ProSEEP: A Proactive Approach to Energy-Aware Programming

Timo Honig and Wolfgang Schroder-Preikschat
Friedrich-Alexander University Erlangen—Nuremberg

{thoenig,wosch} @cs.fau.de

1 Introduction and Motivation

Today, optimizing software for energy efficiency is an
expensive task. First, there are only few tools available
that assist developers to optimize their code at hand. Sec-
ond, due to the complexity of systems examining appli-
cations for energy hogs is a very time-consuming task.

Designing energy-efficient applications currently is a
backward-looking process. Energy bugs, which are usu-
ally experienced and reported by users past application
deployment need to be analyzed and tracked down by
developers manually.

We present ProSEEP, an approach for proactive
energy-aware programming, which turns the modus
operandi of energy-aware programming into a forward-
looking process. Taking advantage of symbolic execution
engines and platform-specific energy profiles ProSEEP
assists software developers in making application design
decisions in the awareness of the decisions’ impact on
the energy footprint of the code under development.

2 Energy-Aware Programming at Present

With the advances of the last two decades in mobile
computing we are today progressing towards energy-
proportional system designs. When no or only little work
needs to be performed, systems spend only a fraction of
the energy they consume when utilization is high [1].
Currently, this trend is trespassing upon other technol-
ogy sectors such as server and data-center design [2] and
exascale computing [3].

By contrast, application design targeting energy ef-
ficiency is an understudied research topic. Resulting
from this, developers can not take advantage of well-
engineered tools when optimizing their code for energy
efficiency, or when trying to resolve energy hogs. Ex-
isting work such as energy profilers [4, 5] are limited,

This work was partly supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Re-
search Centre ,,Invasive Computing” (SFB/TR 89).

Riidiger Kapitza
TU Braunschweig
rrkapitz @ibr.cs.tu-bs.de

as they pursue a backward-looking approach. The major
drawback of energy profilers is the fact that a single pro-
filing run yields exactly one profiling result only. Each
result is specific to a unique code path together with con-
crete input parameters of the application under test. The
efforts required to create an exhaustive energy profile
for an application therefore grow exponentially with the
amount of code paths and their input parameters. More-
over, such profiling results are platform specific and can
not be transferred to another platform.

Energy in J

2

Code Path
Figure 1: Energy consumption varies significantly for
different code paths and depending on parameter sets.

Parameter Set 2 1

Applications usually have a drastically different en-
ergy footprint depending on the code path taken during
execution. For example, a regular code path (i. e., normal
operation) is likely to consume less energy in compar-
ison to an exception-handling code path which triggers
a complex operation for recovery purposes (i. e., special
case operation). In addition to this, two distinct execu-
tion runs of one and the same code path may show a
varying energy footprint depending on input parameters
(e. g., size of a batch job) and other path constraints. As
an example, Figure 1 illustrates the overall energy foot-
print of a micro benchmark with eight code paths. Each
code path (x-axis) together with its input parameters and
path constraints (y-axis) can be assigned to a specific
amount of energy consumed during execution (z-axis).
The visualized data is an extended data set of our SEEP
prototype which we have presented and evaluated in [6].

3 The ProSEEP Approach

With ProSEEP we present a forward-looking approach
to assist developers at the task of energy-aware pro-
gramming. Our approach is based on two major con-
cepts. First, we exploit symbolic execution to explore
the runtime complexity of program code automatically.
Second, we use energy profiles to make projections of
the expected energy consumption for heterogeneous tar-
get platforms. Making the projected energy consump-
tion available to developers helps to identify unfavor-
able design decisions early (e. g., use of an inappropri-
ate program library). Our ongoing research is based on
SEEP which is most suitable for low noise execution
environments like embedded systems and high perfor-
mance computing where computing cores operate on sin-
gle tasks. Figure 2 shows the ProSEEP architecture.

| Source Code | | Symbolic Ezecution | I

Terminals |

1
Q, Q, Q [®)
g0 gn dBw o9
@000 000 0000 O000e
Code Path Exploration
U
|Ene7‘gy Estimatesl I Concrete Ezecution i i Trace Database |

Tooling Code Analysis Persistent Data

Figure 2: Overview of the ProSEEP architecture.

Currently, our work focuses on three aspects. First,
to speed up code examination ProSEEP supports selec-
tive execution which allows us to calculate energy esti-
mates for code paths iteratively. Second, our framework
utilizes so-called terminals which are required to model
energy consumption caused by peripheral devices. Third,
we evaluate appropriate ways to make energy estimates
available to developers (e.g., integration into develop-
ment frameworks).

Iterative Energy Estimation. As the effort for ex-
ploring code paths grows exponentially with their quan-
tity and with the number of their input parameters we in-
troduce an iterative energy estimation technique. During
the analysis phase of code paths we first query a database
containing trace information of previous runs before ex-
ecuting and examining the code paths further. Subpaths
that have been analyzed previously are not required to be
examined a second time as tracing information is already
available. In contrast, new subpaths are being executed
during the analysis phase and the corresponding tracing
information is stored in a database. This speeds up the
overall process significantly, which in turn brings two
major improvements. On the one hand, our code anal-
ysis scales much better as redundant analysis steps are
being avoided, and, on the other hand, we can return en-
ergy estimates much quicker to the developer.

Terminals. Energy consumption is not strictly pro-
portional to execution time as concurrent system activi-
ties caused by peripheral devices need to be considered.
To incorporate such energy consumption into our energy
estimates, we accordingly extract relevant data when an-
alyzing program code. We identify low level interfaces
leading to device activities and extract parameters which
are eventually fed to device-specific energy models. We
refer to such interfaces as terminals.

Tooling Integration. With the demand to turn energy-
aware programming from a backward-looking into a
forward-looking process, we are evaluating ways to in-
tegrate our approach into existing programming environ-
ments in order to assist developers in the most efficient
way. Beside integrating ProSEEP into development en-
vironments like Eclipse we consider our approach espe-
cially useful for new programming paradigms as pursued
in invasive computing [7] which focuses on resource-
aware programming.

4 Conclusion

With ProSEEP we have presented early results of
our continued research efforts targeting tool-supported
energy-aware programming. To eliminate shortcomings
of today’s best practice in energy profiling, we propose
a proactive approach to assist developers at the task of
energy-aware programming.

In particular, our approach provides iterative energy
estimation which speeds up the calculation of energy es-
timates and ensures scalability of our code analysis. En-
ergy consumption of peripheral devices is incorporated
by using data extracted during code analysis and device-
specific energy models. With the appropriate integration
into programming environments we see ProSEEP as a
profound approach to turn energy-aware programming
into a forward-looking process.

S References

[1] L. A. Barroso and U. Hoélzle. The case for energy-proportional
computing. I[EEE Computer, 40(12):33-37, 2007.

[2] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. En-
ergy proportional datacenter networks. In Proceedings of ISCA’10,
pages 338-347, 2010.

[3] R.Murphy, T. Sterling, and C. Dekate. Advanced architectures and
execution models to support green computing. Computing in Sci-
ence and Engineering, pages 38-47, 2010.

[4] A. Kansal and F. Zhao. Fine-grained energy profiling for power-
aware application design. ACM SIGMETRICS Performance Eval-
uation Review, 36(2):26-31, 2008.

[5] A. Pathak, Y. Hu, and M. Zhang. Where is the energy spent in-
side my app? Fine grained energy accounting on smartphones with
Eprof. In Proceedings of EuroSys’12, pages 2942, 2012.

[6] T.Honig, C. Eibel, R. Kapitza, and W. Schroder-Preikschat. SEEP:
Exploiting symbolic execution for energy-aware programming. In
Proceedings of HotPower’l 1, pages 17-22, 2011.

[7] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel,
W. Schroder-Preikschat, and G. Snelting. Invasive computing: An
overview. In Multiprocessor System-on-Chip: Hardware Design
and Tool Integration, pages 241-268. 2011.

	Introduction and Motivation
	Energy-Aware Programming at Present
	The ProSEEP Approach
	Conclusion
	References

