.

4.1.2 Quantification and Obliviousness
The DisabledIntCheck aspect is also a good example for the ben-

efits of quantification because of homogeneous cross-cutting. Given

that other studies [14] about applying AOP for the fine-grained
configuration of system software (in this case embedded databases)
came to the conclusion that quantification is “rarely applicable”,
these benefits seem to be domain-specific to a certain degree. How-
ever, for the implementation of operating system policies, especially
architectural ones, quantification clearly creates synergies. For 8 out
of the 14 aspects listed in Table 2 this is the case.

With respect to obliviousness, the situation is less clear. In [11],
FILMAN and FRIEDMAN describe the obliviousness ideal of AOP,
according to which obliviousness can be a bidirectional relationship
between components and aspects: The programmers of the base sys-
tem and the aspect developers can work completely independently
of each other. However, in actual applications of AOP, obliviousness
is usually understood to be unidirectional: The components of the
base system are kept oblivious of aspects – at the price that the
aspects have to be perfectly aware of the components they affect.
This often involves knowledge about certain implementation details,
which in turn leads to fragile pointcuts if the component developers
are kept oblivious of the aspects, too. Furthermore, this approach
hits its limits when the base code just does not offer the required
join-point shadows. The ambiguity problems we found in eCos are
a good example here.

Aspect-aware operating system development moderates these
issues by pragmatically considering obliviousness and awareness as
two ends of a continuum: The more oblivious a component should
be of the aspects that potentially engage with it, the more aware the
aspects have to be of the component – and vice versa. Much of the
flexibility and configurability of CiAO stems from the freedom to
decide for each relationship about the placement on this continuum.

In our opinion, the advantage of the advice-mechanism of AOP is
not so much quantification and obliviousness, but loose coupling:
Essentially, advice inverts the direction in which control-flow rela-
tionships are specified. This facilitates the self-integration of the
implementation of optional features into the control flows of the
base system. Furthermore, advice-based binding is inherently loose
– if the addressed join point is not present, the binding is sliently
dropped. This property is useful for the implementation of inter-
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acting optional features, which are difficult to tackle with other
decomposition approaches [15].

4.2 Applicability to Other Domains
The presented methodology emerged from experiences in a spe-

cial domain – highly-configurable system software for resource-
constrained embedded systems. Nevertheless, it is at least partly
applicable to a wider range of domains. For example, PUMA is a
product line of C/C++ code analysis and transformation frameworks
[28]. In this project we have not conducted the concern identification
and impact analysis steps, but the principles of aspect-aware design
and the underlying AspectC++ idioms including the three roles of
aspects were applied and turned out to be generic and helpful.

4.3 Language and Tooling – Lessons Learned

4.3.1 AspectC++ – How the Language Is Evolving
When we started with the development of AspectC++ it seemed

“natural to use AspectJ as a foundation when creating a set of ex-
tensions for the C/C++ language”. This led to many similarities
between the two languages such as advice code that is anonymous
and, thereby, cannot be overridden by a derived aspect or the explicit
interface for accessing join-point context information within advice
code (thisJoinPoint-API).

However, it turned out that there are more differences between
C++ and Java than initially expected, and also our application do-
main of deeply embedded systems forced us to rethink the language
design with resource consumption in mind. In contrast to the begin-
ning, AspectC++ now has a much stronger focus on static typing and
language features that can be implemented completely at compile
time. Run-time mechanisms such as the dynamic thisJoinPoint-API,
which is typically used in combination with run-time reflection, are
too expensive and, thus, have been mostly replaced by a static coun-
terpart. For instance, the “join point API” of AspectC++ provides
static type information for advice code. As a consequence, multiple
variants of the same advice code can be instantiated at compile time,
which depend on the matched set of join points. Additionally the
advice can use the type information to instantiate C++ templates or
even template meta-programs. Thereby, a complex chain of code
generation steps can be triggered. It turned out that this combination
of aspects and C++ templates is a very powerful mechanism that is
a unique feature of AspectC++ [19].

Currently, a complete static introspection mechanism for all pro-
gram entities – and not only join points – is under development. This
will, for instance, allow generic aspects to very efficiently marshal-
l/unmarshall any objects in order to transparently perform remote
method invocations or to manage a persistent state. In the context
of CiAO this feature shall be used to transparently copy objects
between address spaces when isolation is turned on and tasks in
different address spaces interact.

Even though AspectC++ is already very useful, we identified
the following missing features, which are on the agenda for future
enhancements:

Free variables in pointcut expressions. This is a language fea-
ture that is already known from LogicAJ [18]. It would significantly
enhance the expressiveness of AspectC++ pointcut expressions.

Extensible pointcuts. Self integration of components such as
device drivers would be easier if named pointcuts could be extended
or composed from collected fragments. For instance, a driver has
certain properties: It services interrupts, it handles a block device,
and it needs a helper thread. Aspects should be able to affect all
components with a specific property. However, the system configu-
ration – including the set of configured drivers – is unknown before

compile time. AspectJ 5 users can achieve this goal by exploiting
Java 5 annotations. For AspectC++ a similar mechanism shall be
integrated.

More control over code generation. When low-level assembler
code and AspectC++ are combined it is often necessary to control
the code generation very precisely. For instance, in a function or
advice that implements a context switch between tasks and that
contains inline assembler code, it is crucial to know whether the
function will be inlined by the compiler. If the compiler behaves
unexpectedly, a machine crash will be unavoidable.

Non join points. Some parts of the CiAO operating system
should simply be guaranteed to never be touched by any aspect. We
aim at providing mechanisms to specify these parts in a modular
manner and a weaver extension that obeys these rules.

4.3.2 User Experience – AOP for “Hackers”
More than a dozen master students were involved in the devel-

opment of PURE, the aspectized version of eCos, and CiAO, and
contributed a significant amount of the aspect code to these systems.
All of them were advanced C/C++ hackers, the majority already had
some experience in low-level kernel programming, and all of them
carried on with R&D in the domain of low-level system software
after finishing their studies. So, to a certain degree this group rep-
resents the typical “kernel hacker”, whose take on AOP might be
interesting to the AOSD community. While we have not evaluated
this in a systematic way, we nevertheless observed some recurring
peculiarities:

AOP semantics is generally easy to grasp. To our (pleasant)
surprise, the students generally had, after a brief introduction into
the topic (a three hour lecture plus a “toy” exercise), little to no
problems in understanding AOP concepts, the AspectC++ language,
and the particularities of its application to embedded systems. They
grasped the CiAO development idioms and application patterns by
examining the existing code and were quickly able to contribute
their own aspects.

Technical side effects of aspect weaving are more challeng-
ing. In theory, aspect weaving should be a transparent process, but
in practice it is not – due to technical side effects. A frequent and
always challenging issue, for instance, was the understanding and
resolving of #include cycles. Such a cycle appears if two header
files (indirectly) #include each other, which in most cases leads
to uncompilable code. Unexpected #include cycles are a tough
problem for any larger C/C++ project. The point is that they appear
a lot more frequently with aspect weaving: An aspect that itself
#includes some external module (a property that holds for any
nontrivial aspect) thereby also contributes to the list of #include
files of the modules it affects in the weaving process, which often
results in #include cycles that are very hard to hunt down. As a
consequence, we have improved the AspectC++ weaver to detect
and report #include cycles caused by aspects already at weaving
time. While this has certainly improved on the situation, it is still up
to the developer to resolve the conflict (e.g., by means of forward
declarations or by splitting larger aspects into smaller pieces).

“Hackers hate IDEs.” Even though all students at some point ran
into difficulties with respect to join-point tracking, it turned out to be
more than difficult to convince them to use the AspectC++ plug-in
for ECLIPSE (ACDT), which provides features (such as join-point
visualization) for exactly this kind of problem. Even the majority
of students working on CiAO – who had to use ECLIPSE anyway
to configure the operating system – did not use it for anything
else. They considered it to be “too clumsy” compared to the shell
and their favorite VIM editor, and preferred hunting for join-point
mismatches by analyzing the woven source code or by GREP’ing
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through the (XML-based) join-point repository that AC++ generates
for the ECLIPSE plug-in. We have learned from this that (even in
the case of relatively young students) tool support has to fit the –
domain-specific – habits of the developers to get accepted. As a
consequence, we are now working on a more generic interface to
the join-point repository and a set of command-line tools to query
and analyze it in a “no-frills” fashion.

5. FURTHER RELATED WORK
There are several other research projects that investigate the ap-

plicability of aspects in the context of operating systems. Among
the first was the α-kernel project [8], in which the evolution of four
scattered OS concern implementations (namely: prefetching, disk
quotas, blocking, and page daemon activation) between versions
2 and 4 of the FreeBSD kernel was analyzed retroactively. The
results show that an aspect-oriented implementation would have led
to significantly better evolvability of these concerns.

C4 [12, 24] is an example for a special-purpose AOP-inspired
language. It is intended for the application of kernel patches in
Linux. Other related work concentrates on dynamic aspect weaving
as a means for run-time adaptation of operating system kernels:
TOSKANA provides an infrastructure for the dynamic extension
of the FreeBSD kernel by aspects [10]; KLASY is used for aspect-
based dynamic instrumentation in Linux [29].

All of these studies demonstrate that there are good cases for
aspects in system software. However, the work of ÅBERG in Linux
[1] and our own work on eCos [21] show that a useful application
of AOP to existing operating systems requires additional AOP ex-
pressivity that results in run-time overheads (e.g., temporal logic or
dynamic instrumentation).

6. SUMMARY AND CONCLUSIONS
The CiAO project contributes a large-scale case study for the

application of aspect technology in the domain of system software.
From a systems researcher’s perspective, the properties (such as
code size, performance, and especially configurability) of the result-
ing systems are convincing [20, 21]. This paper has focused on the
development methodology, which evolved over years. Two main
insights can be learned: (1) Operating systems for the domain of
resource-constrained embedded systems have to be highly config-
urable. Our analysis of the AUTOSAR OS specification revealed
that these effects can already be found in the requirements; they are
an inherent phenomenon of complex systems. (2) AOP is very well
suited for the design and implementation of such systems under the
premise that it is applied with the aspect awareness principles in
mind. This paper has shown how this aspect awareness can be put
into practice.
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