
A JVM for Soft-Error-Prone Embedded Systems

Isabella Stilkerich Michael Strotz Christoph Erhardt Martin Hoffmann Daniel Lohmann
Fabian Scheler Wolfgang Schröder-Preikschat

Friedrich-Alexander University Erlangen-Nuremberg
{istilkerich, strotz, erhardt, hoffmann, lohmann, scheler, wosch}@cs.fau.de

Abstract
The reduction of structure sizes in microcontollers, environmen-
tal conditions or low supply voltages increase the susceptibility of
embedded systems to soft errors. As a result, the employment of
fault-detection and fault-tolerance measures is becoming a manda-
tory task even for moderately critical applications. Accordingly,
software-based techniques have recently gained in popularity, and
a multitude of approaches that differ in the number and frequency
of tolerated errors as well as their associated overhead have been
proposed. Using type-safe programming languages to isolate critical
software components is very popular among those techniques. An
automated application of fault-detection and fault-tolerance mea-
sures based on the type system of the programming language and
static code analyses is possible. It facilitates an easy evaluation of
the protection characteristics and costs as well as the migration
of software to new hardware platforms with different failure rates.
Transient faults, however, are not bound to the application code
secured by the type system, but can also affect the correctness of the
type system itself. Thereby, the type system might lose its ability
to isolate critical components. As a consequence, it is essential to
also protect the type system itself against soft errors. In this paper,
we show how soft errors can affect the integrity of the type system.
Furthermore, we provide means to secure it against these faults, thus
preserving its isolating character. These measures can be applied
selectively to achieve a suitable tradeoff between level of protection
and resource consumption. 1

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; D.3.3 [Programming Languages]:
Language Constructs and Features—Classes and Objects; D.4.5
[Operating Systems]: Reliability—Fault-tolerance; D.4.7 [Oper-
ating Systems]: Organization and Design—Real-time Systems and
Embedded Systems

General Terms Reliability, Design, Languages

Keywords KESO; Java; RTSJ; Embedded Systems; Real-Time
Systems; Reliability

1 This work was partly supported by the German Research Foundation (DFG)
under grants no. LO 1719/1-1 and SCHR 603/9-1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES ’13 16–21 June 2013, Seattle, Washington, USA.
Copyright c© 2013 ACM 978-1-4503-2085-6/13/06. . . $15.00

1. Introduction
A lot of embedded systems have particular safety requirements
regarding hardware and software components to avoid or mitigate
malign errors. Functional safety standards such as the IEC 61508
and ISO 26262 address this issue and categorize such errors into so-
called systematic and random errors. Systematic errors can occur in
hardware and software components and are the result of design and
implementation defects. Engineering processes and methods exist
to avoid and mitigate systematic defects. On the contrary, random
errors do not reside in the system in the first place and only occur
in hardware. They are referred to as permanent (hard) and transient
(soft) errors, where soft errors have – in contrast to hard errors
– only a temporary effect on the logical circuits or memory. Soft
errors manifesting themselves as bit flips are a result of hardware
failures that are becoming more likely to happen as a consequence
of shrinking structure sizes [7], extreme environmental conditions
such as radiation [25], or voltage-supply problems.

Usually, functional-safety standards outline hardware-based re-
dundancy and the employment of specialized error-correcting hard-
ware components – such as ECC for memory devices or hardware
watchdogs to recognize bogus behavior of components – as a possi-
ble solution. As these solutions entail additional or more expensive
hardware components, this approach is often not feasible due to
an immense cost pressure in many industrial domains. Products in
such domains often are mass products, where cost differences of few
cents on the single device can amount to huge values considering the
whole of the produced devices. The tolerance towards added cost
is particularly limited when caused by features that do not directly
pose an added value visible to the customer, which is the case for
robustness regarding soft errors. Besides the cost factor, hardware
redundancy is often impractical due to physical size, weight and
power constraints, which are an essential requirement in embedded
systems.

Software-based fault-tolerance techniques such as spatially and
temporally replicated execution of code or monitoring software
components go without extra hardware and pose a cheaper alterna-
tive for increasing system dependability. A combination of both ap-
proaches may also be worthwhile in certain scenarios. In the absence
of transient errors, a type-safe software system, for instance, could
already provide constructively ensured spatial isolation of software
components. However, soft errors can break the soundness of the
type system and thus an integral part of software-based replication.
For this reason, a memory-protection unit (MPU), for example, is
necessary to maintain spatial isolation and to avoid error spread-
ing [19, 26]. Hence, such software-based replication techniques
usually cannot be applied at all to embedded systems where such
an MPU does not exist. If an MPU is present, transient errors are
recognized that cause an address to be out of preconfigured memory
bounds. However, software-based fault detection at the granularity
of objects – in contrast to region-based mechanisms, as for example
provided by an MPU – has some advantages. The error-detection

time is lower and effects of errors can strongly be localized, thus
allowing for fine-grained reliability measures that scale with the
imposed costs and which are not confined by the limited number of
address regions provided by an MPU. In this paper, we show how
software-based isolation building on the type safety of a program-
ming language can be preserved in the presence of transient errors,
which allows for an early detection of bit flips and facilitates the
application of software-based redundancy techniques without the
need for an MPU. However, a combination of both software- and
hardware-based memory protection is still possible to additionally
harden the system.

As software-based fault tolerance does not come for free in terms
of runtime overhead and different hardware also differs in the failure
rates, it is necessary to tune the fault-detection or -toleration tech-
nique towards the safety requirements and also the hardware features.
Therefore, a separation of the functional code and the non-functional
property fault-tolerance is desired. For this, we use KESO [23] – a
Multi-JVM for deeply embedded systems. KESO already allows
for the automated application of fault-detection/tolerance measures
using the results of comprehensive static analyses enabled by the
type-safe programming language Java. In summary, the dimension
of the fault-detection/tolerance measures could be adapted without
touching the functional application code.

At first, a look at our fault hypothesis is taken in Section 2.
Afterwards, the targeted domain and surrounding conditions are
discussed in Section 3. Sections 4 and 5 describe the characteristics
of a protected runtime system as well as the measures taken to
ensure software-based memory protection in the context of KESO.
In Section 6 we evaluate our approach using the Collision Detector
(CDx) benchmark [16]. Section 7 covers work that is related to ours
before Section 8 concludes this paper.

2. Fault Hypothesis
As spatial isolation among the different replicas is an indispens-
able property of replication, we aim at improving the robustness
of software-implemented spatial isolation by exploiting a type-safe
programming language. Such programming languages can safely
isolate different software objects as long as the integrity of the type
system can be maintained. This naturally also has an impact on the
fault hypothesis our work bases upon.

Firstly, we only consider soft errors that become visible at the
programming interface of the processor, as we propose a software-
based solution. This comprises bit flips in arbitrary memory loca-
tions and registers. It does not matter in which part of the processor
these bit flips actually occur – in the memory or the register itself
or while data is transferred from memory to a register on the bus –
but it is important that software-based checks covering such errors
are possible. Thus, we cannot detect errors when data is corrupted
after we have checked for its integrity while it is copied from e.g. a
register to memory or an output location.

Secondly, we strive for the protection of the type system but not
the application itself. That is, we only protect those items which
are necessary to preserve spatial isolation provided by a type-safe
programming language. Mainly, such items comprise object ref-
erences, pointers to virtual function tables or type information in
object headers. We will explain how a corrupt type system could
affect isolation and the measures to harden the type system later
on in Section 4. Our intention is to improve the robustness of these
elements in the presence of one soft error at a time so we can provide
a reliable foundation to implement software-based spatial isolation.
Thus, we do not guard application-specific data like computation
results. This has to be accomplished on a higher level by means of
e.g. replication as presented in a previous paper [26].

Thirdly, there are some elements that have the potential to com-
promise spatial isolation when affected by transient faults that are

Peripheral Devi ce
Access
(KNI)

Domain A

Static Fields

Heap

System Objects

TaskA1 TaskA2 Alarm1 Resource

Microcontroller

OSEK / AUTOSAR OS

Domain BServicePortal

OSEK AP I
(KNI)

Control Flows

TaskA1 ISR1TaskA2

Heap

Static Fields

Figure 1: KESO’s architecture

not safeguarded by our approach. In particular, these are the program-
counter register (PC) and the operating system (OS). Additional
measures are necessary to take care of these weak spots. A possi-
ble solution to detect the corruption of the PC is e.g. control-flow
monitoring [15]. The OS, on the other hand, could be hardened
by additional algorithmic measures [20] or – at best – the OS is
implemented in the same type-safe programming language [14] that
is used to achieve spatial isolation among different replicated com-
ponents.

Fourthly, we assume that program code and data that is located
in non-volatile read-only memory like flash does not suffer from
transient faults, as these memory areas normally are more robust
than e.g. SRAM or registers [8]. So, we do not make any effort to
protect executable code and constant data stored there.

In summary, we certainly cannot tolerate arbitrary transient faults
affecting the type system. But we try to reduce the probability that a
corrupted type system breaks the isolating property of a type-safe
programming language as far as reasonably possible.

3. The KESO JVM
We selected KESO [23] to evaluate the impact of soft errors to a
type-safe runtime system, as it targets applications for statically con-
figured embedded systems. In the following section, we introduce
the key features of KESO as far as they are relevant for this paper.

3.1 Maxim and Concept
In statically configured embedded systems, all relevant entities of
the application itself and the underlying system software are known
at compile time. These entities comprise the complete code of the
application and also operating-system-level objects (threads, inter-
rupt service routines, synchronization locks, etc.) influencing the
runtime behavior of the system. This type of application covers
many, if not most, traditional embedded applications, from control
units providing safety-critical functions such as the electronic sta-
bility program (ESP) and many other electronic functions found in
nowaday’s railway systems, airplanes or medical devices.

This scheme imposes some restrictions on applications building
on top of KESO: It is not possible to dynamically load new code or
create new threads at runtime. On the other hand, it allows to create
a comprehensively tailored and efficient runtime environment for
Java applications – even for small, deeply embedded systems.

3.2 KESO Architecture
The architecture of the KESO Java runtime environment is depicted
in Figure 1. KESO provides the control-flow abstractions typical for
this domain (i.e. threads called Tasks and interrupt service routines
(ISRs)) and means to activate (e.g. alarms) and synchronize them

properly (e.g. via synchronization locks called Resources). Further-
more, KESO applications benefit from Java features like type safety,
dynamic memory management and optionally a garbage collector.
KESO even allows access to raw memory through Java objects.
Thus, it is possible to implement complete embedded applications
including device drivers (as long as these devices are interfaced via
memory-mapped registers) in Java.

The ahead-of-time compiler jino, which is an integral part of
the KESO toolchain, generates ANSI C code from the application’s
Java bytecode. During code generation jino also generates a run-
time environment specific for that application. Additionally, jino
can integrate e.g. reliability measures and software-based memory
protection. While most of the code directly translates to plain C
code, the Java thread API is mapped onto the thread abstraction
layer of an underlying OS. In the case of KESO, that abstraction
layer is normally provided by AUTOSAR OS.

Like KESO, AUTOSAR OS is configured completely statically,
i.e. all relevant system objects (threads, ISRs, locks, etc.) and their
properties (task and interrupt entries, runtime priority, interrupt
source, etc.) have to be determined ahead of runtime and cannot
be altered while the system is running. Thus, an application could
not create threads dynamically or attach a different ISR to an in-
terrupt source. Besides the application code itself, an AUTOSAR
application needs to provide a system-description file that defines
the instances of these OS objects and their attributes. The system-
description file is used by the AUTOSAR OS implementation to
create an OS variant containing statically allocated instances of the
defined OS objects. In the context of KESO, this file is provided
by jino. Furthermore, many AUTOSAR OS implementations ship
with a code generator that outputs an OS implementation that is
specifically tailored for the application in order to avoid unnecessary
overhead.

3.3 Tailoring KESO
The KESO JVM adopts the idea of creating a tailored version of the
infrastructure software that provides only the features required by
the application. KESO’s compiler jino uses a system-configuration
file and the entire source code of the application as input to determine
these features.

The system-configuration file contains all the information that
is needed to generate an instance of AUTOSAR OS plus some
KESO-specific extensions such as fault-detection and fault-tolerance
options. The configuration file also explictly controls coarse-grained
features such as the existence of a garbage collector (GC) or the
replication of certain parts of the application.

The JVM features demanded by the application are implicitly
extracted from the application code via static analyses. Features
like floating-point support, 64-bit integers or virtual methods are
detected by the post-reachability analysis. Some of those are not
mere boolean features but are tuned on a more fine-grained level.
For example, the dispatch tables needed for virtual method binding
are only generated if jino failed to provide a full static binding.

3.4 Memory Protection in KESO
Being a Multi-JVM, KESO allows tasks to be spatially isolated in
different protection domains, each of which appears as a JVM of
its own from the application’s point of view. If soft errors are not
an issue, Java’s type safety guarantees that an application can only
access memory to which it has been given an explicit reference, and
the type of the reference determines how an application can access
the memory area pointed to by the reference. Type-safe programs
are therefore also memory-safe [2]. In order to enforce type safety,
the compiler inserts runtime checks into the code:
• For all invocations of non-static methods and accesses to object

fields and arrays, the associated object reference must be valid,

that is, non-null. A null-check is inserted before these opera-
tions.

• All array accesses must be within the array’s bounds, so the
index of the accessed element is checked against the array size.

Since the entire application is known ahead of time, jino can perform
whole-program analyses and aggressively eliminate unnecessary
checks by statically proving accesses to a reference or array to be
correct.

Spatial isolation is established based on the logical separation of
the object heaps and by maintaining a separate set of the static fields
in each domain. Each control flow (i.e. task or ISR) and all other
system objects are statically assigned to a domain. A system object
can only be accessed from other domains if explicitly permitted by
the KESO system configuration.

In order to allow control flows from different domains to ex-
change data with each other, domains may export a functional inter-
face, a so-called Service, that can be invoked from other domains by
using a proxy object, a so-called Portal, that represents the service in
the foreign domain. Deep copying is used for parameters and return
values in portal calls in order to retain the heap separation. As a
copy-free alternative to the portal mechanism, KESO also provides
shared-memory areas that can be accessed by a controllable set of
domains using the same programmatic interfaces that are available
for accessing raw-memory areas. To maintain isolation, all inter-
domain communication mechanisms (IDC – i.e. portals and shared
memory) must ensure that no reference values can be propagated to
another domain.

In addition to the software-based spatial isolation, KESO can ac-
tively support an OS to provide hardware-based memory protection
using an MPU. KESO supports the OS by physically grouping the
domain data (i.e. the physically separated heaps and static fields) in
separate memory regions to recognize addressing errors and so to
additionally harden the system.

3.5 Fault Detection and Tolerance in KESO
KESO already supports the creation of dependable embedded sys-
tems by mechanisms for fault detection and tolerance such as
software-based replication of critical application parts. This feature
is smoothly integrated into the jino compiler and can be controlled
through the system-configuration file. At this point, the developer
can specify the number of bit flips that have to be tolerated by an
application. KESO then instantiates the needed number of replicas,
isolates them from each other spatially, either on the level of the pro-
gramming language or by means of an MPU, and finally integrates
them into the application. Moreover, jino is able to generate a ma-
jority voter to identify the faulty replica, and code to restore its state
with the aid of the remaining intact replicas after a fault has been
recognized. Either is only possible thanks to the type safety provided
by Java: References can easily be distinguished from primitive data
and both are strongly typed, enabling the automated generation of a
majority voter and the recovery code.

As spatial isolation is the main prerequisite to build dependable
systems based on replication, it is not sufficient in the presence of
soft errors to rely only on software-based memory protection as it
is implemented in KESO. Bit flips can corrupt references and thus
break spatial isolation. This problem could be solved by using an
MPU to separate the different replicas of a replicated dependable
embedded system. However, many low-end microcontrollers do
not offer an MPU and the protection offered by an MPU is rather
coarsed-grained.

Instead of relying on an MPU, we examined how spatial iso-
lation via software-based memory protection can be preserved in
the presence of soft errors by systematically protecting references
and type information. Utilizing the static nature of the system and
respective compiler-based techniques makes an efficient implemen-

Domain B

Domain A

Domain Descriptor

Heap

Static class fields

Reference

Reference

Primitive

Heap

size

Object ArrayHeader

type

Header Object

Data Segment

Domain descriptor
pointer to current
descriptor

Method Table

Class Storage

Virtual Method 1

Virtual Method 2

Virtual Method 3

Class Info 1

Class Info 2

Text Segment

InstructionsDomain Descriptor

Static class fields

Reference

Reference

Primitive

Figure 2: Relations between domain descriptor and object references: The
domain descriptor is used by the application through the domain-descriptor
pointer. A static reference (accessed through a constant offset) is employed
to access an array object that contains references to plain objects. A virtual
method is invoked on the first element in the array after type-checking that
object. The method table located in the text segment is accessed at a constant
offset.

tation of reference checking (RC) possible. This advance can further
be assisted by accounting for microcontroller specifics – such as
failure rates, special instructions and address layout.

As software-based memory-protection techniques apply on a
very fine-grained level, they also call for a fine-grained application
of reliability measures and thus a low error-detection time in contrast
to MPU-based systems. Furthermore, the application developer can
continue to rely on the benefits of a type-safe programming language
even in a fault-prone hardware environment.

4. Runtime-System Integrity
The scope of this paper is a reliable type-safe middleware for em-
bedded applications that retains software-based isolation also in the
presence of soft errors. Therefore, we focus on the protection of the
runtime system itself and not of the application data.

With regard to the fault hypothesis stated in Section 2, we identi-
fied the following critical spots which influence the integrity of the
runtime system in the context of KESO:
• The type system ensuring memory safety. Here, e.g. references,

class identifiers and virtual method tables could be corrupted.
• Per-protection-domain data mainly comprising static fields

and heaps for each domain. Regarding the memory-management
system, data elements used by memory allocators and the
garbage collection for book-keeping purposes could be cor-
rupted, compromising the software-based spatial isolation.

In this paper we only consider the protection of the type system
as we want to evaluate its cost and effectiveness in isolation. Thus,
we spare complex memory-management strategies using garbage
collection and leave this topic as future work. This is not a real
drawback as garbage collection is not necessary for many embedded
applications [23, 27]. The Java language does, however, not allow a
static allocation of objects. For such applications, KESO provides
a simple heap strategy that does not provide garbage collection
at all. The advantage of this heap implementation (bump-pointer
or pseudo-static allocation) is the short, constant and thus easily
predictable time required for the allocation of an object. Since there
is no way of releasing the memory of objects that are not required
any more, the application should only allocate memory objects
during the initialization phase.

4.1 Effects of Soft Errors on the Runtime System
In Java, type safety ensures that programs can only access memory
regions to which they were given an explicit reference; the type of
the reference also determines in which way a program can access
the memory region pointed to by the reference. This is utilized by
KESO to establish spatial isolation by preventing any shared data
between protection domains. For this purpose, heap objects and
static class fields of the different protection domains are logically
separated as mentioned earlier.

Preserving software-based memory protection in the presence of
transient errors is two-fold: Firstly, global book-keeping information
of the type system must not be corrupted. Secondly, protection-
domain data has to be handled in a correct way, so that each domain
only gets access to its private data. Thirdly, it has to be ensured
that wild references and faulty type-system information caused by
bit flips are recognized in order to maintain type safety and thus,
preventing faulty accesses to other memory locations.

In the following, an overview is given how bit flips in book-
keeping information of the runtime system and in references can
influence the runtime environment. The relationships between the
data structures and references are illustrated in Figure 2.

4.1.1 Global Information of the Type System
KESO incorporates a set of runtime-system-internal data structures
relevant to enforce the type system. The method table is used in
conjunction with virtual method invocations, whereas the class
storage holds essential data about the individual classes such as
the size of an object instantiated from a class. Bit flips in the class
storage would invalidate static assumptions on the object’s type and
dynamic type checks.

The virtual method table as well as the class storage are com-
puted statically and are constant, allowing for locating these data
structures in robust ROM. Accesses to the structures are performed
with constant indices, which is the reason why those accesses can
be regarded to be safe (see Section 2).

The remaining part of type-system information is incorporated
in each object (in plain objects and the derived array objects).

4.1.2 Global Information of each Protection Domain
For every domain, there exists a descriptor which holds the static
class fields (containing both primitive data and references) and a
pointer to the domain’s heap. Both the descriptor and the heap
are non-constant and therefore reside in RAM, which is subject to
transient errors. While primitive data is considered as part of the
application, a static reference must be secured just like any other
reference.

In addition, there is one global pointer which references the de-
scriptor of the protection domain in whose context the current thread
of control is running. Context changes are performed by setting the
pointer to another domain descriptor. This global pointer is of par-
ticular interest and must be explicitly secured. As the static fields
and the heap of a protection domain are accessed by dereferencing
this global pointer, its corruption could have severe consequences. A
domain could get access to the static fields and the heap of another
domain and thereby break spatial isolation.

Heaps and management strategies are available on a per-domain
basis. In the context of KESO, we consider pseudo-static allocation,
where the heap can instantly be corrupted due to a bogus bump
pointer. This pointer is part of the domain descriptor. In case of
garbage collection, bit flips in references in the scan-and-mark phase
as well as in the sweep phase cause inconsistencies in the object
graph, leading to wild references.

4.1.3 Local Information inside Objects and Arrays
The remaining part of the type system is directly embedded into
the objects created and manipulated by the application. Although
this information is local to these objects, it has the potential to
compromise the complete type system if it is corrupt. In any of the
cases explained below, spatial isolation provided through the type
system could not be guaranteed any more.

Object and Array References: Bit flips in object references may
produce wild object references with devastating impact. Primitive
values could be read and interpreted as a reference values, for exam-
ple. Also, data could be stored to illegal locations so that runtime
information of other objects is corrupted. Existing null-checks in-
serted by the runtime system are invalidated – as they are checking
a corrupted reference – and thus faulty dereferencing is not detected
any more.

Object-Header Information: In KESO, each object has a header
block holding meta-information such as the type of the object, which
is represented by a class identifier (ID), and thus determines in which
way the memory the reference points to can be used. The class ID
is used as an index for lookups in the method table and the class
storage. Using a wrong type – because the class ID is affected by
a transient fault – breaks the soundness of the type system. If a
method not suiting the type of the object is invoked, this may entail
memory accesses outside the scope of the particular object and also
outside of the protection domain.

Array Header Information: In case of the specialized object vari-
ant array, there is an additional size parameter that defines the length
of an array, and it has to be ensured that any array access is within
bounds. The size parameter can be affected by soft errors: In the best
case, it has changed to a smaller value. This may cause additional
array-bounds exceptions in some cases. If the flipped array size is
greater than the actual one, an array bounds check is not able to
detect an illegal array access any more. At array locations where the
index and array size are both known to be constant, bit flips in the
array size information do not affect type safety.

4.2 Protection of Type Safety
Having identified these critical location, we now take a closer look
into how isolation and type safety can be preserved in the presence
of soft errors. First of all, the protection-domain descriptor and
references to it have to be correct. Secondly, an object reference
has to refer to the correct memory location and an object which is
placed at that location must only be accessed by operations that suit
the type of that object to preserve memory and type safety. Both
characteristics are needed to establish software isolation.

4.2.1 Protection Techniques
Before we examine these issues in detail, we discuss possible con-
cepts to harden the type system against soft errors.

Attack-Surface Reduction Many transient errors occur directly in
RAM or when data is transferred on the bus, that is, on load and
store accesses to memory. A reduction of such accesses leads to
fewer memory-protection errors [11]. Validating that a reference
read into a register is correct reduces illegal addressing, thus error
spreading, and can maintain type safety. Bit flips that might occur
in registers are currently not in the focus of our approach, but may
at least be recognized if a register value is checked whenever it is
stored to memory. Such errors are also likely to be detected on the
next load of a reference in case of a corrupted address or by an
additional protection of application data.

Soft errors which occur on the bus when the data is stored are
also outside the scope of our experiments in this paper. If the micro-

controller has an MPU that is situated on memory, it can comple-
ment reference checking to detect bus store errors, however if the
MPU is located on the processor, such errors cannot be detected at
the time of the store instruction.

Checking References An RC can be performed in many different
ways such as, for example, replication and voting or via a checksum.
There is no focus on a specific technique, as it should be adjustable
as demanded by the system configuration with regards to runtime
overhead, memory consumption and safety requirements. Due to the
static nature of the system, all reference accesses can be determined
ahead of time and reference checks can be automatically inserted by
jino. At runtime, these checks ensure the integrity of the respective
memory accesses. As an initial technique, we instrumented jino to
enrich references with parity information. This technique has some
advantages over reference replication [6], as it does not inflate the
reference size and so the attack surface of the program, which is the
reason why we have selected this approach.

We now briefly describe three possible variants of reference
checking and in which way this leads to an improvement of protec-
tion in the context of the effects of illegal references, which were
mentioned in Section 4.1.
Dereference Check (DRC): In this variant, references stay en-

coded all the time. They are tested and decoded every time they
are dereferenced, thus the probability of detecting an illegal refer-
ence is very high. Dereferencing takes place when one of the fol-
lowing bytecode instructions is executed: putfield, getfield,
*aload, *astore, arraylength, instanceof, checkcast,
invokevirtual, invokeinterface, and invokespecial.
A drawback is the possibility that the check will be executed
more often than actually necessary – for instance, if the reference
in question is used several times in succession but is kept within
a processor register between the uses, the first check would
suffice2. Also, corruption of a reference will not be detected
until the reference is actually used. Reference comparisons in
the application code may result in a wrong branch being taken.

Load Reference Check (LRC): In this variant, references are
checked as soon as they are loaded from memory – that is,
from a static field (bytecode instruction getstatic), an object
field (getfield) or an object array (aaload). They are encoded
when being stored and decoded upon being loaded.
This approach offers an early error detection and needs fewer
checks than the DRC variant. The disadvantage is that it has a
higher false-negative probability, since local variables may be
spilled to the stack in case of high register pressure or across the
boundaries of method invocations.

Header-Only Check (HOC): A third conceivable possibility is to
not check the reference ifself, but instead only test upon derefer-
encing if the reference points to a valid object header containing
a certain bit pattern. For efficiency, it can be combined with the
class-ID check described in Section 4.2.4. In case of a corrupted
reference, it is likely that the target is not an object header but
a random piece of data, given that object headers are relatively
small (usually four bytes).
This approach is less safe than the LRC and DRC variants.
Firstly, the check can result in false negatives if the data pointed
to by the faulty reference happens to look like a legal object
header. Secondly, the reference may be corrupted in a way that
it points to another valid object, which may have a different type
than the intended object. In both cases, type and memory safety

2 Of course, the register may be temporarily spilled to the stack at any point
in time by an interrupt service routine. Even so, it will stay in memory only
for a very short time.

can no longer be maintained. It is even possible that the refer-
ence points into the memory belonging to a different protection
domain. To prevent breaching the isolation, the runtime system
would have to catch such cases by checking the reference against
the domain’s memory bounds or by using an MPU as a safety
net. In theory, the chance of false negatives could be reduced
by arranging the heap layout in a way that all valid references
have a Hamming distance of at least two from each other. This
approach would cause a higher memory clipping and raises the
need to adapt garbage collection techniques, where fragmented
allocation can be a possible solution. This may be a subject of
further research, but will not further be examined here. In the
remainder of this paper, we will focus on DRC and LRC rather
than the HOC variant.
Choosing a variant for a concrete application scenario involves a

tradeoff between protection level and costs. Various combinations
of DRC and LRC are thinkable – among others:
• both DRC and LRC (slowest, but highest level of protection and

early error detection)
• DRC only (faster, but no early error detection)
• LRC within leaf methods, DRC within other methods (even

faster and only slightly less protection)
• LRC only (fastest, but lowest protection)

The reference checks are performed before any existing null-
and array bounds checks so that the latter are executed on valid
references.

4.2.2 Protecting the Current-Domain Pointer
As described above, the protection domain in which the current
control flow is running is determined by a global pointer that points
to the descriptor of the domain. To maintain type safety, that pointer
must be checked whenever it is dereferenced. Such events include
accesses to static fields and memory-management operations. To
implement the verification of the pointer, one of the techniques for
references to user objects described above is used analogously.

4.2.3 Memory Management
Memory managment by means of pseudo-static allocation is safe-
guarded by protecting the bump-pointer on access. Dependable GCs
are part of our future work.

4.2.4 Protecting Object Headers
By encoding and checking object references, we are able to test
the correctness of the memory pointers and preserve the validity of
null-pointer checks. In case of bump-pointer allocation, references
to deallocated memory are also prevented. However, memory safety
is still not attained: Some operations which rely on meta-information
stored within the object header definition affect type safety if that
information is incorrect. For instance, they may cause writes beyond
the object’s boundaries. With the employment of more eloborate
GCs, bogus object information may cause dangling references. Con-
sequently, the integrity of the object headers must also be encoded
and checked.

Each object header contains a class ID. In addition, array objects
hold a field containing the array length. Optionally, management
data used by the garbage collection is also present. Only if the meta-
information is verified can type and memory safety be preserved.

As we do not make use of garbage collection in the scope of this
paper, but rely on simple bump-pointer allocation, we do not need to
secure any GC information. Thus, a header check is only necessary
in the following scenarios:

Access to Type Information The class ID in the object header is
used by instanceof and checkcast to determine if a given object

is of a specific type. Illegally downcasting an object to a bigger type
and then writing to one of the instance fields added by the subclass is
guaranteed to write beyond the bounds of the object. Under normal
conditions, such behavior is the result of a programming error, but it
can also occur if a soft error affects the control flow. Consequently,
to preserve type safety, such illegal downcasts have to be caught
reliably. This requires checking the class ID before performing the
actual type check.

Virtual Method Invocations The target for virtual method invoca-
tions is determined by performing a lookup in the global method
table. While the table itself is constant and resides in ROM, the index
for the lookup is computed using the class ID of the this-object.
In case the class ID in the object header is affected by a transient
error, the CPU will jump to an arbitrary wrong address. To prevent
this, the runtime system must again make sure that the class ID is
untouched.

Devirtualization, as described in Section 5.1, can help mitigating
the costs of such checks.

Array Accesses An access to an array element always has to be
within the array’s bounds to guarantee memory safety. If soft errors
are not an issue, this property can partially be verified by the com-
piler, or array bounds checks are necessary at runtime. Taking bit
flips into consideration is two-fold:

On the one side, a soft error can affect the index and cause it
to become too large or negative. This can be caught by a regular
bounds check.

On the other side, the length information of the array can be
corrupted, which invalidates any conventional array bounds check.
In order to handle this issue, the existing array bounds check is
extended to verify the validity of the array size before determining
if a given index is within the array’s bounds. Thus, this check in-
corporates an array-header check. It is referred to as extended array
bounds check in the remainder of this paper. As a consequence, the
compiler must be especially careful when deciding whether an array
access can be left unchecked or not. The criteria for this optimization
are presented in Section 5.1.

5. Efficient Implementation
Since our approach targets embedded systems, it is crucial to con-
sider factors such as memory consumption, footprint and perfor-
mance of the application while providing suitable protection for the
application and runtime system. KESO’s compiler optimizations fa-
cilitate creating a tailored runtime environment that suits the safety
requirements to balance protection and cost. Less code and less
memory usage also leads to a lower susceptability to soft errors,
since the probability for a transient error to affect the application
decreases with the memory usage. Static type-safe programs show
a very good analyzability that allows for optimizations which are
not possible if that type information is missing. KESO uses this in-
formation for its analyses and optimizations. Further optimizations
through the C compiler also have a positive effect on the soft-error
susceptability due to [11].

The reference runtime checks are inserted by KESO’s backend,
when optimization passes have already been run. We used and ex-
tended several analyses to gather the information necessary to elim-
inate, to simplify or to emit RCs. Characteristics of the hardware
platform, e.g. if ROM is available, are also included in our analyses.
In the following, an explanation on which checks have to be inserted
and which can be erased is given.

5.1 High-Level Compiler Optimizations
KESO’s static programming and system model enables the com-
piler to perform aggressive whole-program optimizations that would

be far less effective without a closed-world assumption. The opti-
mizations are not only able to increase the application’s runtime
performance and reduce its memory footprint in general, but also
have two additional effects that suit our purposes:
1. They reduce the attack surface for soft errors by decreasing the

number of potentially error-prone operations such as memory ac-
cesses. The more information can be computed statically ahead
of time by the compiler, the fewer operations have to be executed
at runtime on the target system.

2. They mitigate the overhead introduced by the integrity checks
discussed above.
In the following, we present selected compiler optimizations we

implemented in jino that serve these purposes. Although modern
C/C++ compilers offer comparable optimizations and we rely on
such a C compiler as the final stage of our tool chain, the opti-
mizations in jino make specific use of the high-level application
knowledge available at the early compilation stages – for example,
information about the system’s designated entry points, about the as-
signment of tasks to protection domains, or about the target platform.
Moreover, most of these whole-program transformations influence
each other. Hence, we implement our own high-level transforma-
tions in jino while at the same time benefiting from the C compiler’s
low-level optimizations.

Constant Propagation: The constant-propagation algorithm in the
KESO compiler is based on Wegman and Zadeck’s interprocedural
Sparse Conditional Constant Propagation [28]. Uses of variables
which would normally reside in registers or on the stack are replaced
with immediate values that are embedded directly in the code, re-
ducing the number of potentially error-prone variable accesses. In
addition, the register pressure is lowered, thereby reducing the need
to spill registers to the (vulnerable) stack.

Copy Propagation and Variable Coalescing: Converting the in-
termediate representation back from SSA form is done using the
algorithm proposed by Sreedhar [22], which coalesces variables
and eliminates redundant copy instructions in the process. This, too,
reduces register pressure and stack usage.

Dead-Code Elimination: Among other things, the Sparse Con-
ditional Constant Propagation algorithm can fold conditional
branches into unconditional jumps, and it can be used as a reach-
ability analysis: Any basic block or entire method that was never
visited is dead and can be safely eliminated. While this optimization
itself does not directly contribute to better code performance, the
other analyses and optimizations – for instance, method inlining or
the rapid type analysis described below – benefit from its results.

Method Devirtualization: The principle of polymorphism in Java
requires dynamic dispatch – that is, a method invocation whose
target is not known at compile time is dispatched at runtime. As
described earlier, this involves a lookup in the global dispatch table,
plus an object-header check to enforce type safety in the face of
soft errors. When translating the source code into bytecode, the Java
compiler by default generates such invokevirtual instructions for
all calls to an instance method of an object. The programmer could
avoid this performance bottleneck by abstaining from the features
of polymorphism, writing only static class methods. However, this
would not suit the Java programming model very well.

To overcome this, the KESO compiler performs devirtualiza-
tions [1, 24] where possible. Since no additional classes can be
loaded at runtime, the complete set of callee candidates for each call
site is known ahead of time. Invocations whose candidate set con-
tains a single element are converted into invokespecial instruc-
tions, which are bound statically and require neither a dispatch-table
lookup nor an associated integrity check of the object header.

Whole-program analyses allow to further shrink the candidate

sets, possibly yielding more single-element sets and thus increasing
the effectiveness of the devirtualization optimization. In KESO,
we apply a combination of class-hierarchy analysis (CHA) [12]
and rapid type analysis (RTA) [3]. CHA analyzes the data flow
of reference variables and tries to determine the dynamic types
of the referenced objects at call sites as specifically as possible,
whereas RTA purges all candidate sets of methods whose class is
never instantiated – profiting from the elimination of dead object-
allocation sites.

Method Inlining: For method invocations that can be bound stati-
cally, the compiler can choose to embed the body of the callee at the
call site, eliminating the overhead of the function call. After inlining,
it is worthwhile to re-run the constant-folding and -propagation pass
because it is now possible to specialize the embedded method body
according to the concrete arguments passed at the original call. At
the same time, the arguments passed by that call no longer have to
be considered when re-analyzing the callee method, which may in
turn be further optimized.

Runtime-Check Elision: As the consistency checks are often cou-
pled with regular runtime checks, the efficiency of the compiled
code profits from the regular check-elision optimizations performed
by the compiler. checkcast instructions are eliminated if the data-
flow and type analysis proves the respective reference to always be
of the correct type – for example, if it follows an instanceof case
differentiation. In this case, the object-header check preceding the
checkcast is unnecessary as well.

For array accesses, the following cases have to be differentiated:
1. Both the index and the array size are constant (possibly thanks

to constant propagation) and the index is within bounds. Conse-
quently, no bounds check is needed.

2. The array size is constant, but the index is variable. A simple
bounds check is sufficient since the size is not read from the
array header.

3. The data-flow analysis proves that the access will always be
within bounds, but one of the two values is not constant. This
can be the case when iterating over an array in a canonical for-
loop, for instance. In a scenario without fault-detection/tolerance
requirements, the bounds check could be elided. In our case,
however, the access index may have been corrupted or the array
may have been created with a wrong, possibly too small size.
Hence, an extended array bounds check must be emitted.

4. None of the above conditions is met. An extended array bounds
check has to be inserted.
If it is sufficient to maintain spatial isolation, the restrictions

can be somewhat loosened: It can be argued that extended array
bounds checking is not necessarily required if reading from an array
that contains primitive data. Reading a wrong value would lead to
wrong application data, but such data errors could be caught using
additional application-specific safety measures. Other protection
domains would not be affected. However, if the array contains object
references, reading from it must be protected with an extended
bounds check, since reading from an invalid position might return a
reference pointing into the heap of another protection domain.

ROM Allocation: One of the major drawbacks of Java as a pro-
gramming language for embedded systems is its insufficient han-
dling of constant data. While there is the keyword final to mark
variables of primitive type or references themselves as immutable,
there is no equivalent concept for the contents of an object. This
is especially cumbersome for arrays containing primitive constant
values: Such arrays are allocated on the heap and initialized at the
time the class is loaded – one element at a time. This scheme induces
a number of disadvantages:

Object header:

Array header:

classID

P(classID)

size

classID

P(size) P(classID)

Reference: address

P(address)

32 bits

unused

reserved

Figure 3: Encoding of parity information on a 32-bit platform

• The explicit initialization code – especially for arrays – need-
lessly inflates the text segment.

• On small embedded devices, RAM is scarce. Placing constant
array data in the ROM instead could save precious memory.

• According to our fault hypothesis, integrity checks (object/array
header) for ROM-allocated objects could be elided.

• Protection redundancy techniques for application data can profit
from a reduced replication set.

A static analysis could find objects and arrays with immutable con-
tents and mark them as ROM-allocatable, provided this is supported
by the target platform. This currently being implemented in KESO
and promises to be a worthwhile optimization.

5.2 Incorporation of Platform-Specific Features
Tailoring the KESO runtime environment to a concrete application
scenario also involves awareness of the underlying hardware plat-
form. Thus it is possible to adapt the runtime system to the condi-
tions of the target platform and to make use of specific hardware
features where available.

Alignment and Address Layout: For 1-bit error detection using
parity information, one additional bit is needed for every word that
is to be protected. Since every object on the heap is aligned at
a minimum of four bytes, each valid pointer always has its two
least-significant bits set to zero. In KESO, if a garbage collector is
present, it reserves the lowest address bit for its purposes, leaving
the second-lowest bit free for storing the parity information. This
allows parity-encoded references to be represented as regular pointer
variables that can be loaded and stored with a single memory access.

Given certain platform characteristics, the implementation of
other, more complex fault-tolerance mechanisms such as ECC
(which uses more than one redundancy bit) would not necessar-
ily require inflating the reference size either. For example, the Tri-
Core TC1796 platform has a 32-bit address space but only 1 MiB of
physical RAM. Depending on the concrete memory mapping, this
would allow up to 12 additional bits in each 32-bit pointer variable
to be used by the runtime system.

For the headers of regular objects and of arrays, the parity in-
formation can be stored in unused bits of the header as depicted
in Figure 3. Consequently, enabling parity-based error detection in
KESO does not increase the memory footprint of the application.

Processor Instruction Set: Many processor architectures have
special instructions for efficiently computing the parity of a data
word. If such instructions are available on the target platform, KESO
makes use of them by generating calls to the GCC built-in function
builtin parity(). For instance, on the TriCore platform the

parity computation itself amounts to a mere four CPU instructions
as can be seen in Listing 1.

keso_check_and_decode_reference:
mov.d %d4, %a4
mov.d %d15 , %a4
parity %d2, %d4 ; Compute parity
bsplit %e2, %d2
bsplit %e2, %d2
parity %d2, %d2
jz %d2, .Lsuccess ; Catch parity error
nop
call keso_throw_error

.Lsuccess:
andn %d15 , %d15 , 2 ; Decode address
mov.a %a2, %d15 ; Return it
ret

Listing 1: Reference checking and decoding on the TriCore MCU

Memory-Protection Unit: If an MPU is available, KESO and the
underlying AUTOSAR OS can be configured to use it as an addi-
tional safety net. If a severe error were to cause the type system to
become corrupted and memory safety could no longer be guaranteed,
the MPU could maintain the isolation of the protection domains. To
achieve this, KESO physically groups the memory portions belong-
ing to a domain (heap, stacks, etc.) in memory and provides the OS
with the start and end addresses of these regions.

6. Evaluation
In this section, we evaluate the costs imposed by our reference-
checking approach (Section 6.2) and the protection provided by it
using the Fail* fault-injection framework, which is explained in
Section 6.3. As an exemplary application, the Collision Detector
(CDx) benchmark is employed and a brief introduction to it is
presented in Section 6.1.

6.1 The CDx Benchmark
For our fault-injection and performance evaluation, we use the Col-
lision Detector (CDx) [16] – an open-source benchmark that is
available in a C (CDc) and a Java (CDj) version with almost equiv-
alent algorithmic behavior – as a representative Java application
for embedded systems. KESO bundled with CDj has already been
evaluated against CDc and results can be found in [23].

The core of the CDx benchmark is a periodic task that detects po-
tential aircraft collisions from simulated radar frames. A collision is
assumed whenever the distance between two aircraft is below a con-
figured proximity radius. The detection is performed in two stages:
In the first stage (reducer phase), suspected collisions are identified
in the 2D space ignoring the z-coordinate (altitude) to reduce the
complexity for the second stage (detector phase), in which a full
3D collision detection is performed (detected collisions). A detailed
description of the benchmark is available in a separate paper [16].
Since CDj allocates temporary objects and uses collection classes
of the Java library, it normally requires the use of dynamic memory
management. Since protected garbage collection in KESO is cur-
rently a work in progress, we use pseudo-static allocation instead.

6.2 Overhead to Unprotected KESO
To determine the overhead imposed by a secured type system, we
use CDx in the onthegoFrame variant configured processing 24
frames (it would run out of memory after that), which is suitable
to be deployed on the Infineon TriCore TC1796 device (150 MHz
CPU clock, 75 MHz system clock, 1 MiB SRAM). The application
is compiled with GCC (version 4.5.2) and bundled with KESO and
an AUTOSAR OS implementation. Our experiments cover the LRC
reference-checking variant. Checks were statically inlined.

NoChk SafeChk AddrChk HdrChk LRC
text 45246 49044 59634 61810 64310
data 4005 4005 4109 4109 4109
bss 836138 836138 836138 836138 836138

text ov -7.74% 0.0% 17.76% 4.60% 24.33%
data/bss ov -2.53 % 0.0% 0.0% 0.0% 0.0%

(a) Memory footprint

SafeChk LRC
NullChecksEmitted 153 153

BoundsCheck 91 0
BoundsCheckElided 15 0

BoundsCheckKnownIndex 12 0
BoundsCheckFullExtended 0 91

BoundsCheckKnownSizeExtended 0 27
ReferenceCheckEmitted 0 301

HeaderCheckEmitted 0 97

(b) Runtime-check emission

NoChk SafeChk AddrChk HdrChk LRC
Overhead -11.84% 0% 18.42% 8.33% 30.71%
Checks 0 0 225715 69936 417069

(c) Runtime overhead and number of LRC executions

Figure 4: Overhead induced by LRC

Footprint. Figure 4a shows the footprint of various KESO check-
ing variants. NoChk denotes that runtime safety checks, i.e. null
and array bounds checks are disabled. However, the memory alloca-
tor still checks the bump pointer against the heap bounds to prevent
a heap overflow. The generated code is not memory-safe at those
locations where jino was not able to statically prove the validity of
those accesses. This CDx variant is comparable to a version directly
implemented in unsafe C.

The SafeChk variant follows the Java specification and is
memory-safe in the absence of soft errors, wherefore it is selected
as the baseline variant. AddrChk (address checks), HdrChk (header
checks) and LRC are built on top of SafeChk (combined address,
null, header and extended array bounds checking). Extended array
bounds checks are applied to all array types (not just reference
arrays) at necessary locations.

Class-storage information and the method table are located in
the text segment in all variants. Although the parity information
itself does not increase the memory footprint of the application, the
data segment grows by 104 bytes when type-system protection is
enabled. This is caused by a missed optimization: Two constant
strings in the application are actually dead, but their headers and/or
references are encoded at startup, respectively. Hence, the linker
regards them as used and is unable to discard them. As expected, the
bss segments, containing the heaps and stacks, are of equal size in
case of LRC and unprotected configurations (safety checks enabled
only, no protection against soft errors).

The text segment is inflated by 7.74% due to safety checks. Sup-
plementarily, LRC causes an increase by a total of 24.33%, where
17.76% are caused by address checks and an additional 2.90% by
combining them with object-header checks. Extended array bounds
checks enlarge the the text segment by 3.67%.

The header checks reuse code from address checks, hence the
aggregated code-size increase (20.65%) is smaller than that of the
individual parts (17.76% for address and 4.60% for header checks).

KESO performed devirtualizations on 343 method invoca-
tions, omitting the header and address checks while retaining type
safety, whereas 22 non-static method invocations remained. Seven
instanceof occurrences were statically dissolved, which allowed
to omit header-check insertion at those locations.

Figure 4b lists the emitted runtime checks. The number of null-

checks is unchanged. In the protected variant, 118 extended ar-
ray bounds checks were emitted: 91 of those array bounds checks
include the size-integrity check, whereas the remaining 27 array
checks are performed on arrays with constantly known size, but
varying indices.

Unprotected KESO includes 91 normal array checks whereas
15 checks could statically be computed to always succeed. Assum-
ing soft errors, these 15 array bounds checks have to be inserted
as extended array bounds check (discussed in Section 5.1). In ad-
dition, 301 reference checks and 97 object-header checks (76 on
non-static method invocations, 21 on instanceof and checkcast)
were emitted in protected KESO.

Runtime. The runtime overhead of LRC is listed in Figure 4c:
18.42% of the increased demand were contributed by address checks
and 8.33% by object-header checks. The additional runtime of 3.96%
was caused by extended array bounds checks (including 121838
size-integrity checks), which are needed to accomplish full LRC.

Most of the bounds checks that contribute to the increased run-
time reside within loops iterating over arrays. In a scenario without
soft errors, these checks could be easily elided, but in our fault-
detection scenario they have to be kept because the loop index could
be corrupted. jino is able to statically determine the array size in
some cases, which results in a light-weight array bounds check with
constant and known size. This check detects corrupted indices. If
this optimization is not possible, a full extended array bounds check
is emitted.

As a possible future optimization, sufficiently small loops that
iterate over an array of known size could be unrolled by the compiler.
Since both index and size would be constant, the extended array
bounds checks could then be omitted.

6.3 The Fail* Fault-Injection Framework
In order to get an insight into the effects on the protection level
provided by the reference-checking extension, the fault-injection
(FI) framework Fail* [21] is used. It is currently available for the
Bochs simulator [17] on the x86 platform and ARM simulators. The
selected AUTOSAR OS is available for x86 and TriCore platforms.
Therefore, we built a variant of the CDx benchmark that runs on top
of the x86 port of the AUTOSAR OS. Even though the x86 platform
is not a deeply embedded platform, we argue that FI experiments
on that platform can be used to evaluate the functional effects of bit
flips on the application and software-based isolation.

For the FI campaign, garbage collection is disabled and pseudo-
static allocation is used to exclude effects of bit flips that occur dur-
ing the unprotected GC phase. Faults that occur during the selected
pseudo-static allocation strategy are, however, considered in our ex-
periment. Hardware-based memory protection is also disabled, but
we use jino’s reachability analysis to physically group application
data as input for Fail* to determine illegal memory accesses. The
heap size is set to 256 KiB, which is enough to compute a set of 5
frames in CDx before it runs out of memory.

We injected single bit flips into each bit position of each word of
the allocated heap space. To reduce the resulting huge fault space, we
made use of the fault-space pruning methods of the Fail* framework
to concentrate on memory locations that are actually read according
to a golden run. This allows to filter out all injections that are known
to be ineffective, e.g. bit flips that are overwritten before they are
actually read. The campaign was applied to three variants of the
system: No runtime checks at all (NoChk, program is not type-safe),
SafeChk (type-safe, unprotected against soft errors), and a full LRC-
hardened variant, resulting in a total fault space of approximately
4,341,038 experiments.

Table 1 shows the overall results of the FI campaigns grouped
by the reachable destination points. In the NoChk variant, approx-
imately 64% of the injections resulted in No Effect and 56% for

Result NoChk SafeChk LRC
No Effect 809,918 820,835 867,205

Error Exception 39,655 109,312 37,747
Null-Pointer 0 116,245 43,287

Out-of-Bounds 0 62,926 29,992
Illegal Memory Access 289,159 246,981 17,286

Trap 72,816 56,824 6,084
Timeout 44,762 43,453 37,916

Parity Exception 0 0 588,635
Total 1,256,310 1,456,576 1,628,152

Table 1: Fault-injection results

SafeChk and 53% for LRC, respectively. Here the faults were either
masked or silently corrupted the application’s data. The LRC variant
caused CDx to pass through without triggering exceptions or traps
in some cases: As a result, effects of bit flips could be mitigated on
the application layer, where additional application-protection mech-
anisms can recognize faulty data or control-flow errors (e.g. through
replication or control-flow monitoring). Assuming a redundancy and
recovery approach as presented in [26], the recovery mechanism is
able to restore both application data and respective valid references,
as spatial isolation between replicas is maintained.

Comparing the type-safe system (SafeChk) against the plain
memory-unsafe version (NoChk), it can be concluded that safety
checks in form of null-pointer and array bounds checks already de-
tect some corrupted data and references and reduce illegal memory
accesses and traps. However, the triggering of these exceptions is
more an effect of the executions of safety checks on invalid applica-
tion data and references. Regarding these inherent fault-detection
mechanisms of the KESO runtime system, the LRC variant reveals
an overall decrease of these exceptions, since LRC found corrupted
references that illegally triggered those exceptions in many cases.
Others were still raised due to, for example, corrupted application
data causing to select another control-flow path.

The portion of Null Pointer, Out of Bounds and Error exceptions
(caused by failed checkcast or heap-memory bounds errors) and
hardware Traps is considerably higher in the unprotected system, as
depicted in Figure 5. Here, the parity check can detect the injected
fault before the error can propagate and result in a hardware trap or
error exception.

The extended array bounds check detected 29,992 errors,
whereas 588,635 errors were found by additional parity checks.
A certain amount of bit flips resulted in a Timeout behaviour. These
errors influenced a loop-controlling variable residing in the unpro-
tected application data. The Traps occurring in the LRC variant
were division-by-zero exceptions, which are also caused by the
application’s computation with faulty operands. Such errors can be
handled by fault-tolerance measures at the application level. Traps
in the unsafe NoChk variant were mainly induced by dereferencing
null-pointers (address 0), which leads to a trap on the x86 architec-
ture.

The FI experiments also caught any Illegal Memory Access, that
is, any access beyond the defined sections and writing accesses into
the text section. With LRC, these illegal memory accesses can be
traced back to failed executions of instanceof. Some bit flips were
injected after the reference check and cause the reference to point to
a valid object. The probability of that happening increases with the
heap size and the number of objects located there. The object-header
check is therefore unable to detect an error, thus producing a wrong
outcome of instanceof. A wrong object type is assumed and type
safety is corrupted, which leads to the illegal memory usages. This
drawback of LRC in contrast to DRC was discussed in Section 4.1.3.
Nevertheless, LRC decreased memory isolation violation by 94%
(-271,873) compared to NoChk and 93% (-229,695) compared to
SafeChk. Based on LRC, application replication as provided by

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

Error
Ill. Memory

No Effect
Null Pointer

OO-Bounds
Timeout

Trap

LRC

SafeChk

Figure 5: Proportional distribution of the fault-injection results

KESO to protect the application data can be applied on top of our
approach. As LRC retains software-based memory protection to a
certain degree, hardware-based isolation is not necessary, but can
complement LRC if required.

7. Related Work
Reliability in JVMs has been addressed in a few existing projects.
Friedman and Napper [13, 18] have their focus on the replication
of the entire JVM to tolerate fail-stop errors in distributed systems.
In [9] the susceptability of application data in JVMs and their pro-
tection was analyzed, targeting JVMs for workstations.

Chen [10] proposed to detect and recover from transient errors by
adding a dual-execution and check-pointing extension to KVM. The
heaps of both instances are compared against each other. To keep
the overhead low, the heaps are divided into subheaps which contain
the latest changes and those which have not changed. Unchanged
heap parts and moving new heap data is protected by a memory
management unit (MMU), however, type safety is not retained.
Errors that trigger a trap can be corrected by copying the state from
the sane instance to the corrupted one. The focus is on 1-bit error
detection and state recovery of heap objects.

We are not aware any research of type-system protection. Be-
sides reduced illegal memory accesses, our approach was able to
detect and signal some bogus behavior in the application. Additional
application-specific fault-tolerance measures based on static anal-
yses on static type-safe programs can be employed on top of our
approach. In [5], it was quantitatively analyzed how an exemplary
piece of software reacts to corrupted virtual function calls in the con-
text of C++ and the authors propose to protect the virtual function
pointer by a dependability aspect that is applied by the AspectC++
weaver. In their experiments, 75% of all bit flips in virtual function
pointers led to an application crash. In contrast to this approach,
safeguarding of virtual function calls is included by protecting the
type system itself. Thanks to static application knowlegde and type
information, an efficient protection of method calls is possible.

8. Conclusion and Future Work
We presented a possible solution to protect the type system of a
strongly typed programming languange in the presence of soft er-
rors. The approach targets embedded systems and allows to continue
relying on the benefits of Java to the extent discussed in the eval-
uation section. The effects of soft errors on the type system and
software-based memory protection built on top of the type system
have been analyzed exemplarily in the context of the KESO JVM.
By means of LRC, it is more likely to retain software-based spa-
tial isolation needed for many fault-tolerance techniques such as
replication without the need for an MPU. Moreover, LRC can retain
type safety and allows for an early error detection at the granularity
of objects. The overhead imposed by our solution is dependent on
the application itself (e.g. frequent array usage). Also, it is bound
to the effectiveness of compiler optimizations, that is, the extent to
which they are able to elide dynamic program information that can

be corrupted during execution. To the best of our knowledge, we
presented and evaluated the first implementation of type safety and
software-based memory protection in the presence of soft errors.

There are several aspects which we would like to cover in our
future work. At first, there is the evaluation of the more expensive
DRC variant, which is able to detect more illegal memory accesses.
Our RC variants are easily adaptable to detecting and tolerating
more bit flips at a time, so an evaluation of these scenarios is also
in progress. Secondly, KESO’s optimizations will be extended: The
handling of checkcast, for example, will be improved. Also, we
plan to implement the idea of possible loop unrolling allowing
for the elision of expensive extended array bounds checks. Error-
detection support for the program counter by means of automated
use of control-flow information available in KESO will be examined.

Up to now, we have had to use the protected pseudo-static mem-
ory allocation technique. The available GCs are currently extended
to detect and tolerate soft errors. We are interested in the overhead
imposed by dependable garbage collection, which also facilitates
to significantly reduce the heap size and thus the attack surface of
the heap. A ROM allocation analysis is currently being developed
to be able to place more constant data in ROM to decrease RAM
usage. Also, the effects of an extended escape analysis – which
allows for stack allocation and moreover an automated application
of RTSJ’s [4] ScopedMemory – will be taken into consideration.

References
[1] G. Aigner and U. Hölzle. Eliminating virtual function calls in C++

programs. In 10th Eur. Conf. on OOP (ECOOP ’96), pages 142–166,
London, UK, 1996. Springer. ISBN 3-540-61439-7.

[2] M. Aiken, M. Fähndrich, C. Hawblitzel, G. Hunt, and J. Larus. De-
constructing process isolation. In MSPC ’06: Proceedings of the 2006
Workshop on Memory System Performance and Correctness, pages
1–10, New York, NY, USA, 2006. ACM. ISBN 1-59593-578-9. doi:
10.1145/1178597.1178599.

[3] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual
function calls. SIGPLAN Not., 31(10):324–341, 1996. ISSN 0362-
1340. doi: 10.1145/236338.236371.

[4] G. Bollella, B. Brosgol, J. Gosling, P. Dibble, S. Furr, and M. Turnbull.
The Real-Time Specification for Java. AW, 1st edition, Jan. 2000.

[5] C. Borchert, H. Schirmeier, and O. Spinczyk. Protecting the dynamic
dispatch in C++ by dependability aspects. In Proceedings of the 1st GI
Workshop on Software-Based Methods for Robust Embedded Systems
(SOBRES ’12), Lecture Notes in Informatics, pages 521–535. German
Society of Informatics, Sept. 2012.

[6] C. Borchert, H. Schirmeier, and O. Spinczyk. Generative software-
based memory error detection and correction for operating system
data structures. In Proceedings of the 43nd IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN ’13). IEEE
Computer Society Press, June 2013.

[7] S. Borkar. Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation. IEEE Micro, 25(6):
10–16, November 2005. ISSN 0272-1732. doi: 10.1109/MM.2005.110.

[8] G. Cellere, S. Gerardin, M. Bagatin, A. Paccagnella, A. Visconti, M. Bo-
nanomi, S. Beltrami, P. Roche, G. Gasiot, R. H. Sorensen, A. Virta-
nen, C. Frost, P. Fuochi, C. Andreani, G. Gorini, A. Pietropaolo, and
S. Platt1. Neutron-induced soft errors in advanced flash memories. In
IEDM 2008. IEEE, Feb. 2009. ISBN 978-1-4244-2378-1.

[9] D. Chen, A. Messer, P. Bernadat, G. Fu, Z. Dimitrijevic, D. J. F. Lie,
D. Mannaru, A. Riska, and D. Milojicic. JVM susceptibility to memory
errors. In Java Virtual Machine Research and Technology Symposium,
pages 67–78, Berkeley, CA, USA, Apr. 2001. USENIX. ISBN 1-
880446-11-1.

[10] G. Chen and M. Kandemir. Improving java virtual machine reliability
for memory-constrained embedded systems. In Proceedings of the
42nd annual Design Automation Conference, DAC ’05, pages 690–

695, New York, NY, USA, 2005. ACM. ISBN 1-59593-058-2. doi:
10.1145/1065579.1065761.

[11] J. J. Cook and C. B. Zilles. A characterization of instruction-level
error derating and its implications for error detection. In DSN, pages
482–491. IEEE, 2008. doi: h10.1109/DSN.2008.4630119.

[12] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. LNCS, 952:77–101,
1995.

[13] R. Friedman and A. Kama. Transparent fault-tolerant java virtual
machine, 2003.

[14] M. Golm, M. Felser, C. Wawersich, and J. Kleinöder. The JX operating
system. In 2002 USENIX ATC, pages 45–58, Berkeley, CA, USA, June
2002. USENIX. ISBN 1-880446-00-6.

[15] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante.
Software-Implemented Hardware Fault Tolerance. Springer, Heidel-
berg, Germany, 2006. ISBN 0-387-26060-9.

[16] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and J. Vitek.
CDx: A family of real-time java benchmarks. In JTRES ’09: 7th Int.
W’shop on Java Technologies for real-time & embedded Systems, pages
41–50, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-732-5.
doi: 10.1145/1620405.1620412.

[17] K. P. Lawton. Bochs: A portable pc emulator for unix/x. Linux Journal,
1996(29es):7, 1996.

[18] J. Napper, L. Alvisi, and H. Vin. A fault-tolerant java virtual machine.
In In Proceedings of the International Conference on Dependable
Systems and Networks (DSN 2003), DCC Symposium, pages 425–434,
2002.

[19] S. Poledna, A. Burns, A. Wellings, and P. Barrett. Replica determinism
and flexible scheduling in hard real-time dependable systems. IEEE
TC, 49(2):100–111, 2000. ISSN 0018-9340. doi: 10.1109/12.833107.

[20] H. Schirmeier, R. Kapitza, D. Lohmann, and O. Spinczyk. DanceOS:
Towards dependability aspects in configurable embedded operating sys-
tems. In A. Orailoglu, editor, 3rd HiPEAC W’shop on Des. f. Reliability
(DFR ’11), pages 21–26, Heraklion, Greece, Jan. 2011.

[21] H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and
O. Spinczyk. FAIL*: Towards a versatile fault-injection experiment
framework. In G. Mühl, J. Richling, and A. Herkersdorf, editors, 25th
Int. Conf. on Architecture of Computing Systems (ARCS ’12), Workshop
Proceedings, volume 200 of Lecture Notes in Informatics, pages 201–
210. Gesellschaft für Informatik, Mar. 2012. ISBN 978-3-88579-294-9.

[22] V. C. Sreedhar, R. D.-C. Ju, D. M. Gillies, and V. Santhanam. Trans-
lating out of static single assignment form. In Proceedings of the 6th
International Symposium on Static Analysis, SAS ’99, pages 194–210,
Heidelberg, Germany, 1999. Springer. ISBN 3-540-66459-9.

[23] M. Stilkerich, I. Thomm, C. Wawersich, and W. Schröder-Preikschat.
Tailor-made JVMs for statically configured embedded systems. Con-
currency and Computation: Practice and Experience, 24(8):789–812,
2012. ISSN 1532-0634. doi: 10.1002/cpe.1755.

[24] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin. Practical virtual method call resolution for
Java. SIGPLAN Not., 35(10):264–280, 2000.

[25] A. Taber and E. Normand. Single event upset in avionics. IEEE
Transactions on Nuclear Science, 40(2):120–126, Apr. 1993. ISSN
0018-9499. doi: 10.1109/23.212327.

[26] I. Thomm, M. Stilkerich, R. Kapitza, D. Lohmann, and W. Schröder-
Preikschat. Automated application of fault tolerance mechanisms
in a component-based system. In JTRES ’11: 9th Int. W’shop on
Java Technologies for real-time & embedded Systems, pages 87–95,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0731-4. doi:
10.1145/2043910.2043925.

[27] P. Ulbrich, R. Kapitza, C. Harkort, R. Schmid, and W. Schröder-
Preikschat. I4Copter: An adaptable and modular quadrotor platform.
In 26th ACM Symp. on Applied Computing (SAC ’11), pages 380–396,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0113-8.

[28] M. N. Wegman and F. K. Zadeck. Constant propagation with condi-
tional branches. ACM Trans. Program. Lang. Syst., 13:181–210, Apr.
1991. ISSN 0164-0925. doi: 10.1145/103135.103136.

