
Integrating Fragmented Objects
into a CORBA Environment

Hans P. Reiser1, Franz J. Hauck2, Rüdiger Kapitza1, and Andreas I. Schmied2

1 Dept. of Distributed Systems and Operating System, University of Erlangen-
Nürnberg, D-91058 Erlangen, Germany, {reiser,kapitza}@cs.fau.de

2 Dept. of Distributed Systems, University of Ulm, D-89069 Ulm/Donau,
Germany, {hauck,schmied}@informatik.uni-ulm.de

WWW home page: http://www.aspectix.org

Abstract. The design of distributed applications based on a fragmented
object model has many benefits. Unlike traditional middleware with a
RPC-based client-server interaction, the implementation of a fragmented
object may be distributed over an arbitrary number of fragments, with-
out restrictions on internal structure or interaction, while maintaining a
transparent, standardized interface on the outside.

In this paper we describe a middleware system that integrates the con-
cept of fragmented objects into a CORBA environment. Our fragmented
objects support implicit binding using the ORB’s marshalling mech-
anism by defining customized IOR profiles, while full interoperability
with traditional CORBA applications is maintained. Furthermore, we
show that a broad range of tasks in distributed systems can be solved
elegantly using a fragmented object approach. Our own CORBA mid-
dleware AspectIX implements the described functionality.

1 Introduction

Fragmented objects have been proposed in previous research projects [2, 3] as
a basic principle for designing distributed applications that is superior to the
traditional RPC-based client-server architecture found in most traditional mid-
dleware systems. As we will explain in the next section, a wide range of important
tasks may be solved by using the fragmented object model. These include the
application of custom transport protocols, e.g., for multimedia applications, the
transparent support for mobile objects and for fault-tolerant replication, flexible
internal partitioning of objects and the development of middleware-based real-
time applications. For several of these tasks, using the fragmented object model
is a novel design principle.

One drawback of the systems FOG [2] and Globe [3], which directly support
fragmented objects, is that they are proprietary systems that are unable to
interoperate with current popular middleware platforms like CORBA [4]. In
contrast, we aim at providing the advantages of the fragmented object model
within a CORBA-compliant environment, where using and interacting with



legacy applications is directly supported. At the same time, applications aware
of the additional functionality may easily use and benefit from it.

Another essential difference to both systems is the binding mechanism used
for getting access to an object. While FOG and Globe require that a client
binds explicitly to a fragmented object, our middleware is able to instantiate a
local fragment automatically as soon as an object reference is passed through
marshalling mechanisms. Such implicit binding is a prerequisite for true object-
based programming as object references have to be transparently passed around
an application.

The outline of this paper is as follows. The next section discusses in more
detail the fragmented object model for designing distributed systems, and illus-
trates the benefits of this object model for handling various tasks in distributed
programming. Section 3 describes existing mechanisms in CORBA, shows how
we use them in our AspectIX middleware to integrate the fragmented object
model, and addresses further implementation issues. Section 4 compares our
developments with related work, and Section 5 concludes.

2 Fragmented Objects in Distributed Systems

2.1 Fragmented Objects

In a traditional, RPC-based client-server structure, the complete functionality
of an object resides on a single node. For transparent access to the object, a
client instantiates a stub that handles remote invocations (Fig. 1a). The stub
code is usually generated automatically from an interface specification. Thus
the stub code is equal for all objects with the same interface. Loading the stub
is accomplished by the middleware runtime system as soon as the client binds
to an object reference. This binding may happen implicitly, if a remote object
reference is passed to a client via the ORB’s marshalling mechanisms.

In the fragmented object model, the distinction between client stubs and the
server object is no longer present. From an abstract point of view, a fragmented

Stub Stub

Remote
Servant Object

(a) RPC Client−Stub Interaction (b) Fragmented Object

Fragment

Fragment Fragment

interface
public

public
interface

Fig. 1. RPC-based Client-Server Interaction vs. Fragment Objects



object is a unit with unique identity, interface, behavior, and state, like in classic
object-oriented design. The implementation of these properties however is not
bound to a certain location, but may be distributed arbitrarily on various “frag-
ments” (Fig. 1b). Any client that wants to access the fragmented object needs
a local fragment, which provides an interface identical to that of a traditional
stub. However the local fragment may be specific for exactly that object. Two
objects with the same interface may lead to completely different local fragments.
This internal structure allows a high degree of freedom on where the state and
functionality is provided, and how the interaction between fragments is done.
The internal distribution and interaction is not only transparent on the outer
interface of the distributed object, but may even change dynamically at runtime,
e.g., in adaptive distributed systems.

There are several ways to take advantage of the high degree of internal free-
dom. Of course, whenever desired, a traditional RPC-based structure may also
be obtained in the fragmented object model. For this purpose, a single fragment
has to contain the complete implementation of the object’s functionality. All
other fragments will simply contain stub code, which uses a remote invocation
protocol (like IIOP in the case of CORBA) to interact with the server fragment.

2.2 Fragments Acting as Smart Proxies

The idea of smart proxies [5, 6] is to put more functionality into stubs, with the
purpose of, e.g., adding caching mechanisms to reduce communication overhead
and latencies, or forwarding method invocations to some member of a replica
group for the purpose of load balancing or fault tolerance. Current smart proxy
implementations usually either modify the middleware such that compatibility
is no longer maintained, or they use means such as portable interceptors (for
CORBA, this is an official OMG standard [4]). In the latter case, a significant
overhead in remote invocation mechanisms is introduced by adding additional
levels of indirection on the client side.

In a fragmented object model, such smart proxies may be obtained in a simple
and efficient way: By defining appropriate proxy fragment types, the code for the
additional functionality can be loaded directly at the client side. But in addition
to being used as smart proxies, the fragmented object model offers the possibility
to do much more powerful things, as we will show in the next section.

2.3 Arbitrary Internal Configurations Allowing for Partitioning,
Migration, and Replication

As most significant advantage object fragmentation allows the state of an object
to be migrated between and distributed on several nodes, instead of keeping it
completely in one single location. Again, such internal structure will be kept
completely transparent for the client.

As one option, the internal configuration can be defined statically when the
fragmented object is developed. The developer may describe explicitly how the
functionality and state is partitioned over several locations. Mechanisms for



instantiating the right fragments in the correct locations need to be provided
by the middleware. We will return to the this issue later in Section 3.4.

Alternatively, one can consider the case that functionality and state of a
distributed object gets relocated dynamically at runtime. A simple version
might just migrate the “server” part of the object from one location to another
(preferably a location where the object is most efficiently accessible) and update
all other fragments with the new location information. A more sophisticated
service object could allow replicating the complete state in several fragments,
determined automatically depending on usage patterns and quality-of-service
requirements. The most flexible version might support partitioning the object
state dynamically between several nodes.

2.4 Arbitrary Internal Communication

In addition to the flexibility of internal distribution, another significant ad-
vantage arises from the fact that also the internal communication may be
chosen arbitrarily. This allows to design service objects with a standard CORBA
interface in situations, where the standard CORBA communication model is not
practicable. For example, a multimedia service (e.g., an Internet radio or a video
conference) might be modeled as a distributed service object with a certain
interface offered to clients. But it is not desirable to use IIOP to transport the
audio/video data, but rather an RSVP-based transport or some other real-time
protocol.

In the fragmented object model, a client may simply bind to the service
object, and the middleware automatically loads an appropriate fragment for
using such protocol to interact with the server. This of course also extends
to being able to use peer-to-peer communication mechanism between several
fragments. Furthermore, one can consider the case that the middleware imple-
mentation evaluates environmental conditions (like network connection speed)
and the client’s quality-of-service requirements before loading and instantiating
a local fragment, initialized with suitable parameters.

Another related area of usage are real-time applications. The disadvantages of
most middleware systems, when trying to use them for real-time applications, are
that they, firstly, involve a certain overhead, and, secondly, pass all invocations
through automatically generated marshalling code and use complex communi-
cations protocols that are hard to analyze regarding their timing behavior. In
a fragmented object model, the developer can implement a special fragment
type that uses custom marshalling mechanisms and accesses, e.g., a CAN-bus
with known characteristics for communication. The only computational overhead
introduced by the middleware is one virtual method invocation from the client
code to the method in the fragment implementation, which is easily bound by
worst-case assumptions. The fragment code can be under full control of the
application developer, and thus allows completely analyzable code with low
overhead. Nevertheless the client may still use the same programming model
as in a traditional CORBA environment.



3 Integrating Fragmented Objects into CORBA

We have demonstrated several situations, where the fragmented object model
can be used with substantial advantages. In practice however, many distributed
systems will be built based on existing systems and will be required to interact
and cooperate with such. The usability of the fragmented object model is
improved significantly, if it can be used within common traditional middleware
systems. We shall present a successful approach how to achieve such integration
into a standard CORBA environment.

3.1 Existing CORBA Mechanisms

CORBA uses IORs (Interoperable Object References) to uniquely address ob-
jects in a distributed system. An IOR has a stringified external representation
and is valid independent of location. Internally, an IOR may be composed of
several IOR profiles, each of them specifying a potential way to contact the
object. Each type of profile is uniquely identified by a vendor tag assigned by
the OMG.

For standard protocols like IIOP (Internet Inter-ORB Protocol), the profile
content itself is also standardized. Taking the IIOP example, this data consists
of an TCP/IP address and an unique object identifier. Using this information,
a stub is able to connect to an object adaptor in a remote ORB, and to perform
remote invocations. For other vendor-specific profile types, arbitrary data may
be stored in the profile.

When an ORB receives a reference parameter containing an IOR, it automat-
ically tries to instantiate a local stub for the referenced object. For this purpose,
it parses the IOR to retrieve all profiles that it is able to interpret. It then tries
to contact the object using the profiles in a specific order, until it succeeds. This
implicit binding mechanism allows clients to pass object references to remote
objects transparently in any remote method invocation.

3.2 Defining a New IOR Profile for Fragmented Objects

In the fragmented object model, the difference to this traditional CORBA
behavior is only minimal. As soon as the ORB receives a reference to a frag-
mented object, it has to bind to this object by instantiating a local fragment of
appropriate type. The basic mechanism is thus the same (parsing the IOR and
interpreting the profile data to instantiate a certain piece of code), just instead
of loading a fixed stub, the ORB may have to choose from a set of possible
fragment types.

Consequently, we define a custom profile type (named APX) for fragmented
objects in our AspectIX middleware. Whenever our ORB binds to an object
containing an APX profile in its IOR, it uses this profile’s data to load and
initialize some fragment. The mechanisms used to decide which initial fragment
is chosen will be discussed in detail in Section 3.4.



Full interoperability with traditional CORBA system is maintained in this
scheme. Whenever an ORB capable of interpreting APX profiles has to bind to
an object reference containing only an IIOP or other standard profile, it simply
instantiates a fragment that acts as a simple stub for this protocol. Access to
existing CORBA objects is thus no problem at all. In the other direction, if a
fragmented object should be accessible from legacy CORBA systems, it has to
implement an appropriate way of access. That is, some fragment of the object
has to implement, e.g., an IIOP-compatible access point, and in addition to the
APX profile, an IIOP profile is encoded into the IOR. Thus, full access to the
object can be allowed when desired, of course with only limited use of the special
features like custom marshalling that an ORB supporting the fragmented object
model offers.

3.3 The Structure of Local Fragments

Figure 2 shows how a local fragment is structured internally. The client holds
a reference to a Fragment Interface of the fragmented object that represents
the type of the reference (any kind of interface implemented by the fragmented
object). The fragment interface delegates any method invocation to the currently
active fragment implementation.

The standard Java mapping of CORBA uses a similar delegation mechanism:
The client holds a reference to an instance of a stub, which delegates to a low-level
class that performs the actual marshalling. The delegation mechanism mainly
has to purpose of allowing type casts (which replace the stub part by a new
one with the desired interface, but retain the part that is delegated to). This of
course means that our delegation mechanism does not introduce any additional
overhead in direct comparison to CORBA.

In our fragmented object model, type casting is only one motive for the
delegation. A second reason behind it is that our ORB shall be able support
dynamic, transparent exchange of the local fragment implementation. Having the
delegation mechanism, one may simply create a new fragment implementation
and update the delegation reference in the fragment interfaces.

Fragment

Client

F
ra

gm
en

t
In

te
rf

ac
e

View

Fragment

Implementation

Fig. 2. Structure of Local Fragment



Additionally, we introduce a third component named View. It stores central
data of the fragment, e.g., the IOR, and it has to maintain the fragment
interfaces: It is possible that a client holds several references of different types
(corresponding to different interfaces implemented by the fragmented object),
all pointing to the same fragment implementation. The View helps in performing
updates of the delegation pointers as soon as the fragment implementation is ex-
changed, inclusive handling all coordination necessary in this step. Furthermore,
local quality-of-service requirements may be stored in the View, and evaluated
in the process of choosing and parameterizing the local fragment.

3.4 Loading the Appropriate Fragment

Loading a simple stub in CORBA is a process that is uniquely defined by the
type of the object and the IIOP contact address. In the fragmented object model,
we potentially want to support loading any arbitrary fragment of some object. In
our AspectIX ORB implementation, we have implemented three different kinds
of mechanisms to load the initial fragment.

In the simplest model, the initial fragment type may be hard-coded into the
object reference. This model is nevertheless applicable for fragmented objects:
The initial fragment may contain code that takes additional steps to reconfigure
or replace itself with a more suitable implementation. The developer of the initial
fragment has full control over which fragment will finally be used.

In a homogeneous situation, this mechanism is sufficient. But CORBA allows
heterogeneous environments, which means that there is no one-to-one relation
ship between an abstract fragment type and its real implementation. The precise
piece of code to be loaded may not only depend on the programming language,
but also on other system properties like operating system and hardware archi-
tecture. For this purpose we implemented a Dynamic Loading Service (DLS) [8]
that automatically maps a unique fragment type ID to some specific code.

Furthermore, for additional flexibility, our AspectIX middleware supports
applications by means of a policy decision service that allows to evaluate expres-
sive policy rules at runtime [9]. The decision results are based on the rules itself
and on additional information like environmental conditions, user preferences
and quality-of-service requirements stored in the View object. This service can
be used to decide at runtime, which fragment type shall be loaded as initial local
fragment. This allows separating the implementation of the object’s functionality
from code that decides which implementation to use, leading to a cleaner design.

3.5 Development Support

In a traditional middleware, the developer only needs to implement the server
code which will run at a single location. Standard tools (like IDL compilers) are
available to create stubs and skeletons automatically. For a fragmented object,
potentially a larger amount of individual fragments need to be developed. That
is, at first sight, the design of a fragmented object may require additional efforts.



However, most of this additional effort may also be automated by appropriate
tools. As a first step in this direction, we have implemented a flexible IDL
compiler tool, IDLflex [10], which allows an XML-based specification of a code
generation process that creates arbitrary code based on CORBA IDL files.
Fragments for custom marshalling protocols or smarter stubs are easily created
automatically with it.

Upon this basic tool, we have developed a first prototype of a more powerful
AspectIX Development Kit (ADK). It allows code generation not only based on
IDL specification, but also on fragment source code provided by the developer
and additional annotations. Even complex fragments, e.g., for partitioning and
fault-tolerant replication, can be supported by this tool. The specification of the
code generation process allows easy extension and reuse of existing specifications.
Ultimately, even complex designs can be realized efficiently with our fragmented
objects. Details will be subject of another publication.

4 Related Work

The fragmented object model was first proposed by Shapiro [1] and used in the
FOG project [2]. The authors suggest this model as a promising way to design
distributed applications. To a large extent, their work concentrates on tools for
supporting the development of fragmented objects.

Globe [3] also uses the fragmented object model, but only for achieving
scalability by caching and replication. Explicit binding is used by clients, in con-
trast to our implicit binding mechanism that allows for automated marshalling
of references to fragmented objects and for true object-based programming.
Another difference of both FOG and Globe to our AspectIX middleware is, that
we provide the fragmented object model within a CORBA-compliant middleware
system.

Smart proxies [5, 6] have goals similar to ours, but stay closer at the tradi-
tional client-server structure. In our opinion, the fragmented object model is not
only more powerful and flexible, but at the same time is not more difficult to
implement or use, and thus offers a better solution.

For custom marshalling, the CORBA standards provide for ESIOP (en-
vironment specific inter-orb protocols) [4]. These may be implemented in a
CORBA ORB for some specific communication mechanisms (e.g., DCE-CIOP for
using DCE-RPC for interaction). In contrast to ESIOP, our fragmented object
approach allows supporting new protocols without modifying the ORB itself and
also allows a dynamic selection of protocols at runtime. In this regard, our work
is similar to the framework for pluggable protocols described in [7].

5 Conclusion

We have presented a novel approach for providing a fragmented object model
within a CORBA-compliant middleware. The prime benefit is a transparent



support for interaction models that do not map directly to the RPC-based client-
server model of traditional middleware, offering a high degree of freedom.

With several case studies, we illustrated how various tasks ranging from
multimedia and real-time applications to migratable and replicated services
may benefit from this extended object model. Moreover, this model supports
designing self-adapting applications, which are able to reconfigure themselves
transparently depending on use patterns, environmental conditions and explicit
quality-of-service requirements.

We have implemented the necessary mechanism in our CORBA-compliant
middleware AspectIX. The current prototype allows us to verify the basic
concepts presented in this paper. One major application is a fully implemented
policy distribution service for our policy architecture [9]. This service is modeled
as a fragmented object and supports fault tolerance via active replication,
scalability through dynamic caching and hierarchical distribution of policy rules,
combined with dynamic adaption to the environment and the usage pattern of
the application using the policy service. A later version of our middleware system
will be made available under GPL and LGPL licenses. More details can be found
on our web site at http://www.aspectix.org

References

1. Shapiro, M.: Structure and Encapsulation in Distributed Systems: the Proxy
Principle Proc. 6th Int. Conf. on Distributed Computing Systems, Cambridge
MA, USA (1986) 198–204

2. Makpangou, M., Gourhand, Y., Le Narzul, K.-P., Shapiro, M.: Fragmented objects
for distributed abstractions. Readings in Distr. Computing Systems, IEEE Comp.
Society Press (1994) 170–186

3. Homburg, P., van Doorn, L., van Steen, M., Tanenbaum, A.S., and de Jonge,
W.: An Object Model for Flexible Distributed Systems. Proc. First Annual ASCI
Conference, Heijen, Netherlands (1995) 69–78

4. Object Management Group: The Common Object Request Broker: Architecture and
Specification. 3.0 edition. OMG Technical Committee Document formal/02-06-01
(2002)

5. Koster, R., Kramp, T.: Structuring QoS-supporting services with smart proxies.
Proceedings of the IFIP/ACM Middleware Conference (2000)

6. Santos, N., Marques, P., Silva, L.: A Framework for Smart Proxies and Interceptors
in RMI. ISCA 15th Int. Conf. on Parallel and Distributed Computing Systems
(2002)

7. O’Ryan, C., Kuhns, F., Schmidt, D., Othman, O., Parsons, J.: The Design
and Performance of a Pluggable Protocols Framework for Real-time Distributed
Object Computing Middleware Proc. IEEE Real Time Technology and Applications
Symposium (1999)

8. Kapitza, R., Hauck, F.: DLS: a CORBA Service for Dynamic Loading of Code.
Tech. Rep. TR-I4-02-06, University of Erlangen-Nürnberg, Germany (2002)

9. Meier, E., Hauck, F.: Policy enabled applications. Tech. Rep TR-I4-99-05,
University of Erlangen-Nürnberg, Germany (1999)

10. Reiser, H., Steckermeier, M., Hauck, F.: IDLflex: A flexible and generic compiler
for CORBA IDL. Proc. of the Net.ObjectDays, Erfurt, Germany (2001)


