
Enhancing Coordination in Cloud Infrastructures
with an Extendable Coordination Service ∗

Tobias Distler1, Frank Fischer1, Rüdiger Kapitza2, and Siqi Ling1

1Friedrich–Alexander University Erlangen–Nuremberg 2TU Braunschweig

ABSTRACT
With application processes being distributed across a large
number of nodes, coordination is a crucial but inherently dif-
ficult task in cloud environments. Coordination middleware
systems like Chubby and ZooKeeper approach this prob-
lem by providing mechanisms for basic coordination tasks
(e. g., leader election) and means to implement common data
structures used for coordination (e. g., distributed queues).
However, as such complex abstractions still need to be im-
plemented as part of the distributed application, reusability
is limited and the performance overhead may be significant.

In this paper, we address these problems by proposing
an extendable coordination service that allows complex ab-
stractions to be implemented on the server side. To enhance
the functionality of our coordination service, programmers
are able to dynamically register high-level extensions that
comprise a sequence of low-level operations offered by the
standard coordination service API. Our evaluation results
show that extension-based implementations of common data
structures and services offer significantly better performance
and scalability than their state-of-the-art counterparts.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Distributed Systems

General Terms Design, Performance, Reliability

Keywords Cloud, Coordination Service, ZooKeeper

1. INTRODUCTION
Large-scale applications running on today’s cloud infras-

tructures may comprise a multitude of processes distributed
over a large number of nodes. Given these circumstances,
fault-tolerant coordination of processes, although being an
essential factor for the correctness of an application, is dif-
ficult to achieve. As a result, and to facilitate their design,

∗This work was partially supported by an IBM Ph.D. Fellow-
ship for T. Distler, and by the European Union’s 7th Frame-
work Programme (FP7/2007-2013) under grant agreement
n◦257243 (TClouds: http://www.tclouds-project.eu/).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SDMCMM ’12, December 3-4, 2012, Montreal, Quebec, Canada.
Copyright 2012 ACM 978-1-4503-1615-6/12/12 ...$15.00.

fewer and fewer of such applications implement coordination
primitives themselves, instead they rely on external coordi-
nation services. Large-scale distributed storage systems like
BigTable [6] and HBase [2], for example, do not provide
means for leader election but perform this task using the
functionality of Chubby [5] and ZooKeeper [7], respectively.

However, instead of implementing more complex services
(e. g., leader election) directly, state-of-the-art coordination
middleware systems only provide a basic set of low-level
functions including file-system–like access to key-value stor-
age for small chunks of data, a notification-based callback
mechanism, and rudimentary access control. On the one
hand, this approach has several benefits: Based on this low-
level functionality, more complex services and data struc-
tures for the coordination of application processes (e. g.,
distributed queues) can be implemented. Furthermore, the
fact that state-of-the-art coordination services are replicated
frees applications developers from the need to deal with
fault-tolerance–related problems, as the coordination ser-
vice does not represent a single point of failure. On the
other hand, this flexibility comes at a price: With more com-
plex services being implemented at the coordination-service
client (i. e., as part of the distributed application), reusabil-
ity is limited and maintenance becomes more difficult. In
addition, there is a performance overhead for cases in which
a complex operation requires multiple remote calls to the
coordination service. As we show in our evaluation, this
problem gets worse the more application processes access a
coordination service concurrently.

To address the disadvantages of current systems listed
above, we propose an extendable coordination service. In
contrast to existing solutions, in our approach, more com-
plex services and data structures are not implemented at the
client side but within modules (“extensions”) that are exe-
cuted at the servers running the coordination service. As
a result, implementations of coordination-service clients can
be greatly simplified; in fact, in most usage scenarios, only
a single remote call to the coordination service is required.

In our service, an extension is realized as a sequence of
regular coordination-service operations that are processed
atomically. This way, an extension can benefit from the flex-
ibility offered by the low-level API of a regular coordination
service while achieving good performance under contention.

Besides enhancing the implementation of abstractions al-
ready used by current distributed applications, extensions
also allow programmers to introduce new features that can-
not be provided based on the functionality of traditional
coordination services: By registering custom extensions, for
example, it is possible to integrate assertions into our ex-

http://www.tclouds-project.eu/

tendable coordination service that perform sanity checks on
input data, improving protection against faulty clients. Fur-
thermore, extensions may be used to execute automatic con-
version routines for legacy clients, supporting scenarios in
which the format of the coordination-related data managed
on behalf of an application differs across program versions.

In particular, this paper makes the following three con-
tributions: First, it proposes a coordination service whose
functionality can be enhanced dynamically by introducing
customized extensions. Second, it provides details on our
prototype of an extendable coordination service based on
ZooKeeper [7], a coordination middleware widely used in in-
dustry. Third, it presents two case studies, a priority queue
and a quota-enforcement service, illustrating both the flexi-
bility and efficiency of our approach.

2. BACKGROUND
This section provides background information on the ba-

sic functionality of a coordination service and presents an
example of a higher-level abstraction built on top of it.

2.1 Coordination Services
Despite their differences in detail, coordination services

like Chubby [5] and ZooKeeper [7] expose a similar API
to the client (i. e., a process of a distributed application,
see Figure 1). Information is stored in nodes which can be
created (create1) and deleted (delete) by a client. Fur-
thermore, there are operations to store (setData) and re-
trieve (getData) the data assigned to a node. In general,
there are two different types of nodes: ephemeral nodes are
automatically deleted when the session of the client who cre-
ated the node ends (e. g., due to a fault); in contrast, regular
nodes persist after the end of a client session.

Besides managing data, current coordination services pro-
vide a callback mechanism to inform clients about certain
events including, for example, the creation or deletion of a
node, or the modification of the data assigned to a node (see
Figure 1). On the occurrence of an event a client has regis-
tered a watch for, the coordination service performs a call-
back notifying the client about the event. Using this func-
tionality, a client is, for example, able to implement failure
detection of another client by setting a deletion watch on an
ephemeral node created by the client to monitor.

2.2 Usage Example: Priority Queue
Based on the low-level API provided by the coordination

service, application programmers can implement more com-
plex data structures to be used for the coordination of pro-
cesses. Figure 2 shows an example implementation of a dis-
tributed priority queue (derived from the queue implemen-
tation in [13]) that can be applied to exchange data between
two processes running on different machines: a producer and
a consumer. New elements are added to the queue by the
producer calling insert; the element with the highest pri-
ority is dequeued by the consumer calling remove.

To insert an element b into the queue, the producer cre-
ates a new node and sets its data2 to b (L. 8). The priority p

of the element is thereby encoded in the node name by ap-
pending p to a default name prefix (L. 5). To remove the
1Note that we use the ZooKeeper terms here as our proto-
type is based on this particular coordination service.
2The ZooKeeper API allows a client to assign data to a
node at creation time. Otherwise an additional setData call
would be necessary for setting the node data.

Application
Process p1

Application
Process p2

Application
Process pm

.

.

.

CS
Client

CS
Client

CS
Client

Distributed
Application

.

.

.

CS Replica r1

CS Replica r2

CS Replica rn

Coordination
Service (CS)

1.Register watch.
3. Notify.

2. S
et

nod
e dat

a.

Figure 1: Callback mechanism usage example: An
application process p1 registers a data watch on a
node; when the node’s data is updated, the coordi-
nation service notifies p1 about the modification.

head element of the queue, the consumer queries the co-
ordination service to get the names of all nodes matching
the default name prefix (L. 13). From the result set of node
names, the consumer then locally determines the head of
the queue by selecting the node name indicating the high-
est priority (L. 14). Knowing the head node, the consumer is
able to retrieve its data from the coordination service (L. 17)
before removing the node from the queue (L. 18).

Note that the priority-queue implementation in Figure 2
has two major drawbacks: First, while the insert opera-
tion involves only a single remote call to the coordination
service (L. 8), the remove operation requires three remote
calls (L. 13, 17, and 18), resulting in additional latency. Sec-
ond, the implementation does not scale for multiple con-
sumer processes: In order to prevent different consumers
from returning the same element, entire remove operations
would either have to be executed sequentially (which is dif-
ficult to achieve when consumer processes run on different
machines) or they would have to be implemented optimisti-
cally; that is, if the delete call (L. 18) aborts due to a con-
current remove operation already having deleted the desig-
nated head node, a consumer must retry its remove (omitted
in Figure 2). In Section 5.1, we show that the performance of
the optimistic variant suffers from contention when multiple
consumer processes access the queue concurrently.

1 CoordinationService cs = establish connection;
3 void insert(byte[] b, Priority p) {
4 /∗ Encode priority in node name. ∗/
5 String nodeName = "/node-" + p;
7 /∗ Create node and set its data to b. ∗/
8 cs.create(nodeName, b);
9 }

11 byte[] remove() {
12 /∗ Find the node with the highest priority. ∗/
13 String[] nodes = get node names from cs;
14 String head = node from nodes

with highest priority according to its name;
16 /∗ Get node data and remove node. ∗/
17 byte[] b = cs.getData(head);
18 cs.delete(head);
19 return b;
20 }

Figure 2: Pseudo-code implementation of a priority-
queue client (ZooKeeper): an element is represented
by a node, the priority is encoded in the node name.

3. ENHANCING COORDINATION
The priority-queue example discussed in Section 2.2 illus-

trates the main disadvantage of state-of-the art coordination
services: With implementations of higher-level data struc-
tures and services being a composition of multiple low-level
remote calls to the coordination service, performance and
scalability become a major concern. We address this issue
with an extendable coordination service that provides means
to implement additional functionality directly at the server.

3.1 Basic Approach
To add functionality to our coordination service, program-

mers write extensions that are integrated via software mod-
ules. Depending on the mechanism an extension operates
on, we distinguish between the following three types:

• During integration, a node extension registers a vir-
tual node through which the extension will be accessi-
ble to the client. In contrast to a regular node, client
operations invoked on a virtual node (or one of its sub
nodes) are not directly executed by the coordination-
service logic; instead, such requests are intercepted and
redirected to the corresponding node extension.

• A watch extension may be used to customize/over-
write the behavior of the coordination service for a cer-
tain watch. Such an extension is executed each time a
watch event of the corresponding type occurs.

• A session extension is triggered at creation and ter-
mination of a client session and is therefore suitable to
perform initialization and cleanup tasks.

Note that an extension module providing additional func-
tionality may be a composition of multiple extensions of
possibly different types.

In general, an extension is free to use the entire API
provided by the coordination service. As a consequence,
a stateful extension, for example, is allowed to create own
regular nodes to manage its internal state. Furthermore,
a complex node extension, for example, may translate an
incoming client request into a composite request compris-
ing a sequence of low-level operations. Note that, in such
a case, our coordination service guarantees that low-level
operations belonging to the same composite request will be
executed atomically (see Section 4.3).

3.2 Usage Example: Enhanced Priority Queue
Figure 3 shows how the implementation of the priority-

queue client from Figure 2 can be greatly simplified by re-
alizing the queue as a node extension that is accessed via
a virtual node /queue. In contrast to the traditional im-
plementation presented in Section 2.2, our extension variant
only requires a single remote call for the removal of the head
element from the queue.

When a client inserts an element into the queue by creat-
ing a sub node of /queue (L. C5), the request is forwarded
to the queue extension, which in turn processes it without
any modifications (L. E5); that is, the extension creates the
sub node as a regular node. To dequeue the head element,
a client issues a getData call to a (non-existent) sub node
/queue/next (L. C10). On the reception of a getData call
using this particular node name, the extension removes the
head element and returns its data to the client (L. E10-E17).

Client Implementation

C1 CoordinationService cs = establish connection;
C3 void insert(byte[] b, Priority p) {
C4 /∗ Create node and set its data to b. ∗/
C5 cs.create("/queue/node-" + p, b);
C6 }
C8 byte[] remove() {
C9 /∗ Remove head node and return its data. ∗/

C10 return cs.getData("/queue/next");
C11 }

Coordination Service Extension Implementation

E1 CoordinationServiceState local = local state;
E3 void create(String name, byte[] b) {
E4 /∗ Process request without modifications. ∗/
E5 local.create(name, b);
E6 }
E8 byte[] getData(String name) {
E9 if("/queue/next".equals(name)) {

E10 /∗ Find the node with the highest priority. ∗/
E11 String[] nodes = get node names from local;
E12 String head = node from nodes

with highest priority according to its name;
E14 /∗ Get node data and remove node. ∗/
E15 byte[] b = local.getData(head);
E16 local.delete(head);
E17 return b;
E18 } else {
E19 /∗ Return data of regular node. ∗/
E20 return local.getData(name);
E21 }
E22 }

Figure 3: Pseudo-code implementation of a priority
queue in our extendable coordination service: the
extension is represented by a virtual node /queue.

Although the steps executed during the dequeuing of the
head element are identical to the corresponding procedure
in the traditional priority-queue implementation (L. 12-19
in Figure 2), there is an important difference: the calls for
learning the node names of queue elements (L. E11), for re-
trieving the data of the head element (L. E15), and for delet-
ing the head-element node (L. E16) are all local calls with
low performance overhead. Furthermore, with these three
calls being processed atomically, the implementation does
not suffer from contention, as shown in Section 5.1.

4. EXTENDABLE ZOOKEEPER
In this section, we present details on the implementation

of Extendable ZooKeeper (EZK), our prototype of an extend-
able coordination service, which is based on ZooKeeper [7].

4.1 Overview
EZK relies on actively-replicated ZooKeeper for fault tol-

erance. At the server side, EZK (like ZooKeeper) distin-
guishes between client requests that modify the state of the
coordination service (e. g., by creating a node) and read-only
client requests that do not (e. g., as they only read the data
of a node). A read-only request is only executed on the
server replica that has received the request from the client.
In contrast, to ensure strong consistency, a state-modifying
request is distributed using an atomic broadcast protocol [8]
and then processed by all server replicas.

For EZK, we introduce an extension manager component
into each server replica which is mainly responsible for redi-
recting the control and data flow to the extensions regis-
tered. The extension manager performs different tasks for
different types of extensions (see Section 3.1): On the re-
ception of a client request, the extension manager checks
whether the request accesses the virtual node of a node ex-
tension and, if this is the case, forwards the request to the
corresponding extension. This way, a node extension is able
to control the behavior of an incoming request before the
request had any impact on the system. In addition, the ex-
tension manager intercepts watch events and, if available,
redirects them to the watch extensions handling the spe-
cific events, allowing the extension to customize callbacks
to the client. Finally, the extension manager also monitors
ZooKeeper’s session tracker and notifies the session exten-
sions registered about the start and end of client sessions.

4.2 Managing an Extension
For extension management in EZK we provide a built-in

management extension that is accessible through a virtual
node /extensions. To register a custom extension, a client
creates a sub node of /extensions and assigns all neces-
sary configuration information as data to this management
node. For a node extension, for example, the configuration
information includes the name of the virtual node through
which the extension can be used by a client, and a Java class
containing the extension code to execute when a request ac-
cesses this virtual node. Furthermore, a client is able to
provide an ephemeral flag indicating whether the extension
should be automatically removed by EZK when the session
of the client who registered the extension ends; apart from
that, an extension can always be removed by explicitly delet-
ing its corresponding management node.

When EZK’s management extension receives a request
from a client to register an extension, it verifies that the
extension code submitted is a valid Java class, and then dis-
tributes the request to all server replicas. By treating the
request like any other state-modifying request, EZK ensures
that all server replicas register the extension in a consistent
manner. After registration is complete the extension man-
ager starts to make use of the extension.

4.3 Atomic Execution of an Extension
Traditional implementations of complex operations com-

prising multiple remote calls to the coordination service (as,
for example, removing the head element of a priority queue,
see Section 2.2) require the state they operate on not to
change between individual calls. As a consequence, such
an operation may be aborted when two clients modify the
same node concurrently, resulting in a significant perfor-
mance penalty (see Section 5.1). We address this problem
in EZK by executing complex operations atomically.

In ZooKeeper, each client request modifying the state of
the coordination service is translated into a corresponding
transaction which is then processed by all server replicas. In
the default implementation a single state-modifying request
leads to a single transaction. To support more complex op-
erations, we introduce a new type of transaction in EZK, the
container transaction, which may comprise a batch of mul-
tiple regular transactions. EZK guarantees that all trans-
actions belonging to the same container transaction will be
executed atomically on all server replicas, without interfer-

1 5 10 15 20 25 30
0

100

200

300

400

500

Number of consumer processes

A
v
g
.
th

ro
u
g
p
u
t
[o
p
s/
s]

ZooKeeper

Extendable ZooKeeper
Respective success rate: 100%

Success rate: 100%

Success rate: 59%

Success rate: 4%

Figure 4: Throughput (i. e., successful dequeue op-
erations) for different priority-queue implementa-
tions for different numbers of consumer processes.

ing with other transactions. By including all transactions of
the same extension-based operation in the same container
transaction, EZK prevents concurrent state changes during
the execution of an extension.

5. CASE STUDIES
In this section, we evaluate the priority-queue extension

introduced in Section 3.2. Furthermore, we present an addi-
tional example of how extensions can be used in our coordi-
nation service to efficiently provide more complex function-
ality. All experiments are conducted using a coordination-
service cell comprising five server replicas (i. e., a typical
configuration for ZooKeeper), each running in a virtual ma-
chine in Amazon EC2 [1]; coordination-service clients are
executed in an additional virtual machine. As in practice
distributed applications usually run in the same data center
as the coordination service they rely on [5], we allocate all
virtual machines in the same EC2 region (i. e., Europe).

5.1 Priority Queue
Our first case study compares a traditional priority-queue

implementation (see Section 2.2) against our extension-based
EZK variant (see Section 3.2). For both implementations,
we measure the number of successful dequeue operations per
second for a varying number of consumer processes accessing
the queue concurrently. At all times during the experiments,
we ensure that there are enough producer processes to pre-
vent the queue from running empty. As a result, no dequeue
operation will fail due to lack of items to remove.

Figure 4 presents the results of the experiments: For a sin-
gle consumer process, the priority queues achieve an average
throughput of 139 (ZooKeeper variant) and 195 (EZK) de-
queue operations per second, respectively. The difference in
performance is due to the fact that in the ZooKeeper imple-
mentation the remove operation comprises three (i. e., two
read-only and one state-modifying) remote calls to the coor-
dination service, whereas the extension-based EZK variant
requires only a single (state-modifying) remote call.

Our results also show that for multiple consumer pro-
cesses the ZooKeeper priority queue suffers from contention:
Due to its optimistic approach a dequeue operation may be
aborted when issued concurrently with another dequeue op-
eration (see Section 2.2), causing the success rate to decrease
for an increasing number of consumers. In contrast, dequeue
operations in our EZK implementation are executed atom-
ically and therefore always succeed on a non-empty queue.
As a result, the extension-based EZK variant achieves better
scalability than the traditional priority queue.

1 CoordinationService cs = establish connection;
3 void allocate(int amount) {
4 do {
5 /∗ Determine free quota and node version. ∗/
6 (int free, int version) = cs.getData("/memory");
8 /∗ Retry if there is not enough quota. ∗/
9 if(free < amount) sleep and continue;

11 /∗ Calculate and try to set new free quota. ∗/
12 cs.setData("/memory", free - amount, version);
13 } while(setData call aborted);
14 }

Figure 5: Pseudo-code implementation of a quota-
server client in ZooKeeper: the current amount of
free quota is stored in the data of /memory; to release
quota, allocate is called with a negative amount.

5.2 Quota Enforcement Service
Our second case study is a fault-tolerant quota enforce-

ment service guaranteeing upper bounds for the overall re-
source usage (e. g., number of CPUs, memory usage, network
bandwidth) of a distributed application [3]. In order to en-
force a global quota, each time an application process wants
to dynamically allocate additional resources, it is required to
ask the quota service for permission. The quota service only
grants this permission in case the combined resource usage
of all processes of the application does not exceed a certain
threshold; otherwise the allocation request is declined and
the application process is required to wait until additional
free quota becomes available, for example, due to another
process terminating and therefore releasing its resources.

5.2.1 Traditional Implementation
Figure 5 illustrates how to implement a quota service

based on a state-of-the-art coordination service. In this ap-
proach, information about free resource quotas (in the ex-
ample: the amount of free memory available) is stored in the
data assigned to a resource-specific node (i. e., /memory). To
request permission for using additional quota, an application
process invokes the quota client’s allocate function indicat-
ing the amount of quota to be allocated (L. 3). Due to the
traditional coordination service only providing functional-
ity to get and set the data assigned to a node, but lacking
means to modify node data based on its current value, the
quota client needs to split up the operation into three steps:
First, the client retrieves the data assigned to /memory (L. 6),
thereby learning the application’s current amount of free
quota. Next, the quota client checks whether the applica-
tion has enough free quota available to grant the permis-
sion (L. 9). If this is the case, the client locally computes
the new amount of free quota and updates the correspond-
ing node data at the coordination service (L. 12).

Note that the optimistic procedure described above is only
correct as long as the data assigned to /memory does not
change between the getData (L. 6) and setData (L. 12) re-
mote calls. However, as different quota clients could invoke
allocate for the same resource type concurrently, this con-
dition may not always be justified. To address this prob-
lem, state-of-the-art coordination services like Chubby [5]
and ZooKeeper [7] use node-specific version counters (which
are incremented each time the data of a node is reassigned)
to provide a setData operation with compare-and-swap se-
mantics. Such an operation only succeeds if the current

Client Implementation

C1 CoordinationService cs = establish connection;
C3 void allocate(int amount) {
C4 do {
C5 /∗ Issue quota demand. ∗/
C6 cs.setData("/memory-quota", amount);
C7 } while(setData call aborted);
C8 }

Coordination Service Extension Implementation

E1 CoordinationServiceState local = local state;
E3 void setData(String name, int amount) {
E4 if("/memory-quota".equals(name)) {
E5 int free = local.getData("/memory");
E7 /∗ Abort if there is not enough quota. ∗/
E8 if(free < amount) abort;

E10 /∗ Calculate and set new free quota. ∗/
E11 local.setData("/memory", free - amount);
E12 } else {
E13 /∗ Set data of regular node. ∗/
E14 local.setData(name, amount);
E15 }
E16 }

Figure 6: Pseudo-code implementation of a quota
server in our extendable coordination service: a call
to setData only aborts if there is not enough quota.

version matches an expected value (L. 12), in this case, the
version number that corresponds to the contents the quota
client has retrieved (L. 6). If the two version numbers differ,
the setData operation aborts and the quota client retries
the entire allocation procedure (L. 13).

5.2.2 Extension-based Implementation
In contrast to the traditional implementation presented

in Section 5.2.1 where remote calls issued by a quota client
may be aborted due to contention, allocation requests in
our extension-based EZK variant of the quota enforcement
service (see Figure 6) are always granted when enough free
quota is available. Here, to issue an allocation request, a
client invokes a setData call to the virtual /memory-quota
node passing the amount of quota to allocate as data (L. C6).
In the absence of network and server faults, this call only
aborts if the amount requested exceeds the free quota cur-
rently available (L. E8), in which case the quota client retries
the procedure (L. C7) after a certain period of time (omitted
in Figure 6). At the EZK server, the quota enforcement ex-
tension functions as a proxy for a regular node /memory: For
each incoming setData call to the virtual /memory-quota

node (L. E4), the extension translates the request into a se-
quence of operations (i. e., a read (L. E5), a check (L. E8),
and an update (L. E11)) that are processed atomically.

5.2.3 Evaluation
We evaluate both implementations of the quota enforce-

ment service varying the number of quota clients accessing
the service concurrently from 1 to 40. During a test run,
each client repeatedly requests 100 quota units, and when
the quota is granted (possibly after multiple retries), imme-
diately releases it again. In all cases, the total amount of
quota available is limited to 1500 units. As a consequence,
in scenarios with more than 15 concurrent quota clients, al-
location requests may be aborted due to lack of free quota.

1 10 20 30 40
0

200

400

600

800

1,000

Number of quota clients

A
v
g
.
th

ro
u
g
p
u
t
[o
p
s/
s]

ZooKeeper (ZK)

Extendable
ZooKeeper (EZK)

(a) Overall throughput

1 10 20 30 40
0

10

20

30

40

50

60

Number of quota clients

R
em

o
te

ca
ll
s/
o
p
er
a
ti
o
n

ZK (allocate)

ZK (release)

EZK (both)

(b) Costs per operation

Figure 7: Throughput (i. e., successful allocation
and release operations) and costs (i. e., remote calls
per operation) for different quota-server variants;
the total quota is limited to the demand of 15 clients.

The throughput results for this experiment presented in
Figure 7a show that our EZK quota server provides better
scalability than the state-of-the-art ZooKeeper variant. For
a small number of concurrent clients, the fact that the total
amount of quota is limited has no effect: As in the priority-
queue experiment (see Section 5.1), the ZooKeeper imple-
mentation suffers from contention, whereas the throughput
of the EZK quota server improves for multiple quota clients.
For more than 15 quota clients, the fraction of aborted allo-
cation requests increases in both implementations with ev-
ery additional client, leading to an observable throughput
decrease for the EZK quota server for more than 20 clients.

Figure 7b shows that the costs for a single quota allocation
greatly differ between both quota-service implementations:
For 40 clients, due to contention and the limited amount
of total quota, it takes a ZooKeeper client more than 57
remote calls to the coordination service to be granted the
quota requested; an EZK quota client on average has to issue
less than 2 remote calls for the same scenario. Note that in
the ZooKeeper variant, release operations are also subject
to contention, requiring up to 28 remote calls per successful
operation. In contrast, the release operation in our EZK
implementation always succeeds using a single remote call.

6. RELATED WORK
With the advent of large distributed file systems emerged

the need to coordinate read and write accesses on different
nodes. This problem was solved by distributed lock man-
agers [11], the predecessors of current coordination services.

In contrast to the file-system–oriented coordination mid-
dleware systems Chubby [5] and ZooKeeper [7], DepSpace [4]
is a Byzantine fault-tolerant coordination service which im-
plements the tuple space model. As the tuple space abstrac-
tion does not provide an operation to alter stored tuples, in
order to update the data associated with a tuple, the tu-
ple has to be removed from the tuple space, modified, and
reinserted afterwards. In consequence, implementations of
high-level data structures and services built over DepSpace
are expected to also suffer from contention for multiple con-
current clients. Note that, with our approach not being lim-
ited to a specific interface, this problem could be approached
by an extension-based variant of DepSpace.

Boxwood [9] shares our goal of freeing application devel-
opers from the need to deal with issues like consistency, de-
pendability, or efficiency of complex high-level abstractions.
However, unlike our work, Boxwood focuses on storage in-

frastructure, not coordination middleware systems. In ad-
dition, the set of abstractions and services exposed by Box-
wood is static, whereas our extendable coordination service
allows clients to dynamically customize the behavior of exist-
ing operations and/or introduce entirely new functionality.

Relational database management systems rely on stored
procedures [12] (i. e., compositions of multiple SQL state-
ments) to reduce network traffic between applications and
the database, similar to our use of extensions to minimize the
number of remote calls a client has to issue to the coordina-
tion service. In active database systems [10], triggers (i. e.,
a special form of stored procedures) can be registered to
handle certain events, for example, the insertion, modifica-
tion, or deletion of a record. As such, triggers are related to
watches in coordination services. The main difference is that
in general a trigger is a database-specific mechanism which
is transparent to applications. As a result, applications are
not able to change the behavior of a trigger. In contrast,
our extendable coordination service offers applications the
flexibility to customize the service using a composition of
extensions operating on nodes, watches, and sessions.

7. CONCLUSION
This paper proposed to enhance coordination of distribu-

ted applications by relying on an extendable coordination
service. Such a service allows programmers to dynamically
introduce custom high-level abstractions which are then ex-
ecuted on the server side. Our evaluation shows that by
processing complex operations atomically, an extendable co-
ordination service offers significantly better performance and
scalability than state-of-the-art implementations.

8. REFERENCES
[1] Amazon EC2. http://aws.amazon.com/ec2/.
[2] Apache HBase. http://hbase.apache.org/.
[3] J. Behl, T. Distler, and R. Kapitza. DQMP: A decen-

tralized protocol to enforce global quotas in cloud en-
vironments. In Proc. of SSS ’12, pages 217–231, 2012.

[4] A. N. Bessani, E. P. Alchieri, M. Correia, and J. Fraga.
DepSpace: A Byzantine fault-tolerant coordination ser-
vice. In Proc. of EuroSys ’08, pages 163–176, 2008.

[5] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In Proc. of OSDI ’06,
pages 335–350, 2006.

[6] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gru-
ber. Bigtable: A distributed storage system for struc-
tured data. In Proc. of OSDI ’06, pages 205–218, 2006.

[7] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for Internet-scale
systems. In Proc. of ATC ’10, pages 145–158, 2010.

[8] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup sys-
tems. In Proc. of DSN ’11, pages 245–256, 2011.

[9] J. MacCormick, N. Murphy, M. Najork, C. A.
Thekkath, and L. Zhou. Boxwood: Abstractions as
the foundation for storage infrastructure. In Proc. of
OSDI ’04, pages 105–120, 2004.

[10] N. W. Paton and O. Dı́az. Active database systems.
ACM Computing Surveys, 31(1):63–103, 1999.

[11] W. Snaman and D. Thiel. The VAX/VMS distributed
lock manager. Digital Technical Journal, 5:29–44, 1987.

[12] M. Stonebraker, J. Anton, and E. Hanson. Extending
a database system with procedures. Transactions on
Database Systems, 12(3):350–376, 1987.

[13] ZooKeeper Tutorial: Queues. http://wiki.apache.
org/hadoop/ZooKeeper/Tutorial.

http://aws.amazon.com/ec2/
http://hbase.apache.org/
http://wiki.apache.org/hadoop/ZooKeeper/Tutorial
http://wiki.apache.org/hadoop/ZooKeeper/Tutorial

	Introduction
	Background
	Coordination Services
	Usage Example: Priority Queue

	Enhancing Coordination
	Basic Approach
	Usage Example: Enhanced Priority Queue

	Extendable ZooKeeper
	Overview
	Managing an Extension
	Atomic Execution of an Extension

	Case Studies
	Priority Queue
	Quota Enforcement Service
	Traditional Implementation
	Extension-based Implementation
	Evaluation

	Related Work
	Conclusion
	References

