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ABSTRACT
Modern cars contain a large number of diverse microcon-
trollers for a wide range of tasks, which imposes high efforts
in the integration process of hardware and software. There
is a paradigm shift from a federated architecture to an inte-
grated architecture with commonly used resources to reduce
complexity, costs, weight and energy.

AUTOSAR [3] is a system platform that allows the inte-
gration of software components (SW-C) and basic software
modules provided by different manufacturers. The system
platform can be tailored in a wide range to efficiently use
the resources of the individual electronic control unit.

Software modules - mostly written in C or even Assembler
- are rarely isolated from each other and have global access
to the memory, wherefore an error can easily spread among
different software modules. Memory protection mechanisms
therefore gain more importance on the AUTOSAR platform.

Hardware-based memory protection - an optional feature
in AUTOSAR systems – requires a memory protection unit
(MPU), which is not present on low-end microcontrollers.
By using type safe languages such as Java, software-based
memory protection can be applied on these devices. The
performance, footprint and resource consumption of a module
written in Java are comparable to the C implementation, if
novel and adapted tools for the application area are used.

This paper presents the KESO compiler tool for efficiently
developing Java applications using software-based spatial
isolation. Moreover, we show that a seemless integration with
legacy C applications on an AUTOSAR system is feasible by
means of the KESO component API generator1.

1. INTRODUCTION
AUTOSAR (Automotive Open System Architecture), which

we describe further in section 2, standardizes the software

1This work is sponsered by ESI
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.

architecture for system functionality and drivers in automo-
tive software. It is motivated by the growing complexity of
software functionality provided in cars and facilitates the
integration of multiple applications on fewer, more powerful
microcontrollers.

Standardized, tested software modules as specified by AU-
TOSAR are shown to contain less software bugs. However,
only a part of a complete AUTOSAR compliant software sys-
tem is covered by the standard. Applications, ECU specific
functionality and drivers for microcontroller external devices
have to be developed independently for each project.

In a network of dedicated microcontrollers, the deployed
software is physically isolated from each other. This isolation
is missing among applications running on the same microcon-
troller, which enables malfunctioning applications to corrupt
the memory of other applications, spreading the error and
possibly resulting in a failure of all applications running on
the same hardware.

Software development in the C programming language
and Assembler tends to be error-prone, yet these languages
dominate the development of embedded software. This, along
with the ever-increasing software complexity, even aggravates
the problem and increases the importance of isolation.

The automotive industry has realized these problems and
introduced standards such as AUTOSAR [3] and Misra C [6],
which restricts the C language to avoid programming errors,
but also causes more inconvenient code. AUTOSAR OS [2],
for example, addresses the necessity of memory protection
by the optional use of the MPU of a microcontroller unit
(MCU), which imposes some problems:

• Isolation can only be achieved if an MPU is present.

• Correct memory partitioning necessary for hardware-
based protection is a non-trivial task.

• The lower performance caused by the use of an MPU is
not acceptable for some developers, which often leads
to the deactivation of the protection feature.

To address these issues, we developed KESO [10], a multi-
JVM for deeply embedded systems. It offers software-based
memory protection by the use the type-safe language Java,
preventing the use of arbitrary values as memory references.
Besides isolation, the use of a modern language such as Java
avoids many programming errors and improves productivity
and maintainability of the resulting software module. We
will show, that the overhead caused by the use of Java by
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Figure 1: The AUTOSAR platform

means of KESO instead of the language C is viable for the
benefits gained.

2. AUTOSAR
In this section, we briefly describe some important aspects

of AUTOSAR. For a detailed explanation, please refer to
[3]. The AUTOSAR development partnership, which was
founded in 2003, is an association of car, ECU and MCU
manufacturers as well as tool suppliers and basic software
providers. AUTOSAR specifies the software architecture
and basic software modules, that a static embedded system
conforming to AUTOSAR consists of. The implementation
of this standard is performed by the basic software providers
and AUTOSAR-compliant modules can easily be exchanged.

One key understanding of the AUTOSAR consortium was
that basic system functionality – that is not directly visible to
car customers, such as hardware drivers – does not have to be
implemented by all parties in a different way. This approach
only leads to compatibility issues and various software bugs.

The competition regarding the expertise on software devel-
opment can still happen in the application sector, which is
directly visible to the customer. The AUTOSAR approach is
a logic consequence of more powerful MCUs and development
processes that already have taken place on the PC market,
where system software such as Linux or Windows has been
used for a long time.

Figure 1 illustrates the AUTOSAR platform, that coarsely
is divided into:

• The application layer, that consists of so-called software
components (SW-C).

• The basic software (BSW), that offers system function-
ality such as scheduling and communication mecha-
nisms implemented by the OS and COM modules as
well as memory and device access.

• The Runtime Environment (RTE), that provides uni-
form communication of SW-Cs and BSW on the same
ECU as well as communication with other ECUs in
the network. The kind of the actual communication
– CAN or LIN, for example – is transparent for the

application programmer. In this way, an SW-C can
easily be moved to a different ECU without the need of
adaption of the implementation. The only thing that
changes, is the configuration information of software
modules. The RTE is a completely generated piece of
code. If any configuration changes, the RTE has to be
created again by an RTE generator tool.

BSW modules in AUTOSAR offer a huge range of possi-
bilities to use a certain module. An example is the NVRAM
module in the memory services, that is responsible to handle
access to non-volatile memory, which can be an EEPROM
or Flash, that is directly present on an MCU or can also
be an external device on the ECU. Due to configuration
of the NVRAM manager and the respective BSW memory
modules, the setup needed for a specific need can be chosen.
Functionality, that is not needed can be omitted during the
generation process, which leads to an acceptable footprint of
the binary image. As can be seen, a lot of work has moved
from the implementation to the configuration domain. Con-
figuration information for AUTOSAR modules are placed
in XML description files. To ease the handling with the
numerous description files, code generators and the correct
ordering, a workflow for the integration process has also been
suggested by the AUTOSAR Methodology.

However, there are some areas, that are only partially
specified by the AUTOSAR standard, since they are specific
to a certain project and ECU:

• The SW-C layer, which contains the application logic

• The ECU Abstraction, which provides a software inter-
face to the electrical values of any specific ECU in order
to decouple higher-level software from all underlying
hardware dependencies

• Complex device drivers for direct hardware access

SW-Cs have standardized interfaces and communicate with
other modules via ports. They contain the application logic
that can be found in runnable entities. Runnable entities
are scheduled by the RTE according to the configuration for
events specified in SW-C description file. The description
file, that contains the formal design for an application, facili-
tates the decoupling of application development and system
integration.

Complex device drivers allow to circumvent the AUTOSAR
layered architecture to directly access the hardware. This
module is particularly interesting for time critical applications
and also facilitates the migration from a usual automotive
software system to an AUTOSAR compliant system. The
use of complex device drivers should be limited, since there
is the risk of falling back to obsolete development practice
eliminating the advantages of the AUTOSAR platform.

Modules such as SW-Cs or other project-specific parts are
a good choice for an implementation with KESO (section
3), since they often have to be implemented for a special
purpose, which allows for a smooth migration as described
in section 4.

3. KESO: A MULTI-JVM FOR DEEPLY EM-
BEDDED SYSTEMS

KESO allows several Java applications to safely coexist on
a single microcontroller by providing a Java Virtual Machine
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Figure 2: The KESO architecture

(JVM) instance for each application. The KESO architecture
is depicted in Figure 2. In this section, we will give a short
overview on the target domain and the different architec-
tural components that a KESO system is composed of. A
more detailed description of KESO can be found in previous
publications [10].

3.1 Target Domain
KESO targets statically configured applications to be run

on even deeply embedded systems. The primary development
platform was an OSEK/VDX system running on an Infineon
Tricore TC1796, which is a common microcontroller in the
automotive sector. But also other platforms were used and
the smallest microcontroller so far, was the ATmega85352.

3.2 Ahead-of-Time Compilation
The user applications are developed in Java and available

as Java bytecode after having been processed by a Java
compiler. Normally, this bytecode is interpreted or just-in-
time compiled by the JVM at runtime. Both techniques
introduce a significant overhead to the amount of code.

For this reason, we opted for generating native code ahead
of time, which facilitates to achieve a very slim runtime
environment and performance comparable to that of appli-
cations written in languages such as C. Instead of directly
compiling the Java bytecode to native code, our compiler
JINO emits ISO-C90 code, which has some advantages over
directly generating native code:

• No need for a JINO backend for each supported target
platform. A standard C compiler is available for almost
any of the target platforms.

• The available C compilers allow to create highly op-
timized code at the function level. We can therefore
concentrate on high-level optimizations in JINO and
leave the low-level optimizations to the C compiler.

• Existing tools (e.g., OSEK/VDX build enviroment,
WCET analysis) operating on C code remain applica-
ble.

The generated C code does not only contain the compiled
class files, but also the KESO runtime data structures. More-
over, additional code is inserted to retain the properties of
a JVM, such as null reference checks and array bounds

2The ATmega8535 is a 8-bit microcontroller with 8 KiB of
Flash ROM and 544 bytes internal SRAM.

checks, and the code of other services of the KESO runtime
environment, such as garbage collection and inter-domain
communication.

The generated KESO runtime is tailored towards the ap-
plication’s requirements, so the infrastructure code and data
required for features such as floating point arithmetic or
the support for multiple domains will only be added to the
runtime if used by the application.

3.3 Protection Domains
The fundamental structural component in a KESO system

is the protection domain, which defines a realm of protection
and enables different applications to peacefully coexist on
a microcontroller with communication limited to a set of
well-defined and safe communication channels. From the
perspective of the application, each domain appears to be
a JVM of its own, which is why this architecture is also
referred to as a Multi-JVM.

Domains are containers of control flows (i.e., tasks/threads
and interrupt service routines (ISR)) and system objects
(i.e., instances of operating system abstractions such as re-
sources/locks or timers/alarms). Actions on these system
objects are also limited to control flows within the same
domain, except for system objects that are explicitly made
available to other domains. The special domain Zero is part
of the trusted computing base (TCB) and contains privileged
control flows of the runtime environment such as the garbage
collector.

Spatial isolation ensures that control flows are only able to
access memory of data regions belonging to the domain in the
context of which the control flow is being executed. Therefore,
each piece of data can be logically assigned to exactly one
domain. In Java, type safety ensures that programs can only
access memory regions to which they were given an explicit
reference; the type of the reference also determines, in which
way a program can access the memory region pointed to by
the reference. To achieve spatial isolation, KESO ensures
that a reference value is never present in more than a single
domain and all inter-domain communication mechanisms
must ensure that no reference values can be propagated to
another domain.

3.4 Inter-Domain Communication
KESO provides several mechanisms that enable domains

to interact with their environment. The KESO Native In-
terface (KNI) enables unsafe operations such as configuring
peripheral hardware or interfacing with native libraries and
the operating system API. The KNI provides a mechanism
to extend the ahead-of-time compiler (JINO) with so-called
weavelets. A weavelet takes over the C code generation for
registered join points (e.g. methods calls, method bodies,
field accesses) and replaces the generated code with applica-
tion specific code. In this way, extentions can be woven into
the generated code without additional overhead.

Another inter-domain communication mechanism provided
by KESO is a kind of shared memory. Untyped memory areas
can be allocated, dynamically or statically via a memory
service. Within the domain, the allocated memory area is
represented by a memory object and the data can be accessed
via set/get-methods. It is possible to allocate the same
physical memory area in different domains or the memory
object can be passed to a different domain. To access the
memory area via set/get-methods is like an array access,



where the items are adressed relative to the start adress of
the memory area. A boundary check ensures that all accessed
items are placed within the allocated memory area.

A memory object can be mapped to a memory type for
saving the costs for address calculation and boundary check-
ing at runtime. The activity of mapping a memory object
to a memory type is similar to activity of casting untyped
memory to a struct in C.
Portals provide an RPC-like, control-flow-oriented mech-

anism to communicate between domains. A domain can
promote the interface of a service class to other domains via
a global name service. The promoted interface is represented
by a proxy object in the client domain and the methods can
be accessed via a normal method invocation. Portals can
also be used to communicate between domains on different
microcontrollers as presented in an earlier publication [12]
to create distributed applications. To ensure the spatial
isolation of a domain, all parameters are passed by value
with the only exception of memory objects where only the
memory object is copied but not the represented memory
area.

4. JAVA SOFTWARE COMPONENTS
In this section, we describe how KESO can be used to

implement AUTOSAR SW-Cs in Java and let them com-
municate with AUTOSAR BSW modules and other SW-Cs
written in C.

4.1 Approach
KESO was designed to create C code out of Java bytecode,

which can be integrated into an OSEK/VDX environment.
Since AUTOSAR OS is the successor of OSEK/VDX with
supplementary features, the generated C code can easily be
integrated into an AUTOSAR system.

But AUTOSAR has also a lot of additional functionality
in contrast to OSEK/VDX. The RTE, for example, provides
a powerful abstraction layer for communication among lo-
cal and non-local SW-Cs and the BSW. The usage of the
RTE is complicated in comparison to the portal mechanism
provided by KESO, but it offers more functionality (e.g. asy-
chronous communication) and it is mandatory for a smooth
integration of SW-Cs into an AUTOSAR system. Therefore,
we decided to make the AUTOSAR RTE accessable to the
KESO domain.

4.2 RTE Access

4.2.1 Java RTE interface
The communication ports of a AUTOSAR SW-C are de-

scribed in an XML configuration file. The configuration is
used by an RTE tool to create the needed implementation for
the communication channels. We use the same configuration
file to create a Java class representing the RTE and provide
the C functions as static Java methods. The application
programmer can therefore use the methods as one would use
the original C functions.

In addition, a KNI weavelet (see chapter 3.4) is appro-
priately configured to replace the method invocation at the
caller side with the correspondig RTE call. While the func-
tion call is woven into the generated C code, there will be
no additional overhead for ports with primitive parameters
only.

4.2.2 RTE parameter handling
Primitive parameters like integers can be passed to the

RTE call without conversion as long as there are compatible
types in Java. In Java, all integer types are signed, unsigned
types do not exist. The application developer has to handle
these cases. Primitive parameters are passed by value and
therefore they will not break the isolation property of the
KESO domain.

Complex parameters (pointers, arrays or structs) are more
complicated. We handle these cases by the use of memory
objects and memory types. Appropriate classes for the mem-
ory types and glue code to direct the pointers are generated
where needed.

4.3 Integrated Generation Process
In this section, we will show how KESO can be embedded

in the standard AUTOSAR generation process. Figure 3
shows the combined approach. For a detailed description of
the generation process, please refer to the AUTOSAR speci-
fication. The light-grey colored boxes depict the standard
generation as specified by AUTOSAR, while the dark-grey
boxes represent the components of the Java toolchain. The
generation according to AUTOSAR requires a range of for-
mal descriptions and configuration files in the XML format
for the:

• SW-Cs (e.g. interfaces, runnable code)

• ECUs (hardware characteristics)

• System constraints (e.g. communication matrix), where-
by a system is a compound of ECUs

The files are used to create the system configuration de-
scription, that contains the descriptions for each ECU in a
network. A lot of BSW modules also use configuration files
and their generators for creating BSW modules tailored for
a certain setup. Java BSW modules and available generation
tools can also be embedded in this tool chain.

The SW-C descriptions are used for the component API
generators. They generate the interface functions, that are
needed for communication with BSW services, other SW-Cs
or ECUs in the network. For KESO, we have the KESO com-
ponent API generator, that takes standard SW-C descriptions
and creates the respective Java API for Java SW-C, which
facilitates a smooth integration. After the API generation,
application development can be performed independently of
the system integration process.

A Java compiler is used to create bytecode from all Java
source components. The generated bytecode and third-party
bytecode code are processed by JINO. The emitted C code
is then compiled and linked with all other C files to a binary
image, that can be loaded onto an ECU.

4.4 Evaluation
For a detailed evalation of KESO in comparison to standard

C applications, please refer to [10], where the flight attitude
control algorithm of the I4Copter quadrocopter [11] was
ported to Java. The main control unit on the quadrocopter
is an Infineon Tricore TC1796 3 device, that is also often
employed in the automotive domain.

3150 MHz CPU clock, 75 MHz system clock, 1 MiB MRAM
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5. CONCLUSION
Both KESO and AUTOSAR provide an abstraction to im-

plement software components, which can be distributed more
easily between different microcontrollers. In AUTOSAR, the
communication ports between software components are pro-
vided by the RTE. For a smooth integration of KESO Java
applicatons into an AUTOSAR environment, we created a
tool to access RTE ports. The needed RTE interface is gener-
ated from the XML-configuration defined in the AUTOSAR
specification. The Multi-JVM KESO was designed to execute
Java bytecode in an OSEK/VDX environment. It assumes
a static system configuration, offers software-based spatial
isolation and brings the advantages of a modern program-
ming language to the embedded domain, which makes KESO
different to other embedded JVMs [1, 5, 8, 4, 7, 9]. KESO
reduces the runtime and memory requirements to a reason-
able amount. The results of the evaluation are consistent
with those of an earlier evaluated prototype application [13].
In both applications, the overhead in code size is less than
10%. Given that KESO could also provide more efficient
implementations of the library functions (or simply use the
C library’s function via the KNI), the overhead in execution
time is less than 10% as well.
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