
Escaping the Bonds of the Legacy:
Step-Wise Migration to a Type-Safe Language in Safety-Critical Embedded Systems

Michael Stilkerich, Jens Schedel, Peter Ulbrich, Wolfgang Schröder-Preikschat, Daniel Lohmann
Department of Computer Science 4 - Distributed Systems and Operating Systems

Friedrich-Alexander University Erlangen-Nuremberg
{stilkerich,schedel,ulbrich,wosch,lohmann}@cs.fau.de

Abstract—Type-safe high-level languages such as Java have
not yet found their way into the domain of deeply embedded
systems, even though numerous attempts have been made to
make these languages cost attractive. One major challenge that
remains is the huge existing code base in many industries.
Completely reengineering this code base is not viable for cost
and time reasons. We present an approach that allows to
isolatedly combine legacy software components and safe soft-
ware components in an embedded system using the two most
common communication idioms found in this domain. Our ap-
proach allows the developer to freely choose between hardware-
and software-based isolation mechanisms. We demonstrate the
feasibility of our approach by porting a non-trivial part of a
real-world, hard real-time embedded avionics application. Our
results show that the cost of this mixed-mode operation is on
the same scale as the pure operation.

Keywords-Real-time and embedded systems; Protection
mechanisms; Reliability; Java;

I. INTRODUCTION

Modern, type-safe high-level languages such as Java have
become quite widespread in many computing domains from
enterprise computing to less resource-constrained embedded
systems. Java provides a number of benefits compared to
low-level languages such as C: Case studies [1], [2] found
software development in Java to be more productive and
that Java avoids or detects many common programming
errors such as out-of-bounds array accesses or dangling
references. Software-based memory safety can easily be built
on top of Java, an important benefit particularly for vertically
organized industries where software components of different
suppliers are integrated and software defects need to be
contained in the faulty component. Looking at the domain
of real-time systems, code written in a type-safe language
tends to be a good subject to static analyses.

A. The Issue
Although Java has appeared back in 1995 and many

research efforts have been done to overcome its limitations
with respect to low-level programming, resource consump-
tion and predictability [3], software targeting statically con-
figured, deeply embedded systems is still almost exclusively
developed in unsafe low-level languages such as C, Assem-
bler and some C++. Java is basically nonexistent in this
domain.

Searching for the reasons we looked at a particular
example for such an industry, the electronic control units
(ECU) found in modern cars. The amount of software in
cars has been growing exponentially over the last 30 years,
and reached a volume of more than ten million lines of code
in a premium car [4]. Software functions and the electronics
necessary therefore make up to 40% of a car’s production
costs [5].

The automotive industry is vertically organized. Electronic
functions are normally not developed at the car manufacturer
(OEM) but provided by a multitude of component suppliers,
which traditionally ship the electronic component bundling
both hardware and software as a black box. The OEM needs
to integrate these ECUs to form a cooperating network. With
currently about 80 ECUs in a premium car this integration
has become increasingly difficult and costly for the OEM.
This triggered a paradigm shift from the federated to an
integrated architecture where multiple software functions are
cohabited on one microcontroller platform. The cohabitation
introduces new requirements to the underlying system soft-
ware, which led to the development of AUTOSAR OS [6]
that extends its widely used predecessor OSEK/VDX [7]
particularly in the areas of temporal and spatial isolation.

B. The Causes

Reasoning with automotive developers about the causes
for the reluctance to adopt a modern language, we identified
the following concerns:

1) Apprehension of increased hardware costs: High-level
language features such as dynamically-bound method calls
and safety checks (e.g., null checks, array bound checks,
type checks) are commonly perceived as major sources
of runtime overhead, which leads to the association of
Java and slow/expensive in the minds of many embedded
developers. Much of this runtime overhead can, particularly
in the domain of statically-configured software, however, be
eliminated by means of static analyses. Concerning the in
importance gaining spatial isolation of applications, there is
a common misbelief among many software developers that
hardware-based protection comes for free while software-
based protection incurs the overhead of a type-safe language.

2) Huge existing code base: The second, maybe more
significant issue, is the huge existing code base that has
developed over the years and, for both cost and time reasons,
cannot completely be re-engineered in a new language.

C. Proposal: Mixing C and Java Applications on an MCU

In this paper, we propose the concurrent operation of
both C and Java applications targeting statically-configured
embedded systems. Statically configured here means that the
entire code base as well as all operating system (OS) level
objects (threads, locks, events) are known at compile time.
Besides enabling the development of new components in
Java while preserving the existing investment, our approach
also enables the incremental migration. This is a prerequi-
site for any new technology for being accepted by many
industries.

To evaluate the overhead and test the feasibility of our
approach, we have ported the core component of a complex
real-world quadrocopter control application to Java and flew
the aircraft with our ported component combined with the
remaining original components. Our contributions are:

• The ability to directly compare the costs of hardware-
vs. software-based memory protection by making both
application-independent configurable properties of the
system software.

• The quantitative evaluation and qualitative experiences
of software- vs. hardware-based memory protection
and low-level vs. a safe high-level language at the
example of a complex real-world embedded application
on hardware and system software that is typical for the
domain of deeply embedded systems.

• A mixed operation of newly developed or re-engineered
safe components with existing legacy software at a
price that is comparable to the pure operation of the
unsafe code components.

II. SPATIAL ISOLATION MECHANISMS

Spatial isolation can be realized either software-based or
by employing a hardware protection unit. Software-based
isolation normally involves checking some or all memory
accesses of the application at runtime. While there are
software-based approaches that can be applied to binary
code [8], approaches based on a type-safe language can
constructively provide spatial isolation to a large degree
and only require a small amount of runtime checks. Re-
garding hardware-based memory protection, the memory
protection units (MPU) found on some low-cost chips for
deeply embedded systems normally work by restricting the
memory access to regions of the physical address space. The
number of these regions is limited by the number of ranges
that the specific MPU implementation supports. Memory
management units (MMU) that support virtualization of the
physical memory by providing logical address spaces are

commonly not found in the domain of deeply embedded
systems for cost reasons and predictability issues.

Comparing MPU- versus software-based spatial isolation,
each approach has advantages in some aspects: Isolation
based on the use of an MPU

• incurs no overhead while the execution stays within the
context of a particular application, whereas software-
based protection adds overhead by runtime checks.

• is less vulnerable to transient hardware errors, since the
protection concept relies on fewer memory locations
that normally reside in radiation-hardened areas.

Isolation based on the use of a type-safe language
• does not require a special hardware unit, which enables

the use of cheaper microcontrollers.
• is more flexible with regards to the granularity of

protection provided. MPU protection is limited to a
fixed, small number of memory regions that need to
include all the memory that is accessed by a particular
application.

• allows for efficient communication among applications
and system calls, since no protection-mode change is
necessary.

• not only provides spatial isolation, but can also detect
memory errors within a particular application such as
out-of-bounds array accesses.

The choice for a particular protection scheme consequently
highly depends on the characteristics of the application. It
may be reasonable to use different schemes for different
components of an application. Even for a given application
the choice may be dependent on external factors such as the
deployment scenario (e.g., testing vs. release development
phase, use in environments with differing safety require-
ments), thus the isolation scheme should not be hard-coded
in the application, but be a configurable property.

III. APPLICATION MODEL

Our application model is similar to that specified in
AUTOSAR OS. The application software is structured in so-
called OS applications. An OS application can be a distinct
logical application, but it is also possible to separate the
software components of an application into multiple OS
applications. As to our application model, this distinction
makes no difference. In the following, we will simply speak
of applications.

Applications span the realms of spatial isolation. Each ap-
plication control flow (task/thread, interrupt service routine
(ISR)) is assigned to exactly one application. Every portion
of memory that is accessed by applications also belongs to
exactly one application. The interaction and data exchange
among applications is exclusively performed by using OS
services.

We distinguish trusted and non-trusted applications.
Trusted applications together with the kernel compose the

Unsafe
unprotected

Java/C

HP
hardware protection

 Java/C

HP+SP
combined protection

 Java

SP
software protection

 Java

operating system
Trusted Code (TCB)

Untrusted Code

Software Protection Boundary Hardware Protection Boundary

allocate, sendreceive,release
Message Channel

shared
memory

SR

Figure 1. Application Model

trusted computing base. Control flows that belong to a
trusted application are not subject to the enforcement of
spatial isolation. On the other hand, control flows within
non-trusted applications may only access memory regions
that belong to the application. Restricting read accesses is
not required from a safety perspective, but could provide an
earlier detection of certain software defects.

A. Isolation Schemes

Spatial isolation is either enforced by an MPU or con-
structively by the use of a type-safe language. Figure 1 gives
an overview of the isolation types that are available in our
model. All four types can be derived from a Java application,
while only two types apply to C applications.

Hardware-Based Protection (HP): The application’s
memory accesses are checked to affect only the data seg-
ments of the current application by employing an MPU. A
Java application falls in this category if the runtime checks
are disabled but MPU protection is turned on.

Software-Based Protection (SP): Software-based protec-
tion is based on an application written in Java and a
Java Virtual Machine that supports a mechanism for the
isolated execution of multiple applications, for example by
implementing the Java Isolation API [9].

Combined Protection (HP+SP): Hardware- and software-
based memory protection may also be combined by addi-
tionally configuring the MPU regions for a Java application.
This type of protection combines the strengths but also the
costs of both isolation mechanisms.

Trusted Applications (Unsafe): Spatial isolation is not
enforced for trusted applications. This type of application
can be a C application running without memory protection
or a Java application that runs with runtime checks disabled.

B. Data exchange among applications

We support two OS abstractions for the exchange of data
among different applications. For both mechanisms, the data
exchange paths among different applications are defined
statically.

1) Shared Memory: Shared memory is a typed area of
memory that is made accessible to multiple applications.
The applications directly access this area without using
explicit OS primitives, thus completely bypassing the OS.
This mechanism has a number of problems, for example it

requires the applications to ensure the proper synchroniza-
tion of accesses to the area. Nevertheless, shared memory
is a data exchange mechanism that is found in many legacy
applications. For this reason, we decided to support it in our
model. Access to the shared memory area is permanent for
all accessing applications, thus it does not require protection
mode changes or MPU reconfigurations when accessing the
area.

2) Messaging: The second data exchange mechanism is
message-oriented and similar to comparable mechanisms
found in other operating systems for our target domain (e.g.,
OSEK COM [10]). The mechanism allows the definition of
message channels between different applications. The sender
side of the channel uses the primitives allocate to request a
message buffer from the operating system and send to send
the message to the receiving end. Sending a message triggers
an ownership transfer of the message from the sending
application to the receiving one. The receiver side uses the
primitives receive to receive a message and release to
release the message buffer to the operating system after
having processed the message data. Both ends must only
access a particular message between the two respective OS
primitives. Consequently, when using MPU protection, the
MPU has to be reconfigured upon invocation of any of these
primitives to grant or revoke the access to a message. The
message protocol provides implicit synchronization, since
it ensures that only one application can access a particular
message at a time, even if the OS chooses to use the same
memory for the send and receive buffers.

IV. IMPLEMENTATION

Our prototype uses CiAO [11], a family of embedded
operating systems that supports an API similar to that of
AUTOSAR OS. CiAO aims at providing a high level of static
configurability of even fundamental properties of the system
by employing aspect-oriented programming (AOP) [12],
thereunder MPU-based memory protection. The MPU pro-
tection in CiAO has been developed specifically with focus
on safety rather than security and is highly optimized for this
domain. Details on the implementation of MPU protection
in CiAO are available in a separate paper [13].

To support Java applications, we use KESO [14], a
JVM implementation for deeply embedded systems. KESO
requires static applications and does not support all features
of the Java 2 standard platform, most notably the dynamic
loading of classes. Rather than defining a fixed profile, that
defines a subset of JVM features that are supported by the
runtime, KESO’s approach is to use the available ahead-
of-time knowledge to create a Java virtual machine with
a feature set that is specifically tailored to the particular
application, thereby reducing the overhead to the necessary
minimum without statically restricting the available feature
set too much. KESO supports the isolated execution of
different applications. This is achieved by a strict logical

C, C++
code

Java
code

system
description

OS
configuration

CiAO
codebase

AspectC++

config
tool

jino

GCC

C
code

C, C++
code

binary
image

AspectC++
code

generated

application

OS

tool

Legend

Figure 2. Toolchain

separation of the object heaps of the different applications,
and the maintenance of a separate set of global variables
(i.e., the static class fields in Java) for each domain. These
measures are sufficient to eliminate any shared data. From
the viewpoint of the application, each application seems to
be executing in a JVM of its own.

KESO compiles Java bytecode to C code that includes the
Java runtime and runtime checks. This enables us to leave
CiAO completely oblivious of the Java code running on top.
To CiAO, the Java applications compiled to C code appear
as native C applications.

A. Toolchain

Figure 2 shows the Toolchain to illustrate how CiAO
and KESO are combined. The applications are provided
as C/C++ and Java source code. In addition, a system
description is provided by the system integrator that contains
the static configuration information on the complete system
(e.g., task and application definitions with their attributes,
assignments of tasks to applications). KESO’s Java-to-C
compiler jino compiles the Java applications to C code
and generates the static configuration for CiAO from the
system description. The generated CiAO configuration is
used by CiAO’s configuration tool to generate a CiAO
variant tailored to the feature requirements of the appli-
cations at hand. The implementation language of CiAO is
AspectC++ [15]. The AspectC++ weaver performs a source-
to-source translation of both the OS and the application code
to apply the advice given by the aspects in the generated
CiAO variant. Finally, the woven C++ code is compiled by
a C++ compiler and linked to the binary image.

B. Extensions to the KESO Multi-JVM

For our prototype, we extended KESO to support CiAO’s
MPU-based memory protection and low-level communica-
tion mechanisms. For the MPU-based memory protection,
we needed to physically group all data that belong to
an application in memory. This is basically achieved by
physically separating the heaps of the different applications
(i.e., statically partitioning the available heap space) and to
group it with the static field instances of each application.

This process is transparent to the software developer and
completely handled by the compiler.

To access CiAO’s shared memory and messaging com-
munication mechanisms from a Java application, we cre-
ated wrapper APIs using KESO’s native interface. These
APIs enable access to the shared memory or message area
through the base abstraction of RawMemory as defined by
the RTSJ [3]. RawMemory provides a low-level interface for
accessing primitive data that resides outside Java’s managed
memory areas and is often used for writing device drivers.
The area is of a fixed size and every memory access to this
area requires an explicit offset into the area, which needs to
be bound checked for safety reasons.

V. CASE STUDY: THE I4COPTER FRAMEWORK

To evaluate the practicability and costs of our approach,
we ported a central component of the I4Copter [16] project
to Java. The I4Copter is a quadrotor helicopter with an
overall span of 91 cm. Quadrotor helicopters are simple in
mechanical design and rely on four fixed pitch propellers,
pair-wise spinning in the opposite direction, and a simple
gearless drive. The flight attitude1 is solely controlled by
varying the rotation speed of the engines, which requires a
challenging control software to reliably control its inherently
unstable flight characteristics. The electronic control unit
on the I4Copter is a board based on the Infineon Tricore
TC1796 32-bit microcontroller, clocked at 150 MHz with a
1 MiB of external MRAM used for both code and data. The
TC1796 is equipped with an MPU that supports four data
regions for an application.

The control software of the I4Copter currently consists
of approx. 26,000 physical lines of C++ source code and
comprises a total of 13 mostly periodical tasks and four
ISRs. The software is structured in five major components,
which are modeled as separate OS applications that ex-
change data only by means of shared memory and mes-
saging. Figure 3 shows these components and the data
exchange paths among them. SIGNALPROCESSING samples the
various sensors and performs simple preprocessing (e.g.,
noise filtering). COPTERCONTROL receives steering commands
via radio control and transmits monitoring data to the base
station by wireless LAN. The ETHERNET component contains
the network stack and interface drivers and does the actual
WLAN communication. The core of the control application
is the FLIGHTCONTROL component, which takes as input the
steering and sensor data provided by the COPTERCONTROL and
SIGNALPROCESSING components via shared memory and com-
putes as output the thrust levels of the four engines. These
are actuated to the engines by sending a message to the
SERIALCOM component, which performs the communication
with bus-bound devices (e.g., via SPI), that is the engine
controllers and some sensors.

1Angle of the aircraft in regard to a reference point

SignalProcessing

Ethernet

FlightControl (unsafe/trusted)

FlightControl (HP+SP)

FlightControl (SP)

FlightControl (HP)

CopterControl

Accelerometers
a | a | aX Y Z

Gyroscopes
ω | ω | ωX Y Z

Magnetometers
G | G | GX Y Z

Proximity
LGr

Pressure
LRel

GPS
NMEA data

Angular Observer
φ | φ | φX Y Z

Estimation
Value

Sensor
Value

Radio Control
Channel Decoder

Command Arbiter
Steering Setpoints

Behaviour
Engine

Monitor
Ethernet Data

 Basic Steering Data

 Basic Steering Data

 Monitoring Data

Motion Controller
F |φ | φ | φZ X,S Y,S Z,S

Attitude Controller
F |M | M | MZ,S X,S Y,S Z,S

Engine Controller
U |U | U | UM1 M2 M3 M4

Packet Parser
& Builder

UDP Stack

Ethernet Driver

Steering Data Ethernet Data

 Basic Sensor Data Basic Sensor Data

Marvel Controller
Input Values

SerialCom

SPI Bus Driver

Steering Data Bus Message
9ms

21ms

3ms

Pa
ck

et
 R

X
B

us
 R

X

Radio RX

Steering DataBus MessageSteering Data Bus Message

 Monitoring Data

Figure 3. I4Copter Software Architecture: Components and Data Connections

null checks bound checks
Input 12 (+48 AOT) 26

Controller 0 (+125 AOT) 68
Output 23 (+83 AOT) 4

FLIGHTCONTROL 218 (+873 AOT) 164

Table I
RUNTIME CHECKS IN THE JAVA PORT

We have ported the FLIGHTCONTROL component to Java and
combine it with the remaining original C++ components. For
reasons of comparability, our port is as close in structure to
the original code as the language permits.

A. FlightControl Processing Stages

A run of the FLIGHTCONTROL can be divided in three stages,
which differ in the expected cost regarding the different
protection schemes.

Input: In the input phase, the sensor and steering input
data are copied from shared memory areas to the inter-
nal buffers of the control algorithm. The Java port uses
RawMemory to access the shared memory area, which implies
a bound check on each access. No MPU reconfigurations are
needed to access the area, since it is accessed read-only and
global read permissions are granted.

Controller: The controller is code generated using Mat-
lab’s real-time workshop from a Simulink model. It com-
putes the four engine thrust levels from sensor data, steering
commands and internal state retained from previous runs.
This stage is intensive in single-precision floating-point
computation and does not use any system services.

Output: The computed thrust levels are actuated to the
engine controllers by sending a message to the SERIALCOM

component and activating the receiving task. Sending the
message requires two MPU reconfigurations if MPU protec-
tion is used (allocate and send). An additional protection
mode change is required for the task activation. For access-
ing the message buffers, the Java port uses a combination
of RawMemory and KESO’s memory-mapped objects [14] to
access the message memory.

 460

 480

 500

 520

 540

 560

 580

 600

 620

 0 50 100 150 200 250 300 350 400

 0.5

 1

 1.5

ex
ec

ut
io

n
tim

e
(µ

s)

ov
er

he
ad

 fa
ct

or
 to

 C

data set

FlightControl Java (SP)
FlightControl C (HP)

Controller Phase C
Controller Phase Java

Figure 4. In-flight Execution Times C++ vs. Java

B. Performance Java vs. C++

We first examine how our Java port of FLIGHTCONTROL

compares to the original version. To create a realistic execu-
tion environment for the runtime measurement, we extended
the I4Copter application such that it runs both variants in
sequence. Both variants are periodically activated with a
period of 9 ms and use the same input data for computation.
The code executed in each variant is exactly the same as in
a standalone configuration. The C++ version is isolated by
MPU-based protection, whereas the Java version is isolated
by software-based means only. We measure the execution
time of the entire FLIGHTCONTROL task and separately the
execution times of the three earlier mentioned processing
stages by reading the value of the free running system timer
(clocked with 75 MHz) before and after the respective code
section. For our measurement, we disable the interrupts dur-
ing the execution of the FLIGHTCONTROL task. The measured
values along with the inputs used and the outputs generated
are transmitted by WLAN to the base station.

Figure 4 shows the results of the measurement. The dotted
lines are drawn against the right scale and show the overhead
factor of the Java version represented by the corresponding
solid line over the original variant. We only draw a slice of
400 of the more than 12,000 data sets that our measurement

C++ Java Java without runtime checks
code 72902 80654 72470
data 2412 2844 2844
bss 97264 104632 104632

Table II
FOOTPRINT OF THE COMPLETE SYSTEM

produced to keep the curve progression distinguishable. The
remaining data looks similar and does not provide additional
findings. For space reasons, we have not drawn separate
curves for the input and output phases; the execution times
of both phases are constant for all data sets.

In the input and output phases, the Java version needs
2.5x (input) and 1.2x (output) the time compared to the C++
version. This is due to the bound check that is performed for
each copied value, which is more expensive than the actual
operation. KESO is currently not very strong at optimizing
bound checks by static analyses. By using KESO’s memory-
mapped objects [14] instead of RawMemory to access the
shared memory areas, we expect that most of this overhead
could be eliminated. The few system calls in the output
phase could not compensate these checks.

In the controller phase, the Java port unexpectedly slightly
outperforms the original variant despite the runtime checks
within the controller by about 5%. We identified two major
reasons for this result: Firstly, KESO was able to perform
most of the runtime checks at compile time. As shown in
Table I, all null checks for non-array accesses could be per-
formed ahead of time (AOT) and only bound checks remain
in the controller. Secondly, the C++ version calls down to
the C library for many simple floating-point operations (e.g.
fabsf, fmodf), which are inlined in the Java port.

In the total execution time, the Java version has an
overhead of about 4% compared to the C++ version. To
our surprise, the Java version performed worse in the I/O-
intensive phases but outperformed the C++ variant in the
computationally intensive part. The reason is that the small
number of three system calls does not pose a significant
overhead compared to the total execution time of the re-
maining computations. The overhead factor in all phases is
constant within the accuracy of the measurement.

Footprint: Table II shows the footprints for the complete
system. The Java port is about 11% larger in code size than
the C++ version. The causes for this are mostly the runtime
checks in the code, as a version without these checks is
about the same size as the C++ version. Since our Java port
does not use garbage collection, it only contains a very slim
KESO runtime. For initialized data, the Java port requires
about 17% of additional RAM. This is mainly caused by
KESO’s runtime type information. The 8% overhead in
uninitialized data is caused by the heap that all Java objects
are allocated of. We chose a heap size that is very close to the
memory requirements of the application. The increased size
stems from object headers that are needed for Java objects
and are not present in the respective C++ counterparts.

 420

 440

 460

 480

 500

 520

 540

 0 50 100 150 200 250 300 350

ex
ec

ut
io

n
tim

e
(µ

s)

data set

HP+SP
SP
HP

unsafe

Figure 5. Offline Comparison of Different Isolation Variants

C. Cost of Protection Variants

After comparing the costs of C++ and Java, we want
to determine the cost imposed by the use of MPU- vs.
software-based memory protection without noise generated
by the difference of our two ports. For this, we derive
all four protection schemes from our Java port by either
disabling MPU-based protection in the OS or disabling the
runtime checks. To achieve comparable results, we need to
run the component with identical input data, which is not
the case when performing consecutive flights. We therefore
isolated the FLIGHTCONTROL component from the framework
and created an offline test that feeds the component with
compiled-in input data that we take from a flight data trace.

The results of this measurement are depicted in Figure 5.
For our ported component, enabling MPU protection causes
an overhead of 1–2% in the overall execution time of the
component, while the version that includes runtime checks
introduces an overhead of 20–22%. The reason for this
is the high share of internal computation as opposed to
only three system calls that require an MPU reconfiguration
in the FLIGHTCONTROL component. Thus, for this particular
component the MPU can be used without much impact
on the performance. The software-based isolation, on the
other hand, comes at a higher price but has the potential of
detecting additional memory errors within the component
itself. We expect that many of the bound checks could
be eliminated by improving KESO’s static analyses. In the
current schedule of the I4Copter application, there is enough
slack time to leave the checks active in the application. We
expect that more communication intensive components such
as the SERIALCOM component with a simple internal logic
will show a different picture and are currently working on a
port of this component to check if these expectations apply.

D. Discussion

In this section, we want to share some experiences we
gathered in the process of porting the FLIGHTCONTROL com-
ponent.

1) Bugs found: During our port, we found that simple
programming errors such as off-by-one happen to even
experienced programmers. The runtime checks happened to
be a quick aid in finding these bugs, especially since the
debugging tools available for our platform failed to work
reliably in the presence of MPU-based memory protection.
Besides discovering bugs in our port, we could also find
three bugs in the original code, one of which was already
discovered at compile time by Java’s stricter type system.
One of these bugs resulted in the delayed mode change of
the FLIGHTCONTROL component to the flight mode on takeoff.

2) Developer burdens when using MPU protection:
We found the code structure of the I4Copter application
sometimes being more oriented on the memory protection
implementation of the OS rather than the logical structure
of the solved problem. Whenever dealing with data items of
non-local scope, the programmer had to take care of placing
each data item in the correct memory region. Sometimes, this
can become troublesome, for example if static members of a
shared class need to be used from different components. We
found many custom workarounds for such issues throughout
the code base. Getting back to the example of ECU software
in the automotive industry, even though the importance of
spatial isolation has been recognized and became part of the
AUTOSAR standard, the situation is that MPU protection is
still almost unused. We believe that one major advantage of
using a managed language is that it allows to fully hand the
job of placing data items in the appropriate memory areas to
the compiler tools and thus greatly facilitates and encourages
the use of MPU-based memory protection.

3) Safety checks in embedded applications: As we ob-
served with the bound checks in our case study, runtime
checks can pose a considerable overhead for an application.
Static analyses can greatly reduce this overhead if they
can proof that a particular safety check will never fail at
runtime and thus allow for a safe omission of the runtime
check from the generated code. We believe that embedded
applications and particular those that need to fulfill real-
time requirements are a good target for such static analyses,
as these applications are often developed with analyzability
as an explicit design goal in mind. Table I supports this
claim: 80% of the null checks could be eliminated by static
analyses, mitigating the commonly assumed unacceptable
costs of the increased safety level.

VI. RELATED WORK

In the area of general purpose computing, RPC-based
mechanisms allow the isolated co-existence of safe and
unsafe applications [17] by employing traditional operating
system processes. This isolation mechanism is based on the
use of multiple address spaces and requires the availability
of a memory management unit, which is rarely found in
deeply embedded systems.

Safe dialects [18], [19], [20] of the C language extend the
type-system of C and also enable the incremental migration
of a legacy code base. Most of these approaches work similar
to that of a type-safe language such as Java and combine
static analyses with runtime type information and safety
checks, however, since the extensions made to C are solely
with scope on the safe type system, these approaches do not
provide the high-level language features and leave the task
of memory management in the hands of the developer. Safe
code is not isolated from unsafe code, thus portions of the
code base that have not been migrated to the safe dialect
become part of the trusted code base.

Foreign function interfaces (FFI) allow code written in
different languages to directly interact. The Java Native
Interface [21] is directly integrated with the Java 2 standard
platform, however, the mechanism has been developed to
be portable across many JVM implementations and is rather
expensive. The Java 2 micro edition does not contain a native
interface, but many embedded Java implementation come
with own, more lightweight implementations of a native
interface to enable tasks such as device driver development.
The common problem is that the native code is not executed
in isolation from the safe code and hence needs to be trusted.
There are also approaches that combine a native interface
with a type-safe C dialect [22], [23]. These require the
foreign code parts to be re-engineered in the chosen safe
dialect. In addition, the isolation is purely software-based.

VII. CONCLUSION

In this paper, we presented an approach that offers
a safe incremental migration path for existing statically-
configured embedded C applications to a type-safe language.
We have developed a prototype that uses the memory
protection mechanism most commonly found in the domain
of deeply embedded systems and a Java ahead-of-time
compiler that was specifically targetted towards this do-
main. We extended KESO with the low-level communication
mechanisms shared memory and message passing, which
are widely spread in existing applications, to enable the
safe communication between re-engineered Java and legacy
components. To test the feasibility of our approach, we
presented a case study in which we migrated a significant
portion of a complex real-world, hard real-time application
to Java.

While the overhead introduced by the runtime checks
required by most type-safe languages can indeed pose a
significant overhead to the application, compiler optimiza-
tions and static analyses can often compensate this overhead.
In our case study, where our ported component turned out
to be subject to many safety checks and thus a piece of
software that can be isolated by using the MPU in a much
cheaper way, the 22% overhead of the safety checks could
be reduced to a total overhead of only 4% compared to
the C version by other optimizations in other places. MPU

protection can additionally be used with only little added
expense and without the need for the software developer to
manually cope with the low-level requirements of region-
based memory protection.

To conclude, type-safe languages can be introduced step-
wise without imposing unacceptable costs. Hardware- and
software-based memory protection are not mutually ex-
clusive but complementing ways of achieving spatial iso-
lation of applications. Having these ways as application-
independent configuration options allows to easily determine
the cost of the different variants and supports the decision
based on the costs and the safety requirements for the given
deployment scenario. The use of Java not only opens up the
option of software-based memory protection but also makes
the use of MPU-based memory protection more attractive as
it relieves the developer of the burden to manually arrange
for the physical grouping of application data in memory.
Given that MPU protection is barely used today particularly
for this reason, the use of Java can pave the way to a broader
application of MPU protection.

REFERENCES

[1] G. Phipps, “Comparing observed bug and productivity rates
for Java and C++,” Softw. Pract. Exper., vol. 29, no. 4, pp.
345–358, 1999.

[2] E. Quinn and C. Christiansen, “Java Pays – Positively,” IDC
Bulletin W16212, Framingham, MA 01701 USA, May 1998.

[3] “JSR 1: Real-time Specification for Java,” Sun Microsystems
JCP, Palo Alto, CA, USA, May 2006. [Online]. Available:
http://jcp.org/en/jsr/detail?id=1

[4] B. Hardung, T. Kölzow, and A. Krüger, “Reuse of software in
distributed embedded automotive systems,” in 4th ACM Conf.
on Embedded Software (EMSOFT ’04), Pisa, Italy, Sep. 2004,
pp. 203–210.

[5] M. Broy, “Challenges in automotive software engineering,” in
28th Int. Conf. on Software Engineering (ICSE ’06). New
York, NY, USA: ACM, 2006, pp. 33–42.

[6] AUTOSAR, “Specification of operating system (version
4.0.0),” Automotive Open System Architecture GbR, Tech.
Rep., Dec. 2009.

[7] OSEK/VDX Group, “Operating system specification 2.2.3,”
OSEK/VDX Group, Tech. Rep., Feb. 2005, http://portal.osek-
vdx.org/files/pdf/specs/os223.pdf, visited 2009-09-09.

[8] R. Kumar, E. Kohler, and M. Srivastava, “Harbor: Software-
based memory protection for sensor nodes,” in IPSN ’07:
6st Int. Conf. on Information Processing in Sensor Networks.
New York, NY, USA: ACM, 2007, pp. 340–349.

[9] “JSR 121: Application Isolation API Speci-
fication,” Sun Microsystems JCP, Palo Alto,
CA, USA, Jun. 2006. [Online]. Available:
http://jcp.org/aboutJava/communityprocess/final/jsr121/

[10] OSEK/VDX Group, “OSEK/VDX communication 3.0.3,”
OSEK/VDX Group, Tech. Rep., Jul. 2004, http://portal.osek-
vdx.org/files/pdf/specs/osekcom303.pdf.

[11] D. Lohmann, W. Hofer, W. Schröder-Preikschat, J. Stre-
icher, and O. Spinczyk, “CiAO: An aspect-oriented operating-
system family for resource-constrained embedded systems,”
in 2009 USENIX ATC. Berkeley, CA, USA: USENIX, Jun.
2009, pp. 215–228.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented pro-
gramming,” in 11th Eur. Conf. on OOP (ECOOP ’97), ser.
LNCS, M. Aksit and S. Matsuoka, Eds., vol. 1241. Springer,
Jun. 1997, pp. 220–242.

[13] D. Lohmann, J. Streicher, W. Hofer, O. Spinczyk, and
W. Schröder-Preikschat, “Configurable memory protection by
aspects,” in 4th W’shop on Progr. Lang. and OSes (PLOS ’07).
New York, NY, USA: ACM, Oct. 2007, pp. 1–5.

[14] I. Thomm, M. Stilkerich, C. Wawersich, and W. Schröder-
Preikschat, “KESO: An open-source multi-jvm for deeply
embedded systems,” in JTRES ’10: 8th Int. W’shop on Java
Technologies for real-time & embedded Systems. New York,
NY, USA: ACM, 2010, pp. 109–119.

[15] O. Spinczyk and D. Lohmann, “The design and implementa-
tion of AspectC++,” Knowledge-Based Systems, Special Issue
on Techniques to Produce Intelligent Secure Software, vol. 20,
no. 7, pp. 636–651, 2007.

[16] P. Ulbrich, R. Kapitza, C. Harkort, R. Schmid, and
W. Schröder-Preikschat, “I4Copter: An adaptable and mod-
ular quadrotor platform,” in Proceedings of the 26th ACM
Symposium on Applied Computing (SAC ’11). New York,
NY, USA: ACM, 2011, to appear.

[17] M. Aiken, M. Fähndrich, C. Hawblitzel, G. Hunt, and
J. Larus, “Deconstructing process isolation,” in MSPC ’06:
Proceedings of the 2006 workshop on Memory system per-
formance and correctness. New York, NY, USA: ACM,
2006, pp. 1–10.

[18] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney,
and Y. Wang, “Cyclone: A safe dialect of C,” in 2002 USENIX
ATC. Berkeley, CA, USA: USENIX, 2002, pp. 275–288.

[19] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer, “CCured in the real world,” in ACM SIGPLAN
Conf. on Programming Language Design and Implementation
(PLDI ’03). New York, NY, USA: ACM, 2003, pp. 232–244.

[20] J. Condit, M. Harren, Z. R. Anderson, D. Gay, and G. C.
Necula, “Dependent types for low-level programming,” in
ESOP, ser. LNCS, R. D. Nicola, Ed., vol. 4421. Springer,
2007, pp. 520–535.

[21] “Java Native Interface Specification 1.1,” Sun Microsystems,
Palo Alto, CA, USA, Aug. 2005.

[22] G. Tan, A. W. Appel, S. Chakradhar, A. Raghunathan, S. Ravi,
and D. Wang, “Safe Java native interface,” in Proceedings of
the 2006 IEEE International Symposium on Secure Software
Engineering, 2006, pp. 97–106.

[23] M. Furr and J. S. Foster, “Checking type safety of foreign
function calls,” in ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI ’05). New
York, NY, USA: ACM, 2005, pp. 62–72.

