Demo Abstract: CoojaTrace,
Extensive Profiling for WSNs

Moritz Striibe, Florian Lukas

Friedrich-Alexander University Erlangen-Nuremberg

{struebe,lukas } @cs.fau.de

Abstract—CoojaTrace extends the Cooja WSN-Simulator by
offering extensive logging capabilities for debugging and analyses
of multi-node WSN deployments. This is implemented using
Scala-based Functional Reactive Programming (FRP)-techniques,
enabling flexible and easily programmable in-depth access to the
internal node, as well as simulator execution state.

CoojaTrace is part of the DryRun framework; a set of tools
that instrument a WSN-Simulator for extensive analysis of WSN
deployments. To achieve this, not only external accessible state
like energy usage or serial output is needed, but also internal
state like routing tables or operation state in general, which
often requires the instrumentation of pointers, and can hardly
be monitored by observing static memory addresses. Although
some WSN-Simulators provide debug interfaces like a GDB-stub,
an easy interface to log and analyze system state of a whole
deployment is still lacking. This gap is filled by CoojaTrace by
providing a simple and scriptable interface to access this data.

I. INTRODUCTION

CoojaTrace' is part of the RealSim/DryRun framework.
These two frameworks work together to allow Deployment-
Targeted development. RealSim automatically configures the
simulator to match a real deployment as close as possible, by
collecting information from a previously deployed network [4].
DryRun is a collection of tools that use the preconfigured
simulator to improve the quality of the deployed network.
Examples are finding optimal configuration settings or testing
and comparing multiple software revisions.

While most WSN-simulators provide some kind of scripting
interface that allows to interact with the serial interfaces of the
motes, easy access to internal data and state is often neglected.
For example program variables or the state of different hardware
components can often only be accessed by directly extending
the simulator. As a consequence these extensions are usually
highly specialized and therefore not very flexible in terms of
extensibility. With the threshold for extending the simulator
being quite high, the required data is often exposed via the
serial interface, which is not very satisfying solution, as it
alters the behavior of the node.

We therefore present CoojaTrace, a plugin for Cooja [2],
which allows to access an extensive amount of system state
using a scripting language. It provides wrappers to most
interfaces to enable monitoring them using Functional Reactive
Programming (FRP). The results can be logged to different
output formats, as well as displayed at runtime.

Uhttp://rdsp.cs.fau.de

Riidiger Kapitza
TU Braunschweig
rrkapitz@ibr.cs.tu-bs.de

II. SYSTEM ARCHITECTURE

Most components within Cooja interact using the observer-
pattern, which allows other objects to be notified upon
changes to the component’s state. This pattern can easily
be mapped to the Functional Reactive Programming (FRP)
programming paradigm, which introduces a type of variable
that can propagate changes automatically. FRP variables
can be derived from other FRP variables through arbitrary
functional expressions. Once a variable changes, this change is
automatically propagated to all derived variables, comparable
to the way most spreadsheet programs update cells. Wrapping
Cooja’s observers into FRP variables allows further processing
and logging steps to be described using a concise functional
syntax, while the actual data propagation is handled by the
FRP framework.

The implementation is based on Scala and the reactive-core
framework?. As Scala is compiled into Java byte code and
its objects are compatible with Java objects, the Java based
Cooja simulator can not distinguish the Scala code from any
Java code. This allows an easy integration into the simulator.
Further on Scala provides a runtime compiler and thus allows
to write code without the need to restart the simulator.

Part of CoojaTrace is a comprehensive library, which
maps the observer-pattern to FRP, and in addition provides
abstractions to simplify the access to Cooja’s data. Most notably
is the easy access to the memory of the application running on
a mote. While Cooja already provides symbol resolution (i.e.
mapping a variable name to an address), as well as viewing
and changing memory, there currently is no easy way of
logging a variable. In addition to logging, CoojaTrace allows
to dereference pointers and do pointer arithmetics. This is a
very powerful feature as operating systems like Contiki make
extensive use of pointers and structs. Even if the target of a
pointer is not changed at runtime, obtaining the address of a
certain data word currently is manual work, and it is unlikely
that the address is unchanged after the next translation, thus
requiring manual interaction after each compilation.

Especially when simulating long running experiments, or
monitoring values that change often, like the stack pointer,
data aggregation can significantly improve performance, as less
data must be saved, as well as analyzed. For this CoojaTrace
provides different operators that can, amongst others, calculate

Zhttp://www.reactive-web.co.cc

—
[saipt Generator o | B
Destination
Filename cooia.log
ester G ttsoe]
Seperator \t

Motes
® All motes) Specific motes: 2, 3,5
Columns

[v] Simulation time (ns) column, column name: [Time

Column name
fote D (static)
ED status
tack Pointer
Memory variable (nt

Source Operator
dote ID (static) o operator)
ED status (o operatar)
1ack Pointer (o operaton
Memory variable (int) o operaton

T

Radio events

[Radio events

Radio interference status
Radio receiver status
Radio reception status
Radio transmission status
Radio channel

“IRadio output power
Radio output power indicator -

I K

i iz

Fig. 1. CoojaTrace script generator

the maximum, minimum, average or standard deviation based
on a sliding window.

While Cooja’s integrated script editor is probably better
suited to write test cases, this is of course possible using
CoojaTrace, too. For one, as already mentioned, CoojaTrace
can access all of Cooja’s objects, and can therefore interact with
it. Further on CoojaTrace provides an assert () statement,
which can be used to either stop and analyze the simulation
(e.g. using GDB) or terminate the simulation when running
unattended. The latter is especially interesting to improve
runtime when running a batch of simulations (e.g. to find
an optimal configuration).

For logging CoojaTrace currently supports a log window, a
simple text file format, as well as a SQLite? database. Besides
that, an output window, similar to the one provided by Timeline
[3] is in development. In addition to the markers provided by
Timeline, the visual log-target will also support plotting graphs,
which will also allow to plot information like the stack pointer
in the same window.

To lower the threshold of creating new queries CoojaTrace
provides a wizard (Fig. 1), which supports the user in creating
simple queries without the need to understand the syntax.

III. EXAMPLES

To show the power of CoojaTrace we present two examples.
For both examples, which can be concatenated, we will use a
very simple log format, using three columns mote, what and
val, where the first two are used to distinguish what is logged.
The time stamp is automatically added as an additional column.

1 val logt = LogFile("ct.log", List ("mote",

"what", "val"))

A very simple example is the logging of the currently running
process of every node.

1 for (mote <= sim.allMotes) {
2 log(logt, mote, "process", mote.currentProcess.name)
3}

The for statement loops through each object in the
sim.allMotes collection. For each mote the mote’s FRP-
variable currentProcess.name is assigned to the log-
target. Thus each time the running process changes, this is

3http://www.sqlite.org/

(=3

2 §1

- « Failed tests

S o |2 Successfull tests

g g

£ «

2

g 8 | oo

o n

> = |e)

= &9 Po @ o o

@ 38 |

£ 879° wmmma progyy

g V'S 8

5 8 r88

g B A An ot

g

< o . ‘ ‘ ‘
Okt-10 Nov-10 Dez-10 Jan-11 Feb-11

Date of Contiki revision

Fig. 2. Average energy usage and standard deviation of 20 nodes in an
experiment instrumenting the collect protocol

propagated to the log-destination, and a new row is added.
mote and "process" are needed to distinguish the log-
entries by mote or variable.

A more complex example is the logging of the energy usage
of each node, based on the model of Energest [1].

for (mote <= sim.allMotes) {

val rx = timeSum (mote.radio.receiverOn)
val tx = timeSum(mote.radio.transmitting)
val act = timeSum(mote.cpuMode === "active")
idle = timeSum(mote.cpuMode =!= "active")
[

val energy: Signal[Double] =
rx * 60 + tx » 53.1 + act x 5.4 + idle % 0.1635

1

2

3

4

5 val
6

7

8 log(logt, mote, "energy", energy)
9

}

The timeSum-Function sums up the time a certain condition
is true. By multiplying this value with the energy required in
this state the energy usage of the mote can be estimated. Due
to the FRP based approach the energy is logged each time the
state of the node or radio changes.

Using the listing above we measured the energy required
to receive 10 messages from every node using the collect
protocol. After about twice the expected time the experiment
failed. The samples chosen in figure 2 show that there was a
severe problem with the network stack in October 2010. While
we did not investigate the cause, it also shows that the changes
made around New Year improved the situation.

ACKNOWLEDGEMENTS

This work was supported by the Bavarian Ministry of State
for Economics, Traffic and Technology under the (EU EFRE
funds) grant no. 0704/883 25.

REFERENCES

[1] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He. Software-based sensor
node energy estimation. In Proc. of the 5th Int. Conf. on Embedded
Networked Sensor Systems (SenSys 2007), pages 409—410. ACM, 2007.

[2] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level

simulation in cooja. In European Conf. on Wireless Sensor Networks

(EWSN 2007), Poster/Demo session. IEEE, 2007.

F. Osterlind, J. Eriksson, and A. Dunkels. Cooja timeline: A power

visualizer for sensor network simulation. In Proc. of the 8th ACM Conf.

on Embedded Networked Sensor Systems (SenSys 2010), pages 385-386.

ACM, 2010.

M. Striibe, S. B6hm, R. Kapitza, and F. Dressler. RealSim: Real-time

Mapping of Real World Sensor Deployments into Simulation Scenarios.

In Proc. of the 6th ACM Int. Workshop on Wireless Network Testbeds,

Experimental Evaluation and Characterization (WiNTECH ’11), pages

95-96. ACM, 2011.

3

—_

[4

=

