
Team Up: Cooperative Memory
Management in Embedded Systems

Isabella Stilkerich Philip Taffner Christoph Erhardt Christian Dietrich Christian Wawersich
Michael Stilkerich

Friedrich-Alexander University, Erlangen-Nuremberg, Germany
{istilkerich, taffner, erhardt, dietrich, wawi, stilkerich}@cs.fau.de

Abstract
The use of a managed, type-safe languages such as Java in real-
time and embedded systems can offer productivity and, in partic-
ular, safety and dependability benefits over the dominating unsafe
languages at reasonable costs. A JVM that has dynamic memory-
management needs to provide an implicit memory-management
strategy, that is, for example, a garbage collector (GC) or stack al-
location provided by the escape analysis of the JVM’s compiler:
Explicit management of dynamically allocated memory (i.e., by
use of functions such as C’s malloc() and free()) is vulnerable
to programming errors such as neglected or false memory release
operations causing memory leaks or dangling pointers. Such opera-
tions have the potential to break the soundness of the type system
and are therefore usually not available for strongly typed languages.
Type-safe languages in combination with static analyses – which
respect hardware as well as system-specific information – can effi-
ciently be employed to provide a runtime system including memory
management (MM) that is specifically suited to an embedded appli-
cation on a particular hardware device. In the context of this paper,
we present novel memory-management strategy we implemented
in our KESO JVM. It is a latency-aware garbage-collection algo-
rithm called LAGC. Also, we introduce the static analyses that can
assist LAGC. The application developers have to ensure that there
is enough time for the GCs to run. Hardware characteristics such as
soft-error proneness of the hardware or the memory layout can also
be taken into consideration as demanded by the system configuration.
This is achieved by integrating the GCs in the design process of the
whole system just as any other user application, which is the reason
why this approach is called cooperative memory management. The
suggested strategies require reasonably low overhead.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; D.3.3 [Programming Languages]:
Language Constructs and Features—Classes and Objects; D.4.7
[Operating Systems]: Organization and Design—Real-time Systems
and Embedded Systems

General Terms Memory Management, Garbage Collection, De-
sign, Languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ESWEEK’14, October 12 - 17 2014, New Delhi, India.
Copyright 2014 ACM 978-1-4503-3050-3/14/10. . . $15.00.
http://dx.doi.org/10.1145/2656106.2656129

1. Introduction
Java is a rather uncommon language in (deeply) embedded systems,
though it provides a series of advantages such as memory safety. As a
type-safe programming language, Java also provides the foundation
for comprehensive program analyses and runtime system support,
which can be very useful in embedded systems. Application software
can be deployed on several kinds of microcontrollers that may vary
in their hardware-specific features, such as availability of memories
(RAM, ROM) and their respective layout or the occurrence of
random soft errors. Combining the knowledge of the type-safe
application, system software and the hardware features can help
to create a runtime system that is tailored to a particular system
setup. Memory management is an inherent part of such a runtime
system and the focus of this work is to present how such a system and
application-specific memory management for a particular hardware
device can be created.

The paper is organized as follows: Section 2 will introduce the
employed KESO JVM and the properties of the system, which are
essential to understand our approach. Afterwards we will explain the
overall idea of cooperative memory management in Section 3: The
information sources given by the system and application developers
are presented as well as our static analyses that process this infor-
mation and assist the GC at runtime (Section 3.1). Afterwards, we
propose a new low-overhead garbage collection mechanism in Sec-
tion 3.2. The entire approach helps to create an automated tailored
memory management. For space limitation reasons, we focus on
one hardware-specific property: A case study of garbage collection
and soft errors is given in Section 3.3. The evaluation (Section 4) of
cooperative memory management in combination with soft errors is
performed on a well-known real-time Java benchmark: We show to
which extent the static analyses help the GC and also experimentally
demonstrate how the garbage-collection algorithm proceeds in the
presence of soft errors with and without our protection measures.
The overhead in terms of memory footprint and execution time are
also discussed. Related work and conclusions are presented in the
last two sections.

2. Surrounding Conditions and Runtime System
The KESO JVM is designed to be deployed in statically configured
embedded systems. In such systems, all relevant entities of the
application as well as the system software are known ahead-of-
time. These entities contain the entire type-safe source code of the
application and operating-system objects such as threads (called
tasks in AUTOSAR OS), for example. Thus, it is not possible
to dynamically load new code or create threads at runtime. This
scheme, however, allows to create a slim and efficient runtime
environment for Java applications in embedded systems.

1.2 Motivation

Microcontroller

OSEK / AUTOSAR OS

KESO Runtime Environment
Mem-Mapped I/O

Device Drivers

Domain C

Domain B Portal
Portal

GC/Heap Resources
Alarms
ISRs

5 2 3
Tasks

Domain A

Figure 1.1: Schematic overview of a KESO system. An OSEK or AUTOSAR RTOS runs on a microcontroller. On
top of the operating system, the KESO runtime environment provides services and abstractions used
by the application, such as RPC primitives or device drivers. Multiple protection realms (domains) can
contain multiple tasks each, have their own resources, heap, and garbage collector and communicate
safely using portals.

Due to the reduction of structure sizes in modern computing chips, dealing with

transient soft errors such as bit flips is mandatory for critical applications. Software-

based mechanisms for isolation are at a disadvantage compared to microcontroller

units (MCUs) with hardware-based memory protection such as MPUs and MMUs,

which offer protection against errors caused by this problem class. Previous work on

KESO attempts to compensate this [TSK+11, SSE+13].

1.2 | Motivation

Manual memory management using library functions has been the de-facto standard

method of dealing with dynamic memory needs in C and C++. It provides fine-

grained control over applications’ memory allocation behavior, but comes with a

downside: Programming mistakes can lead to leaks and dangling pointers, which

in turn can lead to security vulnerabilities or crashes. As a consequence, developers

need to be careful while writing code that uses manual memory management, in

particular when used in safety-critical components.

In order to address these drawbacks, automatic memory management techniques,

3

Figure 1: KESO’s architecture

The architecture of KESO is shown in Figure 1. Applications
can be isolated from each other by embedding them in so-called
protection domains. Spatial isolation is constructively ensured by
the type-safe programming language and strict logical separation of
all global data (e.g. heap, static class fields). The RPC mechanism
(called Portal) for communication ensures, that object references1

are not propagated between domains. The runtime system provides
control-flow abstractions such as threads and interrupt service
routines (ISRs) and their respective activation and synchronisation
mechanisms such as alarms and locks (called resources). KESO
applications benefit from Java features like type safety, dynamic
memory management and optionally a garbage collector. The
KESO’s ahead-of-time compiler jino generates ANSI C code from
the application’s Java bytecode. During code generation jino also
generates a runtime environment specific for that application. While
most of the code directly translates to plain C code, the Java thread
API is mapped onto the thread abstraction layer of an underlying
OS. In the case of used JVM, that abstraction layer is normally
provided by AUTOSAR OS, however, the KESO concept could also
be transferred to any other static OS. Memory management applied
under the given surrounding conditions can profit from the static
and type-safe system setup, where the ahead-of-time compiler of
the JVM can apply comprehensive analyses by incorporation of the
system model, system configuration and the type-safe application
code to assist the GC at runtime.

3. Cooperative Memory Management
To pursue the approach of cooperative memory management, LAGC
is supported by KESO’s compiler jino. This section gives an
overview about the implications of the system model used in KESO
and presents how jino processes the system information at hand
(Section 3.1) and how the garbage-collection algorithm is supported
by these analyses (Section 3.2). In order to demonstrate, to what
extent hardware-specifics can be respected during the compilation
and tailoring process as well as in the runtime memory management,
we present a case study for taking random soft errors into account.

KESO’s architecture of isolated domains implies the strict
separation of the heaps and static fields. This trait leads to disjoint
object graphs in the different domains, which allows (optional)
garbage collection to be performed individually for each domain.
It is also possible to deactivate garbage collection for applications,
which do not need it.

1 A reference is a compound of address and object information such as the
object’s dynamic type or memory management meta data

Application System
Configuration

Application
Bytecode

C Code

Blocking Syscalls

Static Config

...

Call Graph

Class Hierarchy

...

Threads

ISRs

Domains

...SE Rate

...

 Compiler
Data Flow Analysis

Dead Code Elim.

Devirtualization

Check Removal

...

Data Flow Info

Operating System
Model

Figure 2: Cooperative memory management: KESO’s compiler jino
processes the application system configuration to assist the GC at
runtime

3.1 Compiler-Assisted Memory Management
jino applies a series of high-level analyses and transformations
on type-safe code. Due to the strict separation of references and
primitive values, these compiler passes can be executed far more
efficiently on an application written in Java in contrast to an
application written in the (unsafe) C language. We developed new
compiler passes for jino, which are particularly interesting for JVM’s
cooperative memory management. The three sources of information
needed by the compiler are depicted in Figure 2:

Operating System Model The underlying OS provides several
information that is needed for the compilation and tailoring process
such as the knowledge about blocking and non-blocking system calls
or the priority-based task scheduling mechanism. Taking the first-
stated example into consideration, the compiler can, for instance,
decide, whether particular structures for stack scanning (so-called
linked stack frames, see Section 3.1.3) in the GC phase have to be
emitted.

Application System Configuration The system configuration –
provided by the application developer – informs jino about the
concrete setup of the application world such as the thread architec-
ture or the protection domains, into which the system is subdivided.
For each domain, the entry points to the respective control flows are
specified. Moreover, the application developer configures if these
tasks have run-to-completion semantics (basic tasks) or can poten-
tially block (extended tasks). It can be defined too, which events
may occur and in which way they should be handled as well as
the heap management strategy. Regarding hardware-specifics, also
soft errors may be addressed: Application protection by spatially
isolated replication can be configured as well as level of protection
needed for hardening the runtime system against soft errors (i.e. the
soft error rate (SE) needs to be derived from the hardware specifi-
cation). Other hardware-specifics are, for example, the existence of
a memory protection unit (MPU) [22], existing read-only memory
(ROM) (Section 3.1.2) or the address layout of the microcontroller
(e.g. Section 3.1.4). In case of an MPU, jino may perform its reach-
ability analysis to assist the MPU to physically group application
data or decide, which memory safety checks (i.e. null checks) can
be performed by the MPU or the runtime system. Application code

annotations by the developer are not necessary for that. All this
information is important for jino’s control-flow-sensitive analyses.

Application Bytecode The application bytecode itself states the
information that is processed and transformed by the compiler. Effec-
tively, the application system configuration determines a specialized
variant of the code base. Due to the system’s static nature, the class
hierarchy, the call graph, etc. remain constant at runtime – it is
not possible to load any additional code at runtime. This allows to
perform a whole-program analysis and respective optimizations.

Starting from these three classes of static knowledge, it is pos-
sible to collect extensive information about the program – bundled
with a specific operating system and deployed on a specific hardware
device – that can be exploited in order to enhance the emitted C code
that includes the application and the runtime environment. The tech-
nical details of the static analyses are not part of this paper, however,
we give a short insight how they support system-specific memory
management exemplary in the context of soft errors. Evaluation
results can be found in Section 4.2:

3.1.1 Extended Escape Analysis
The information collected by alias analysis and the computation of
the references’ reachability can be used to automatically determine
if an object escapes a method [7] i.e. if the object has to be allocated
on the heap memory or if it can be stack-allocated. Based on the
escape state of an object, we developed the extended escape analysis
(EEA) for extended stack scopes (ESS): Some method escaping
objects that are allocated in a method and returned afterwards can be
allocated in the caller’s stack frame to further reduce heap objects.
EEA should be combined with stack protection to support control
flow isolation, i.e. the stack must not overflow. It is also used to
compute the thread-locality of an object. Besides potential stack
allocation, the EEA is useful for other issues as well: Such objects
can still be heap-allocated2, but are managed by a separate heap
region to unload the GC. Molnar et al. too support stack allocation
in the CACAO JVM [17] using a Steensgaard-based escape analysis.
Unlike KESO, they employ just-in-time compilation and escape
analysis is performed at runtime. Stack allocation of arrays is not
supported.

We use EEA too for determining the survivability of an object,
i.e. if the object survives a GC phase. This is helpful to reduce the
upper space and time estimations for real-time memory management.
As a consequence of EEA, the number of objects that need to be
garbage collected is reduced and this implicates – particularly in the
context of soft errors – a series of advantages:

• Deallocation and allocation is performed by moving the stack
pointer. These are low-cost and time-predictable operations in a
CPU register.
• Due to the reduction of heap objects, the GC phases are short-

ened. Furthermore, it reduces the GC’s heap fragmentation as
short-living objects are located in a separate memory area.
• The overhead of the overall application in a multi-threaded

environment is reduced, since synchronization of the mutators
on method-local and thread-local objects is not needed.
• Soft error-protection of references to stack objects is implicitly

done be reference checking (see Section 3.1.4) and the overhead
of protecting the GC phase against soft errors (Section 3.3.3) is
significantly lower. Moreover, the size of the isolation domain
can be reduced, which is particularly interesting, if application

2 There are situations, where stack allocation is not advantageous, such as e.g.
some virtual method call constructs: EEA takes place after devirtualization,
however, if lots of method candidates remain, the ESS object had to be
allocated in every possible method, which may result in a waste of memory

void foo(obj t ∗∗ llref , obj t ∗ thisp) {
// 3 reference variables + frame link pointer
obj t ∗ references [4] = { NULL, NULL, NULL };

// link to previous frame
∗ llref = references ;

bar(&references [3], thisp);
}

void bar(obj t ∗∗ llref , obj t ∗ thisp) {
// terminate the list ...
∗ llref = KESO EOLLREF;
// ... before calling a blocking system service
WaitEvent(EventID);
}

Listing 1: Linked Stack Frames Implementation

replication (Section 3.3) for data protection against soft errors is
activated.

3.1.2 Immortal Object and Runtime Final Analyses
In Java, it is not possible to mark objects such as fields as con-
stant (final). Also, it is up to the application programmer to label
constant data and this manual approach can lead to missed opti-
mizations, if the marking is neglected. Regarding final references or
arrays, the content of the referenced object can still be manipulated,
only the object or array to which it is referring must not change. The
knowledge if such objects are definitely constant is very precious, as
this data can be placed in ROM, such as – for example – flash mem-
ories. A ROM unit is significantly cheaper than the scarce RAM.
More importantly, ROM is often much less susceptible to soft er-
rors [9]. Data located in ROM does usually not need to be protected
by means against soft errors. Other advantages are similar to the
ones mentioned with escape analysis (items 2.-6. in Section 3.1.1)
such as reduced overhead in the GC phase. Korsholm proposed a
manual annotation-based solution [15], whereas we extended jino
to derive constant and write-once (runtime final) data automatically.
These compiler passes are assisted by escape analysis to use alias-
ing information. If specified, constant objects become immortal
by storing them in ROM. Runtime final objects always reside in
RAM. Immortal objects have to be treated differently by the GC as
their memory can naturally not be reclaimed. Headers of immortal
objects contain a special marker value. Memory safety checks can
be eliminated on such objects, as they are known to be non-null,
which can contribute to a significant performance improvement.

3.1.3 Linked Stack Frame Elimination
We use linked stack frames (referred to as llrefs) to allow the GC
to scan the task stacks for references. Listing 1 shows how the
linked stack frames are implemented in KESO in the generated C
code. The local reference variables of a function are stored in an
array references rather than individual variables to ensure their
physical collocation in memory. Besides the reference variables,
the last element of the array contains a link pointer that is used to
link to the references of the next frame, or contains a marker
value KESO EOLLREF to let the GC detect the end of the linked
list. To maintain the list, the function interface is extended by a
parameter llref that points to the previous link pointer and is
updated in the prologue of a called function. Initially, the head
pointer location which is known to the GC is passed. Before calling
a blocking function, the list is terminated with the marker value.
Linked frames add obvious overhead to the function prologues
and calls for maintenance work on the linked list of references. In

addition, the reference values need to be initialized with null in
case the GC scans the list before the program has assigned a value
to the variable. More severely, however, is the hidden overhead:
the effect on the C compiler’s optimizations, since alias analysis is
more complicated when multiple variables are stored as a compound
rather than individually. To reduce the overhead caused by linked
frames, we only generate them for functions that are potentially
active while the GC is running. In the AUTOSAR OS programming
model, we can limit these as follows:
• Garbage collection is performed at slack time in KESO. This

means that all application tasks are either suspended (empty
stack) or blocked at that time.
• Heap space exhaustion will never cause a task to block during

an allocation. Instead, an exception will be generated.
• Functions reachable only from basic tasks are never active while

the GC is running due to the run-to-completion semantics of
basic tasks.
• Functions reachable from extended tasks can be active during

garbage collection only if they (transitively) invoke a blocking
system service.
• All blocking system services are known to our compiler. In

AUTOSAR OS, there is only a single blocking system service,
WaitEvent().
Based on these observations, we only use linked stack frames

in blocking functions, that is, functions from which a path in the
call graph to a call of the WaitEvent() service exists. If a non-
blocking function is invoked from a blocking function, the linked
frames list is not maintained in this sub-graph of the call graph.
An interesting special case are dynamically bound method calls
for which both blocking and non-blocking candidates exist. The
function interface needs to be the same for all candidates to remain
call-compatible. This issue can easily be solved by adding the llref

as an unused parameter to the non-blocking candidates. Rafkind et al.
also restricted the use of linked stack frames to allocating functions
in the Magpie C source-to-source compiler [19]. We can apply this
technique more aggressively due to KESO’s side-stepped garbage
collection that will never cause an allocation to be interleaved by a
garbage collection. In our target domain, tasks are often periodically
executed and only block at a shallow stack depth to wait for the next
period, while the actual periodic activity is performed in a called
method. For such applications, the periodically executed code will
not require the use of linked frames at all and therefore not suffer
from the performance penalties in our system model.

3.1.4 Runtime Checks
The compiler emits memory safety checks (i.e. null and array bounds
checks) at those code locations, where its data flow analyses could
not statically prove that the access will always succeed or that
an MPU (if present and assisted by jino to be used in that way)
will generate a hardware exception due to the microcontroller’s
memory layout [23]. When considering soft errors, the integrity of
the regarded reference has to be checked prior to the regular memory
safety checks to preserve software-based memory protection as
proposed by Stilkerich et al. [21]. Two of these integrity runtime
checks have been integrated in jino and are distinguished by the
time the check is executed:

Dereference Check (DRC): In this variant, object references
stay encoded all the time. They are tested and decoded
every time they are dereferenced, thus the probability of
detecting an illegal reference is very high. Dereferencing
takes place whenever one of the following bytecode instruc-
tions is executed: putfield, getfield, *aload, *astore,
arraylength, instanceof, checkcast, invokevirtual,
invokeinterface, and invokespecial.

Load Reference Check (LRC): In this variant, object references
are checked as soon as they are loaded from memory – that is,
from a static field (bytecode instruction getstatic), an object
field (getfield) or an object array (aaload). They are encoded
when being stored and decoded upon being loaded.

An object reference integrity check is two-fold: First of all,
the address the object is located at has to be proven valid and
secondly its respective header information (e.g. dynamic type
information) is checked. We describe later in Section 3.3 how these
mechanisms can be used during garbage collection. One possibility
is to protect references with parity information, however, also any
other protection mechanism is conceivable and easy to plug into
the system with respect to the application developer’s choice. The
protection information’s layout may respect the hardware device: As
an example, selected target platform (TriCore TC1796), uses 32-bit
addresses, but the microcontroller has only 1 MB addressable RAM.
This hardware characteristic can be exploited to embed up to 12 bits
of parity information in the references without increasing the attack
surface of the program.

3.2 Runtime Memory Management
We have implemented a novel incremental latency-aware heap
strategy called LAGC for KESO: Embedded systems usually receive
external events (e.g. measurements from sensors connected to bus
systems) and compute – in reaction to these events – results to
drive actors (e.g. an engine). Thus, an important aspect in such
systems is a low latency on external events (that is, interrupts).
KESO’s incremental garbage collector was designed to restrict all
critical sections to constant complexity. The worst case reaction time
to interrupts is therefore low and predictable. LAGC is a precise,
tracing, non-moving mark-and-sweep GC and its working principle
is as follows: Garbage collection is executed by a dedicated control
flow (called GCTask). This single task is responsible for the garbage
collection in all domains that use the particular heap management
strategy, but only processes the heap of one domain at a time. The
GCTask is assigned the lowest priority in the system, thus the slack
time of the system is used to perform garbage collection runs. This
is a good moment to perform a garbage collection, since most tasks
will be suspended and only the stacks of blocked tasks need to be
scanned. A GC run is performed in the two typical phases of mark-
and-sweep GCs. In the scan-and- mark phase, the live set of objects
is determined by scanning all the reference values present in the
application, and the parts of the heap occupied by these live objects
are marked using the traditional tricolor scheme [8]. In the beginning
of the scan phase, all objects are white. When the GC discovers an
object reference reachable from the root set of the application, the
memory occupied by the object is marked as being used and the
object becomes gray. After having scanned all references within the
object (and having colored all referenced objects gray), the object
becomes black. Upon completion of the scan-and-mark phase, all
objects on the heap are either white or black. In the subsequent
sweep phase, the memory of all still-white objects is reclaimed. The
LAGC can be interrupted during a GC run and needs to synchronize
with the application. All critical sections within the incremental
GC where interrupt handling needs to be suspended are of constant
complexity.

Scanning References The root set comprises the static reference
fields and local reference variables on the stacks of blocked tasks.
The GC needs to be able to find these references in memory with as
little overhead as possible. This issue is solved by

• Grouping all static reference fields of a domain into an array that
can simply be traversed.

• Using a bidirectional object layout as proposed by SableVM [11]
that physically groups reference fields of objects in memory,
even when inheritance is being used.
• Grouping all local reference variables in a stack frame, and build-

ing a linked list that links the groups of the different stack frames.
This is a variation of Henderson’s linked frames [13]. The list is
maintained in the prologues and epilogues of potentially block-
ing methods.

Incremental Scanning of the Object Graph The LAGC uses
write barriers as proposed by Yuasa [24] during the mark-and-scan
phase to allow incremental scanning of the object graph, except for
local reference variables on the stack. Whenever a reference to a
white object is overwritten, the object is colored gray by the barrier
which prevents that a white object can become invisible to the GC
after the start of the mark-and-scan phase. Stack scanning of a task
is not incremental and of complexity linear to the size of the stack:
The stack is only scanned when a task is waiting for an event, which
is only the case in few well-known places where WaitEvent()
is called. (Unbounded) recursive invocation of blocking methods
may, however, complicate the prediction of the stack size. The
stack size can be computed by our compiler ahead of time and
jino is able to detect recursive calls. LAGC uses AUTOSAR OS
resources (i.e. priority ceiling) when scanning the stack of a task.
This delays the task whose stack is being scanned until the entire
stack has been scanned, but allows higher priority tasks and ISRs
to interrupt the stack scan operations. In addition, the immediate
priority ceiling prevents tasks with a priority lower to that of the task
whose stack is being scanned to interrupt the scan, which prevents
unbounded priority inversion. The scan-and- mark phase consists of
the following steps:

• Enable write barriers, change the allocation color to black
• Scan the stacks of blocked tasks and mark reachable objects gray
• Scan the root set (static fields) and mark reachable objects gray
• Proceed scanning gray objects until there are no more gray

objects
• Disable write barriers, change the allocation color to white

It is important that the task stacks are scanned first since (ex-
pensive) write barriers are not used for stack variables. Otherwise,
the only reference to a white object W on a task stack could, for
instance, be written to an already scanned static field and removed
from the stack. This would remove the last discoverable path to W
without marking W, causing the object to remain white and being
reclaimed during the sweep phase though still being visible to the
application, which may compromise the type system and must not
happen. Garbage collection can be preempted between scanning two
task stacks, since a reference value cannot move from one (white)
stack to another (black) without first being stored in a (white/gray)
field on that write barriers are active.

3.3 Type-Safe Runtime Systems and Soft Errors
Safety-critical embedded systems have specific requirements regard-
ing hardware and software components to avoid or mitigate malign
errors. Functional safety standards such as the IEC 61508 and ISO
26262 address this issue and distinguish between systematic and
random errors. Systematic errors can occur in hardware and soft-
ware components and are the result of design and implementation
defects. Engineering processes and methods exist to avoid and mit-
igate systematic defects. In order to fight typical implementation
errors in software (bugs) that often occur when using the program-
ming C – which is wide-spread in embedded systems engineering –
programming standards such as MISRA-C have been released. Such

rules and standards restrict unsafe programming languages to get a
safer language subset. Dynamic memory management or the use of
function pointers, for example, are prohibited in systems compliant
to MISRA-C. Random errors do not reside in the system in the first
place and only occur in hardware. They are referred to as permanent
(hard) and transient (soft) errors, where soft errors have – in contrast
to hard errors – only a temporary effect on the logical circuits or
memory. Soft errors become noticeable as bit flips and are a result
of hardware failures that are becoming more likely to happen as a
consequence of shrinking structure sizes [4], extreme environmental
conditions such as radiation or voltage-supply problems. We state
that type-safe languages are not only beneficial for the reduction of
systematic errors, but also for the mitigation of random soft errors
as well as the consideration of other system-specific traits: Compre-
hensive analyses at compile time help to create a lean memory-safe
runtime system suited to the deployed application. Complex and
safeguarded runtime memory management has not been used in a
soft-error-prone setup so far and we would like to address this issue
with our case study. Precise garbage collection is usually performed
in combination with type-safe languages. These languages, however,
can lose their isolating character in soft-error-prone environments
as presented later in Section 3.3.1. As the memory management
in general deals with object references we adopt the reference pro-
tection mechanisms from [21] as earlier described in Section 3.1.4.
The authors did not use a garbage collector and to address this, we
combine reference checking with additional safety runtime checks
to build a dependable complex memory management (MM) variant.
In general, several ways to safeguard MM in the presence of soft
errors and – as a consequence – software-based memory protection,
are conceivable:

No usage of GC at all: Lots of embedded application do not re-
quire garbage collection. Instead, region-based [12] or bump
pointer heap management can be employed. Bump pointer ac-
cess has to be protected as otherwise type system information in
the objects located on the heap or elsewhere could be corrupted.
It has to be combined with reference checking (either LRC or
DRC) in the application to assure the isolation properties of the
type-safe programming language [21].

Type-safe GC: The proposed LAGC could be implemented in
a type-safe language and treated the same way as a KESO
application. Reference checking (LRC or DRC) will protect
references. The integrity of the GC data structures used for
book-keeping (see Section 3.3.3) purposes has to be protected
in addition.

Implement GC in unsafe language: The GC is part of the trusted
computing base, i.e. it does not compromise the type system, if
soft errors do not occur. When accounting for soft errors, the
references used during its run phase as well as the GC data
structures have to be protected. As the GC is not implemented
in (type-safe) Java, naturally the information of load and store
instructions from the Java bytecode level is not present. This is
the reason why DRC should be used3

The first approach was presented in [21], a GC was not em-
ployed as no dependable GC was available. The second proposal
has currently been skipped due the unsuitable implementation of
memory-mapped objects in KESO: Such objects describe the layout
of a specific region in memory and are comparable to C structs
with a more fine-grained access control. Without any further run-
time system support, it is usually not possible to manipulate object

3 This checking mechanism can be applied to the generated (memory-safe) C
code, as the reference information is compiled into the runtime environment.
It would be possible to apply LRC to the machine code level, but this
approach currently not in our scope.

information in a type-safe language, which is on the other hand
a mandatory property for any garbage collector, as it has to read
and write object information at runtime. Special abstractions such
as the memory-mapped objects provided by KESO can be used to
access the type information on the heap. The GC has to access the
application objects through these special abstractions, which causes
an additional overhead in space and time. These abstractions are
planned to be optimized to reduce this overhead, as this one is too
high in the current state. As the GC is usually part of the (small)
trusted code and computing base, it is usually not required to have
a type-safe GC to establish memory protection. However, with the
consideration of soft errors, this assumption is not true anymore,
as bit flips may cause wild references: Thus, we present a possible
solution for the third idea in the context of this work: We imple-
mented the GC algorithm in the unsafe C/C++ languages and further
support it with the static analyses mentioned in Section 3.1. More-
over, protection of the garbage collection information in addition
to reference checking is applied to preserve the characteristics and
implications of the (memory-safe) runtime system.

3.3.1 Garbage Collection and Soft Errors: A Case Study
Soft errors occurring in the GC phase can have a devastating effect
on the integrity of the runtime system. On the one hand, there
are the application references, which are accessed during the GC
run and on the other hand, there are internal memory-management
structures for book-keeping purposes. Corruptions in these spots can
produce wild references and thus violate the type-safety property
of the programming language and the assumptions used during
the compilation process. An obvious solution to this problem is to
disable the GC, which is possible in lots of embedded applications
and to only allow safeguarded checked bump-pointer management
of objects on the global heap in combination with application
replication [21] However, some reasons for a soft-error hardened
GC exist. In many embedded systems, memory is a scarce resource.
A protected GC can help to keep the heap size reasonably low, which
reduces the overhead of application replication techniques. Also,
the probability of detecting corruptions in object references is very
high, since the object graph needs to be scanned. For this reason,
we would like to give an insight into dependable garbage collection.
First of all, we introduce our fault model in Section 3.3.2 followed
by an inspection of critical GC-related runtime structures in Section
3.3.3. In the evaluation (Section 4), an experiment with an exemplary
application is done, which reveals the fault detection rates as well
as the overhead imposed by a protected LAGC. Moreover, a study
on the size of the application replication sphere with and without
LAGC is given.

3.3.2 Fault Model
Protection of memory management against soft errors is essential
for the runtime environment to preserve the isolating character of
the type-safe programming language. Strongly typed languages
can safely isolate different software objects as long as the integrity
of the type system can be maintained. This naturally also has an
impact on the used fault model. Firstly, we only consider soft
errors that become visible at the programming interface of the
processor, as we propose a software-based solution. This comprises
soft errors in arbitrary memory locations and registers. It does not
matter in which part of the processor these errors actually occur
– in the memory or the register itself or while data is transferred
from memory to a register on the bus – but it is important that
software-based checks are able to cover such errors. Thus, we cannot
detect soft errors when data is corrupted after we have checked for
its integrity while it is copied from e.g. a register to memory or
an output location. Secondly, we safeguard memory management
but not the application itself in the experiment. That is, we only

protect those items which are necessary to preserve spatial isolation
provided by a type-safe programming language. Mainly, such items
comprise object references, the associated type information and the
memory-management data structures. Application protection has
to be accomplished on a higher level by means of e.g. application
replication. Thirdly, we assume that program code and data that is
located in non-volatile read-only memory like flash does not suffer
from transient faults, as these memory areas normally are more
robust than e.g. SRAM or registers [9] and their ECC hardware
protection mechanisms are sufficient to protect the code section
against transient faults. So, we do not make any effort to protect
executable code and constant data stored there.4 In summary, we
certainly cannot tolerate arbitrary transient faults affecting the
memory management. However, we try to reduce the probability
of soft errors to compromise the isolating property of a type-safe
programming language as far as reasonably possible. In Section 4,
it is experimentally exhibited how compromised heap management
could affect isolation and we will present measures to harden it.

3.3.3 Critical GC-Related Structures and Soft Errors
The GC data structures in KESO are designed to cause low over-
head. This is both beneficial for restraint-constraint systems and to
minimize the overhead of protecting the JVM against soft errors:

Free Memory List The GC uses a linked list to maintain the free
memory of the domain’s heap. This list is referred to the free memory
list (FML). Its elements contain book-keeping information on a
block of continuous free memory such as their 16-bit size field
(expressed as slots), the 8-bit colorbit and the 8-bit locking mode.
Soft errors in the FML may cause addressing errors.

Slot Division and Bitmap The GC employs a bitmap (BM) to
mark the used memory by setting respective bits in the BM. An
object has a minimum size due to the object header, which is
currently four bytes. Thus, the heap is divided in slots of a fixed,
statically-configured length (slot size) and an object uses one or more
consecutive slots on the heap. Thus it is sufficient to map one bit in
the BM to a heap slot. Since slots are not shared between objects,
there is a certain cutoff, if objects only partially occupy a slot. The
use of statically known slot size information is an immediate (ROM)
access and does not need to be protected against soft errors under
the given fault model. However, the bitmap might be compromised:

• A bit flip in a marked slot, may cause the GC to falsely reclaim
used memory, which may cause the application code to overwrite
type information and break the type system.
• Flipping the bit information in the unmarked slot may cause the

application to run out of memory, as the memory chunk cannot
be reclaimed. The occurrence of this error still preserves the
integrity of the type system.

Working Stack The working stack (referred to as WS) is an array
of references and is used by the GCTask during the scanning phase to
keep track of references to objects that still have to be scanned. The
stack pointer is an index into the WS and contains the index of the
next unused array element. Therefore, pushing to the stack is a post-
increment operation on the stack pointer while popping references
from the stack is a pre-decrement operation. This immediate access
is also regarded as soft error-safe. The stack is empty when the stack
pointer is 0. The maximum stack size has to be predictable, since
the stack must not overflow during the scanning phase. The GC’s
scan algorithm assures that an object reference is never present on
the stack more than once. Thus, the worst-case size of the stack is

4 If less robust ROMs are used, additional means have to be applied to protect
them. Such measures could still be combined with our approach.

determined by the sum of maximum number of objects that can be
allocated from the heap and number of immortal objects in the entire
system. The maximum number of allocatable objects matches to the
number of heap slots, whereas the immortal objects are allocated
by jino and is therefore known at compile time. During scanning,
object references can potentially be corrupted.

Managed Domains The managed domains array has all informa-
tion of the domain identifiers of the domains managed by LAGC. It
is used to select a certain domain for garbage collection by means
of specific criteria, such as the filling state of the heap. Having con-
figured more than one domain, a soft error in the domain selection
phase may cause the wrong domain being collected. This error does
not lead to corruptions of the type system, but may result in a out-of-
memory situation that is signaled as exception and can be handled
by KESO.

GC Domain Since the LAGC of this heap can be interrupted
during a garbage collection cycle, the mutator has to know, if the
GC thread currently runs in this domain. Transient errors in this
identifier can lead to synchronization issues when using the LAGC
or to slow down program execution as unnecessary synchronization
code may be processed. The interruptibility is discussed in detail in
Section 3.2. The access to the GC Domain is an immediate (ROM)
access and thus does not need to be protected due to the fault model.

Linked Stack Frames To allow the garbage collector to scan the
references on the tasks’ runtime stacks, KESO uses linked stack
frames as mentioned previously in Section 3.1.3. The entry to the
linked stack frames list as the object references contained in it may
be corrupted due to a bit flip.

3.3.4 Protection of Garbage Collection
In the following, we shortly describe how the two traditional GC
phases proceed in the face of transient errors. Additional information
can be found in Sections 3.2 and 3.3.3. The runtime checks were
carefully inserted in neuralgic code spots of the GC only to keep the
overhead and the increase of the attack surface of the program as
low as possible.

Scanning of the Object Graph The traversal of the object graph
starts at the root set (consisting of static reference fields, local refer-
ences of the blocked tasks’ stacks). The integrity of the references –
that is object addresses as well as the associated type and as color
data – has to be tested on dereference operations (DRC) to prohibit
the propagation of wild references. In addition, the entry pointer to
the linked stack frames entry point used for blocking control flows
must be checked. It should be noted that DRC has been applied
to the type-safe application and object references in the past by
Stilkerich et al. [21] as described earlier in Section 3.1.4. To trans-
fer the DRC concept to the C/C++ language level and to memory
managements elements (which can be pointers or data items), the
technical implementation of checking mechanism depends on the
intended use:

1. To protect object references of the application during the GC
phase, the object pointer representing a Java reference has been
instrumented, so that it is automatically checked (address plus
object header check) on every dereference operation.

2. To protect pointers of the garbage collector, their type is
instrumented to perform an address check only on dereference
operations.

3. To protect data of the garbage collector, its integrity is checked
as soon as its information is propagated to the application (i.e.
not on every dereference operation).

The maximum root set size (including the number of static
references) is statically known and is used in immediate read
operations. The valid objects are pushed to the working stack.

Mark-and-Sweep To check the integrity of the bitmap – that
implicitly contains type system information – on every read and
write access is extremely expensive (approx. 300% allover GC run
overhead). As an example, assume a heap size of 768kB and slot
size of 16. This setup results in 49152 slots and a bitmap size of
6144 bytes. In contrast, an integrity check checks 32-bit data (4
byte) in our experiment, for which special processor instructions
may exist. Still, for every object marking, checking the bitmap is
a huger overhead. This approach is also not necessary to protect
the system’s type safety: Indeed, the bitmap holds runtime system
information, however, the propagation of its erroneous state is only
critical, if it causes the propagation of invalid references. Due to
the interruptibility of the GCTask by higher-priority threads, two
bitmap error scenarios can occur that might lead to the corruption
of software-based memory protection:

• Interleaved allocation: The application may seize a falsely
reclaimed memory chunk and overwrite type information of
another application object. The FML integrity of other FML
elements may still be valid.
• The FML becomes corrupted, as information in the falsely

reclaimed block may overwrite FML book-keeping information.

As a solution, the ISR has to check the bitmap integrity in its
prologue, if the sweep phase marker is set. The overhead of an ISR
increases by executing the checking code, however, the additional
cost is constant and preditable.

4. Evaluation
In this section, the costs imposed by KESO’s LAGC algorithm is
evaluated. For this, we employ the Java version of the real-time
Collision Detector (CDx) benchmark. A brief introduction to it is
presented in Section 4.1. The effects of static analyses provided
by the jino compiler to assist vanilla as well as soft-error hardened
collection are discussed in Section 4.2. We contrast LAGC and
the soft-error hardened S-LAGC in relation to the protection level
provided by our GC-protection measures by using the Fail* fault
injection framework, which is explained in Section 4.3. Finally,
the evaluation is concluded by comparing these two variants with
respect to runtime and footprint overhead in Section 4.4.

4.1 The CDx Benchmark
The core of the CDx application is a periodic task that detects
potential aircraft collisions from simulated radar frames. A collision
is assumed whenever the distance between two aircraft is below
a configured proximity radius. The detection is performed in two
stages: In the first stage (reducer phase), suspected collisions are
identified in the 2D space ignoring the z-coordinate (altitude)
to reduce the complexity for the second stage (detector phase),
in which a full 3D collision detection is performed (detected
collisions). A detailed description of the benchmark is available
in a separate paper [14]. Since CDj allocates temporary objects
and uses collection classes of the Java library, it requires the use of
dynamic memory management.

4.2 Static Analyses: Compiler-Assisted MM
To determine the benefit of compiler support for garbage collection,
selected analyses of those we implemented have been evaluated in
the context of KESO. We will show static results as well as their
influence on runtime behavior.

Extended Escape Analysis On per frame computation, 57 of 146
(39,04%) of all allocations in CDj are marked as local, from
which 13 allocations have overlapping liveness regions and are
thus not considered for stack allocation. 47 objects (32,19%) escape
their methods and 42 allocations (28,77%) are marked as global-
escaping. In summary, 44 of 146 (30,14%) allocations in CDj are
eligible for stack allocation. Method-escaping objects are candidates
for extended stack scopes. In this benchmark, another 14% of
allocations can be performed in the caller’s stack frame: Around
44% of all objects can be stack-allocated or managed by a thread-
local heap. Thus, 56-70% – depending on the usage of extended
stack scopes – of all objects are managed by LAGC. EEA speeds
up CDj by up to 9.5% in contrast to pure heap allocation. Also the
heap usage at runtime is more than halved.

Immortal Object and Runtime Final Analyses The analyses re-
duce the data segment size by 41% and the text segment by 14%.
The number of null pointer checks emitted has been reduced by
30%, which contributed to the code size reduction. The runtime
final analysis reduced the execution time of the overall CDx ap-
plication by 5-12% due to dead code removal and runtime check
elimination. Afterwards, placing constant data in ROM instead of
RAM increased the CDx’s runtime by 4-8% in turn.

Linked Stack Frame Elimination With respect to the system
model, the compiler determines that only 18 out of 195 methods
need linked stack frames. For LAGC, the runtime overhead of the
CDx benchmark is reduced by 23.4%. As well, the text segment size
is decreased by 14.1%. Linked stack frames do not add noticeable
overhead to the GC run, as garbage collection is performed at slack
time. The elimination of linked stack frames is sensible in soft-
error-prone environments as it supports an efficient application of
reference checking: The overhead of runtime checks for reference
integrity is decreased by 11.1%.

As the yet suggested analyses contribute to a better memory
footprint, execution time and support runtime memory management
in general but also support integrity reference checking, they are
enabled for our case study with soft errors. Experiments have shown,
that the soft error susceptibility drastically rises, when deactivating
these optimizations. For space limitation reasons, the numbers are
not shown.

4.3 Dynamic Analyses: Fault Injection
In order to get an impression on the effects of transient errors
onto GC and the protection level provided by safeguarded memory
management, the fault injection (FI) framework Fail* [10] is used.
It is currently available for the Bochs simulator [16] on the x86
platform and ARM simulators. The selected AUTOSAR OS is
available for x86 and TriCore platforms. Therefore, we built a
variant of the CDx benchmark that runs on top of the x86 port
of the AUTOSAR OS. Even though the x86 platform is not a deeply
embedded platform, we argue that FI experiments on that platform
can be used to evaluate the functional effects of bit flips in MM
structures and on reference accesses. The x86 (multicore) platform
allows us to run lots of fault injections and cover a huge faults
space in a reasonable amount of time. For the FI campaign, LAGC
is enabled. Hardware-based memory protection is disabled, but
we use jino’s reachability analysis to physically group application
data as input for Fail* to determine illegal memory accesses. The
heap size is set to 48 KiB and a set of 50 frames was processed.
We injected single bit flips into each bit position of each word
of GC runtime structures and the references accessed during the
collection phase. To reduce the resulting huge fault space, we made
use of the fault-space pruning methods of the Fail* framework to
concentrate on memory locations that are actually read according to
a golden run. As a result, idempotent faults are merged: Ineffective

FI experiments (instructions between write and read of a memory
location) are not considered as they lead to the same FI result. This
allows to filter out all injections that are known to be ineffective,
e.g. bit flips that are overwritten before they are actually read. The
campaign applied to LAGC resulted in a total of seven FI campaigns.
An excerpt from the fault injection results for the LAGC and the
selected reachable destination points can be found in Table 1. The
Vanilla variant does not include any protection against soft errors
at all. Gradual protection is shown adding object header checks
in combination with DRC and the safeguarding of the GC data
structures FML, BM, llref, WS and the respective combinations.
The S-LAGC includes protection of all GC data structures combined
with DRC during the GC run and application. We picked 1-bit
error detection in KESO’s system configuration file. Total denotes
the entire count of performed experiments for a particular variant.
In Table 1, for example, 154724 injections were performed in the
Vanilla variant, where 13697 injections (8.6%) led to a breach of type
system and isolation properties and thus illegal memory accesses.
In summary, 2.435.990 experiments have been performed. It should
be noted that the experiment count varies, since the protection
mechanisms naturally change the program and thus also the count
of read operations change. As the program variants are not directly
comparable, we show absolute values instead of relative ones. We are
especially interested in the preservation of type system properties,
that is, a reduction of illegal memory accesses and falsely triggered
memory safety checks (null and array bound checks) as well as
cast and heap overflow (both denoted as error) exceptions. For
the unprotected LAGC, a huger share of the injections resulted in
NoEffect, that is, bit flips where either masked or silently corrupted
the application’s data. Regarding software-based memory protection,
a portion of 324 of the injected faults (0.08%) led to a breach of
the type system (Illegal Memory Access, i.e. any access beyond the
defined sections and writing accesses into the text section). Due to
the integrity checks and fault space pruning, the number of injected
faults (e.g. 154724 in Vanilla and 399912 in S-LAGC) varies.

Using reference checking only, is not sufficient at all to keep
isolation properties, as errors in crucial memory-management struc-
tures other than object references, lead to corruptions of the type
system as discussed in Section 3.3.3. The application of FML pro-
tection in combination with DRC reduces this share significantly.
The gradual protection of the bitmap (BM), working stack (WS)
and the entry in to the linked stack frames list (llref) in combination
with DRC for reference accesses, led to a smaller amount of illegal
memory accesses and false triggering of memory safety checks. An
interesting observation is that it does not really matter – assuming
an equal distribution of soft errors - which of these GC structures is
protected. A gradual protection with these structures is not a huge
benefit, but rather the combination of FML/DRC. Full type-safety
protection (F-TS: S-LAGC plus application reference checking) re-
sulted no illegal Traps (such as division-by-zero) and Timeouts at
all. Timeouts may occur, for example, due to flawed loop conditions.
Software-based memory safety checks are rarely illegally triggered
anymore, whereas GC and Parity exceptions (both denote detected
errors by KESO) caught lots of the injected faults (261095).

4.4 Overhead to Unguarded Garbage Collection
To illustrate the costs imposed by safeguarded garbage collection
and application, we have examined the footprint and runtime of
selected protection configurations. We use CDx in the onthegoFrame
variant, which is deployed on the Infineon TriCore TC1796 device
(150 MHz CPU clock, 75MHz system clock, 1 MiB SRAM). The
application is compiled with GCC (version 4.5.2) and bundled with
KESO and an AUTOSAR OS implementation. All integrity checks
have been inlined, which increases the text segment (ROM), but
drastically reduces the runtime by up to 20%. It should be noted

LAGC Vanilla WS/DRC FML/DRC BM/DRC llref/DRC Color S-LAGC

No Effect 131034 130971 132642 72181 76800 76675 138406
Timeout 883 880 877 798 794 920 0

Trap 1560 1569 0 1660 1657 1657 0
Illegal Memory Access 13697 13330 567 11864 11840 11840 324

Error Exception 5060 4951 183 4604 4613 4613 34
Null-Pointer 2385 2251 28 2252 2246 2246 11

Out-of-Bounds 105 183 91 320 313 313 42
Parity Exception 0 699 772 2742 2865 2605 545

GC Exception 0 0 251396 8035 67 915 260550
Total 154724 154834 396312 104456 100968 101784 399912

Table 1: Fault injection results for LAGC

in advance that the Vanilla variant already profits from escape,
immortal and runtime final analyses as well as the elimination of
linked stack frames (see Section 4.2 for details). We just measured
the additional overhead of runtime integrity checks as these memory-
management optimizations are not only beneficial when taking soft
errors into account, but also in every other system setup.

Memory Footprint. Table 2 shows the footprint for the text seg-
ment for a set of protection variants. As protection information has
been embedded in the existing GC structures, there is no change
in the data and bss segment. The text section is inflated by 0.93%
up to 1.97% for the respective MM structures and GC algorithms.
Combining DRC (full protection of all object references in the appli-
cation and GC phase) leads to an overhead of 35.17%. Protection of
all runtime system information available can achieved at a 35.92%
overhead for LAGC. With the employment of GC protection, the
heap size of an application can be shrunk significantly. Considering
CDx as an example, 256 KiB heap size is needed to compute a set
of five frames, whereas with safe garbage collection, a 48 KiB is
sufficient to process an unlimited number of frames. The use of
application replication on top of our approach is thus much less
memory consuming thanks to the shrunk heaps.

Runtime. Reference checking (DRC), which is needed to protect
object references during the scan-and-mark-phase causes approx. 44-
48% additional runtime overhead for the LAGC. The working stack
is implicitly protected by DRC. Safeguarding of color information,
linked stack frames and the free memory come at a reasonable cost
as can be derived from Table 3. Bitmap protection is expensive, as
the parity over the entire structure – 384 bytes as a result of the
48 KiB heap with a slot size of 16 – has to be computed. We are
currently working on a compacted version of the bitmap, which is
also particularly advantageous if having lots of small-size objects.
This approach has also the potential to improve the runtime of the
integrity checking. Disabling the synchronization code turns LAGC
into a stop-the-world GC and speeds up CDj’s runtime by 6.8%.
Disabling garbage collection and using bump-pointer allocation
reduces the runtime by another 15.4%. We also compared the
C version of CDx called CDc against CDj bundled with KESO:
CDc is 6% slower than CDj using bump-pointer allocation due to
whole-system static analyses. Thus, the use of a managed language
with automated memory management – which can adequately be
protected against soft errors – gets along with moderate performance
penalty by using our cooperative memory management approach.

5. Related Work
Garbage collection in embedded systems has been addressed in
prior research projects such as, for example, ([18],[1],[2], [3],[20]).
They are also suited to be deployed under real-time conditions,
but do not address microcontroller and operating system-specific
features. In [5] the susceptibility of application data in JVMs and
their protection was analyzed, targeting JVMs for workstations. The
authors also point out that lots of errors may be uncovered in the

garbage-collection phase. Chen [6] proposed to detect and recover
from transient errors by adding a dual-execution and check-pointing
extension to KVM. The heaps of both instances are compared
against each other. To keep the overhead low, the heaps are divided
into sub-heaps which contain the latest changes and those which
have not changed. Unchanged heap parts and moving new heap data
is protected by hardware-based memory protection in the shape of
a memory-management unit (MMU), however, garbage collection
is not protected and also type safety is not retained. Therefore,
this approach is not suitable to provide software-based memory
protection in the presence of soft errors. Errors that trigger a trap
can be corrected by copying the state from the sane instance to
the corrupted one. The focus is on 1-bit error detection and state
recovery of heap objects. We are not aware of any research of explicit
garbage-collection protection against transient errors nor any other
incorporation of hardware and operating system specific features
for memory management. Our approach of combining information
from all system layers provides an efficient and safer automated
memory management for embedded systems.

6. Conclusion and Future Work
In this work, a novel latency-aware garbage-collection mechanism
with short and predictable response times to external events has been
introduced. The employed GC data structures have been designed
to cause reasonably low overhead. Moreover, we have presented a
cooperative memory-management approach and have shown how
static analyses considering the hardware specification, operating
system model and the type-safe code can be used to support runtime
memory management with respect to the application developer’s
configuration. New compiler passes namely the extended escape
analysis, immortal object and runtime final analyses have been de-
veloped. We also integrated the linked stack frame optimization into
our system model and applied reference integrity check insertion by
means of DRC to the references used by the GCs. To further assure
memory safety, we have demonstrated that gradual protection of
garbage collection data structures against transient errors is possi-
ble with acceptable runtime and footprint overhead if the checks
are inserted at particular code locations. The system developer can
decide how much effort should be spend for protection techniques,
while having the effects of such errors in mind and still provide an
efficient solution. The dynamic analyses with the integrated Fail*
tool to support this approach. With the employment of a safeguarded
GC, the replication base can be shrunk effectively in contrast to
using pseudo-static allocation only. The compiler’s optimizations
are very useful to support the GC and keep the overhead of dynamic
safeguarded memory management reasonably low.

For our future work, we would like to improve our static analyses
such as the extended escape analysis and stack protection to further
reduce the efforts of runtime memory management. The garbage-
collection mechanism will be extended to support supplementary

Text Vanilla DRC FML FML/DRC BM llref WS Color F-TS

CDj + LAGC 0% 33.20% 1.97%% 35.17% % 0.89% 0.81% 0.68 0.50% 35.92%

Table 2: Footprint (Text segment)

Runtime Vanilla DRC FML BM llref Color

LAGC 0% 47.72% 7.64% 23.07% 8.94% 6.44%

Table 3: Runtime Overhead in GC phase KESO MM

control-flow monitoring (single- and multi-core machines, i.e. using
additional cores if available) to further harden the GC phase.

7. Acknowledgments
The authors would like to thank Michael Strotz, Clemens Lang
and Simon Kuhnle for their valuable hints and ideas for this project.
This work was partly supported by the German Research Foundation
(DFG) under grants no. SCHR 603/9-1 and SFB/TR 89.

References
[1] J. Auerbach, D. F. Bacon, B. Blainey, P. Cheng, M. Dawson, M. Fulton,

D. Grove, D. Hart, and M. Stoodley. Design and implementation of a
comprehensive real-time Java virtual machine. In 7th ACM Conf. on
Embedded Software (EMSOFT ’07), pages 249–258, New York, NY,
USA, Oct. 2007. ACM. ISBN 978-1-59593-825-1. .

[2] J. Auerbach, D. Grove, B. Mccloskey, D. F. Bacon, B. Biron, A. Micic,
P. Cheng, C. Gracie, and R. Sciampacone. Tax-and-spend: Democratic
scheduling for real-time garbage collection. In 8th ACM Conf. on
Embedded Software (EMSOFT ’08), Oct. 2008. ISBN 978-1-60558-
468-3. .

[3] D. F. Bacon, P. Cheng, and V. T. Rajan. The Metronome: A simpler
approach to garbage collection in real-time systems. In R. Meersman
and Z. Tari, editors, Proceedings of the OTM Workshops: Workshop on
Java Technologies for Real-Time and Embedded Systems, volume 2889
of LNCS, pages 466–478. Springer, Nov. 2003.

[4] S. Borkar. Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation. IEEE Micro, 25(6):
10–16, November 2005. ISSN 0272-1732. .

[5] D. Chen, A. Messer, P. Bernadat, G. Fu, Z. Dimitrijevic, D. J. F. Lie,
D. Mannaru, A. Riska, and D. Milojicic. JVM susceptibility to memory
errors. In Proceedings of the 1st Java Virtual Machine Research and
Technology Symposium, pages 67–78, Berkeley, CA, USA, Apr. 2001.
USENIX.

[6] G. Chen and M. Kandemir. Improving Java virtual machine reliability
for memory-constrained embedded systems. In Proceedings of the
42nd annual Design Automation Conference, DAC ’05, pages 690–695,
New York, NY, USA, 2005. ACM. ISBN 1-59593-058-2. .

[7] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
Midkiff. Stack allocation and synchronization optimizations
for Java using escape analysis. ACM Trans. Program. Lang.
Syst., 25(6):876–910, Nov. 2003. ISSN 0164-0925. . URL
http://doi.acm.org/10.1145/945885.945892.

[8] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: an exercise in cooperation. In
Language Hierarchies and Interfaces, International Summer School,
pages 43–56, London, UK, 1976. Springer. ISBN 3-540-07994-7.

[9] G. C. et al. Neutron-induced soft errors in advanced flash memories.
In IEDM 2008. IEEE, Feb. 2009. ISBN 978-1-4244-2378-1.

[10] H. S. et al. FAIL*: Towards a versatile fault-injection experiment
framework. In G. Mühl, J. Richling, and A. Herkersdorf, editors, 25th
Int. Conf. on Architecture of Computing Systems (ARCS ’12), Workshop
Proceedings, volume 200 of Lecture Notes in Informatics, pages 201–
210. Gesellschaft für Informatik, Mar. 2012. ISBN 978-3-88579-294-9.

[11] E. M. Gagnon and L. J. Hendren. SableVM: A research framework for
the efficient execution of Java bytecode. In Proceedings of the 1st Java
Virtual Machine Research and Technology Symposium, pages 27–40,
Berkeley, CA, USA, Apr. 2001. USENIX.

[12] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in Cyclone. In ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI
’02), pages 282–293, New York, NY, USA, 2002. ACM. ISBN 1-58113-
463-0. .

[13] F. Henderson. Accurate garbage collection in an uncooperative envi-
ronment. In ISMM ’02: 3rd Int. Symp. on Memory Management, pages
150–156, New York, NY, USA, 2002. ACM. ISBN 1-58113-539-4. .

[14] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and J. Vitek.
CDx: A family of real-time Java benchmarks. In JTRES ’09: 7th Int.
W’shop on Java Technologies for real-time & embedded Systems, pages
41–50, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-732-5. .

[15] S. Korsholm. Flash memory in embedded Java programs. In JTRES
’11: 9th Int. W’shop on Java Technologies for real-time & embedded
Systems, pages 116–124, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0731-4. .

[16] K. P. Lawton. Bochs: A portable PC emulator for Unix/X. Linux
Journal, 1996(29es):7, 1996.

[17] P. Molnar, A. Krall, and F. Brandner. Stack allocation of ob-
jects in the cacao virtual machine. In Proceedings of the
7th International Conference on Principles and Practice of Pro-
gramming in Java, PPPJ ’09, pages 153–161, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-598-7. . URL
http://doi.acm.org/10.1145/1596655.1596680.

[18] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek.
Schism: Fragmentation-tolerant real-time garbage collection. In ACM
SIGPLAN Conf. on Programming Language Design and Implementa-
tion (PLDI ’10), pages 146–159, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0019-3. .

[19] J. Rafkind, A. Wick, J. Regehr, and M. Flatt. Precise garbage collection
for C. In ISMM ’09: 2009 Int. Symp. on Memory Management, pages
39–48, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-347-1. .

[20] F. Siebert. Realtime garbage collection in the jamaicavm 3.0. In JTRES
’07: 5th Int. W’shop on Java Technologies for real-time & embedded
Systems, pages 94–103, New York, NY, USA, 2007. ACM. ISBN
978-59593-813-8. .

[21] I. Stilkerich, M. Strotz, C. Erhardt, M. Hoffmann, D. Lohmann,
F. Scheler, and W. Schröder-Preikschat. A JVM for soft-error-prone
embedded systems. In 2013 ACM SIGPLAN/SIGBED Conf. on
Languages, Compilers and Tools for Embedded Systems (LCTES ’13),
pages 21–32, New York, NY, USA, June 2013. ACM. ISBN 978-1-
4503-2085-6. .

[22] M. Stilkerich. Memory Protection at Option - Application-Tailored
Memory Safety in Safety-Critical Embedded Systems. PhD thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg, 2012.

[23] M. Stilkerich, D. Lohmann, and W. Schröder-Preikschat. Gradual
software-based memory protection. In Proceedings of the Workshop
on Isolation and Integration for Dependable Systems (IIDS ’10), New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0120-6.

[24] T. Yuasa. Real-time garbage collection on general-purpose machines.
J. Syst. Softw., 11(3):181–198, 1990. ISSN 0164-1212. .

