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Abstract: Globally distributed services need more than location transparency.
An implementation of such a service has to scale to millions of users from all over
the world. Those users may have different and varying quality-of-service require-
ments that have to be considered for an appropriate distribution and installation
of service components. The service also has to scale to thousands of administra-
tive domains hosting those compone#ispectliXs a novel middleware architec-

ture which extends CORBA by a partitioned object model. A globally distributed
service can be completely encapsulated into a single distributed object which
contains not only all necessary components for scalability (e.g., caches and rep-
licas) but also the knowledge for self-organization and distribution of the service.
For distribution and installation of components, the service considers object-ex-
ternal policies to achieve administrative scalability.

1. Introduction

The Internet forms a large distributed system and one of its services, the World Wide
Web, is probably the largest distributed service that has ever been built. The Web has
some anarchic structure with limited flexibility and it is desirable to do better than the
Web when it comes to globally distributed services. These services could span the var-
ious intranets of large companies or the whole Internet for serving users all over the
world. With standard off-the-shelf middleware like CORBA implementations [20]
those services can be modelled as distributed objects and be globally accessed using a
worldwide unique object identifier. For a client, the service is completely location-
transparent, i.e. the client does not need to know where the server object resides. Unfor-
tunately, this does not scale to millions of users from all over the world, because a server
objectin CORBA can reside only at one place at a time. For geographical and numerical
scalability the service has to be built out of multiple components using replication,
caching and partitioning of code and data. With using CORBA the globally unique
identifier of the service would be lost, because every component had to be implemented
by an individual CORBA object with its own identity.

Partitioned object models have been adopted, e.g., iGGthke[25] andSOS[21]
research projects. Both systems allow to combine the service components to a single
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distributed object with a single identity. Regardless where the client resides, it can bind
to the distributed object and will get a local component which will become part of the
whole service object. Some parts of the object may replicate or cache the object’s data
whereas others may just serve as stubs connecting to a replica or a caching component.
Thus, such systems can encapsulate the components of a scalable distributed service in
a single distributed object.

The users of a globally distributed system usually have different quality-of-service
requirements when using the service, e.g., one user will heavily use the service and ex-
pect a certain throughput whereas another user will only invoke a few query methods
and expect up-to-date answers. Neither CORBA nor Globe nor SOS sufficiently sup-
port quality of service. In case of a partitioned object model, the QoS requirements have
to be considered for selecting an appropriate implementation for the object’s local part
at the client side, and even for building the complete internal structure of the object.

AspectlXs a novel middleware architecture extending CORBA by a partitioned ob-
ject model combining the benefits of both worlds. Additionally, it supports a special
per-object interface that allows a client to specify QoS requirements on the object’s ser-
vice. A policy-based mechanism encapsulates the decision process, e.g., where to place
which part of the distributed object, in the object itself. Even dynamically varying re-
quirements can be handled during run-time, e.g., by transparently replacing the imple-
mentation of the local part. The distributed object becomes self-contained and self-or-
ganizing. Different objects may have a completely different internal organization,
which remains transparent to clients.

As globally distributed services will span over thousands of administrative domains
itis necessary to give domain and application administrators some influence on the dis-
tribution and instantiation of object parts. Therefore for evaspectlXobject, admin-
istrators can express policies that influence the selection of implementations, the choice
of protocols and internal communication channels, etc. Our novel approach thus helps
not only to achieve numerical and geographical but also administrative scalability [18].

This paper is organized as follows: Section 2 will identify the demands of globally
distributed services. We show how currently available systems can be used to imple-
ment such services and uncover the deficiencies of these systems. In Section 3 our own
architecture is introduced. Section 4 will compare our approach to other related work as
far as it was not already mentioned in Section 2. In Section 5 we will give our conclu-
sions and present our plans for future work.

2. Globally Distributed Services

2.1 Location Transparency

Location transparency means that regardless where the client and the service compo-
nents reside, the client will be able to easily access the service. The easiest and most
transparent way for a client is that the client just gets a location-independent object re-
ference to the service (e.g., from a name service), binds to the service object, and uses
the service by invoking methods. The client does not need to care about locations.
CORBA provides location-independent references in form of IORs [20]. The IOR
contains at least one contact address of the object for clients, e.g., it contains a so-called



lIOP?-address. As IOP is based on TCP/IP, an [IOP address is just an Internet address
and a port number, which together are unique on the Internet. The client will get a
CORBA stub initialized with the IOR, and this stub will always contact the same server
object, the one serving the IIOP address. Alternatively, a so-called implementation re-
pository may be used to serve the [IOP address. It maintains a mapping to the current
address of the server object and sends an IIOP location-forward message to the client
which will use the returned actual address for subsequent calls. In case of a broken con-
nection, the client will repeat the binding process. Thus, the implementation repository
helps to hide the migration of server objects [7].

In both cases there is always one single instance which has a fixed location and can-
not be moved without invalidating the IOR, the server object itself or the implementa-
tion repository. This single instance is not only a single point of failure but also a bot-
tleneck in case of millions of worldwide users. Thus, CORBA objects cannot scale.

2.2 Scalability

For scalability, we need to structure the service by using replication, caching and parti-
tioning of code and data. In a CORBA environment, our service will consist of multiple
CORBA objects implementing replicas, caches and partial services. We would need to
install all these objects around the world so that they can cooperate optimally. Now the
client has to deal with many object references in order to invoke a method at the service.
For hiding that complexity, we could introduce a single mediator which maps a unique
service address to the right object references. Unfortunately, such a mediator (e.g., an
enhanced implementation repository) will again be a bottleneck and a single point of
failure, or has otherwise to be replicated which recursively applies the problem.

Partitioned object models as used by Globe [25] and SOS [21] solve that problem.
They allow to combine multiple distributed parts into a single distributed object, which
has a single identity. For example in Globe, a client can bind to a so-difigtbuted
shared objectind will get alocal object This local object becomes a part of the distri-
buted shared object. It may replicate or cache the object’s data whereas other local ob-
jects may just serve as stubs connecting to a replica or cache.

Both, Globe and SOS provide very similar framewaorks for building the implemen-
tations of replicating and cachirgcal objectq26, 12]3. In the following, we will refer
to Globe’'s framework: Application developers can program a pure nondistributed serv-
er object and combine it with layered consistency models [8]. The framework provides
all other necessary sub-components of a local object. However, in case of caching it is
restricted to the state of the entire object. So, a local cache cannot store semantics-de-
pendent data, e.g., the results of query methods. A sophisticated location service deliv-
ers the contact information for a newly created local object so that stubs can find repli-
cas and replicas can find each other [24].

Thus, a Globe object can encapsulate the components needed to build a scalable
distributed service in a single object. However, it is unclear how the system determines
which client gets which available implementation of a local object. If there are multiple

2. 1IOP = Internet Inter-ORB Protocol.
3. SOS’s framework was named BOAR.



available implementations the right choice is crucial for scalability. We believe that it
is not feasible to allow the client to decide on that. Instead the local implementation has
to conform to the needs of the object and its client.

2.3 Quality of Service

Clients often have different requirements with respect to the quality provided by the ser-
vice. One client may want to heavily use the service and expects a certain throughput
whereas another client may only invoke a few methods and expects up-to-date answers.
In a locally distributed environment often a best effort service is enough for the clients,
except they have very strict quality-of-service (QoS) requirements, e.g., for transmit-
ting multimedia data. However, if a globally distributed service has no information
about the client’s expectations, it can only guess what best effort means for that client.
Is it more important to achieve good throughput or is it more appropriate to get up-to-
date results? An optimum for all of those aspects is not generally possible.

Thinking in terms of a partitioned object model it is even more important to know
the clients’ requirements because the choice for an implementation of the local part has
severe influence on the quality of service that a client perceives. For example, if we
choose a local replica we may have up-to-date results but perhaps only poor throughput
due to the overhead imposed by the necessary synchronization with the other replicas.
Neither Globe nor SOS provide any mechanisms for the client to express quality-of-ser-
vice requirements.

With the CORBA Messagingocument [19], the OMG adds some QoS support to
CORBA. As CORBA only offers remote method invocation, the requirements are re-
stricted to this communication scheme (e.g., priorities on requests) and cannot deal with
general QoS requirements. CORBA extensions@k©[28, 30] andMAQSI[1, 2] pro-
vide interfaces to express quality-of-service requirements, but their implementations
focus on QoS characteristics that can be implemented independently of the object’s se-
mantics. We believe that this does not help for scalability, e.g, caches cannot be imple-
mented independently of the object semantics.

3. AspectIXMiddleware Architecture

AspectlXs our novel middleware architecture which extends CORBA by a partitioned
object model. First, we explain our CORBA extensions. Then, we will introduce our
QoS interface and present hdwpectlXencapsulates decisions concerning the object’s

internal structure. Finally, we introduce administrative policies that influence the ob-
ject’s decisions and achieve administrative scalability.

3.1 Partitioned Object Model

In AspectlX a distributed object is partitioned infragmentd5]. Clients need a local
fragment to invoke methods at a distributed object. Access to a fragment, and to the
distributed object respectively, is provided by fragment interfaces connected to a frag-
ment (see Fig. 3.1). When a client binds to a distributed object, the CORBA IOR is eval-
uated, an implementation for a local fragment is chosen and loaded. Finally, the frag-



ment is connected to its fragment interfaces. Fragment interfaces are automatically de-
rived from CORBA IDL descriptions. As long as the client just binds to an object and
invokes methods, the client will not see any differences to CORBA. Standard CORBA
objects can be accessed AgpectlXobjects. Conceptually, for ordinary CORBA ob-
jects there is also a local fragment, but it is nothing else but the standard CORBA stub,
which is automatically generatetispectiXcan also host ordinary CORBA servahts.

g}>

Client Fragment

N Distribtjted Object Ve

Fragme/nt Interfaces
Fig. 3.1 Adistributed object with three fragments each placed on a different host.

The fragments of a distributed object usually need to communicate. Therefore,
AspectlXprovides so-called communication end points (CEPs), which are similar to
sockets but part ohspectlX A fragment can open such a CEP and attach a stack of pre-
defined protocols to it. There are three different kinds of CEPs: connectionless, connec-
tion-oriented and RPC-based CEPs. For example, there is a protocol stack GIOP over
TCP/IP, which implements IIOP. This stack is used together with an RPC-based CEP
to implement standard CORBA stubs and skeletons. However, fragments may also use
datagram, stream or multicast communication implemented by various protocols to
meet the object’s requirements, e.g., to update the state of all replicating fragments.
With the AspectIXCEPs, fragment developers do not need to use other and nonportable
communication mechanisms, e.g., from the operating system. We imagine that an
AspectIXORB may download necessary protocol modules on demand from an external
repository, but this is beyond the scope of this paper.

Let us consider a simple, global information service that is supposed to implement a
parts list for one of a company’s products. Using the interface we can enumerate the
parts, and for each part number we can query a description string and a price. Some up-
date methods are provided for filling in and correcting the data. First, a developer will
describe the interface in CORBA IDL. Then, he will design two different fragment im-
plementations: a server and a stub fragment. The latter is automatically provided by a
tool, e.g., an IDL compiler. So far, the design is the same as on a CORBA system. As
the developer knows that the service may have millions of users, he has to take care of
scalability. Thus, he provides two additional fragment implementations: a replicating
and a caching fragmehtThe caching fragment has the same functionality as the stub
fragment, but can store query results in a local cache. Stub and cache fragments can con-
tact either a server or a replica. Replicas are connected by some internal update protocol
depending on the chosen consistency model. Object-internal contact addresses are pro-
vided by a location service, e.g., the Globe Location Service [24].

4. This is especially interesting if only some of the application objects need to be truly partitioned, e.g., if a
legacy application is ported fgspectlX

5. Instead of hand-coding the replicating fragment, the replication framework of Globe [26] or BOAR [12]
could be used to create it.



3.2 Quality of Service

AspectlXsupports a special per-fragment interface that allows the client to specify QoS
requirements on the object’s service [6]. We adopt the sspecto describe nonfunc-

tional properties of a distributed object, e.g., QoS requirements. But we also consider
hints to be aspect configurations of an object, e.g., about the usage pattern of the client.
A client can provide aspect configurations on a per-fragment basis, but only for aspects
supported by the distributed object. Each aspect configuration has a globally unique
name (perhaps maintained by some standards authority). A client can retrieve the names
of supported aspects by using the special interface.

In our example, the developer of the information service object chose to support
three different aspects: actuality of the returned data, read access characteristics, and
lifetime of the object binding. Aspect configurations are represented as objects de-
scribed in CORBA IDL. The developer of our service may reuse existing specifications,
e.g., those described in Fig. 3.2. Tthata actualityaspect can configure how long the
returned data can be out of date defined by a maximal age of the data since the last val-
idation. Theaccess characteristican distinguish rare or continuous read access to the
object. Thebinding lifetimeaspect can be configured for an expedtad) or shorttime
that the client wants to keep the local fragment, or the binding to the object respectively.
For the sake of brevity, we rather simplified the aspects. However, it is possible to make
them as precise as needed by introducing additional attributes.

interface DataActuality {
attribute "unsigned Tong maximalAge;  //in milliseconds

enum AccessPattern { continous, rare };

interface  ReadAccessCharacteristic {
attribute AccessPattern pattern;

enum Lifetime { _short, _long };

interface Bindinquifetime {
attribute Lifetime Tifetime;
k

Fig. 3.2 IDL description of three different aspects.

For setting a configuration, the client can create his own aspect configuration objects
and initialize them accordingly. Finally, he will use the distributed object’s aspect in-
terface to pass those objects into the local fragment. The fragment then has to fulfill the
requirements. Hints can be used to optimize fragment-internal processes.

If the local fragment cannot fulfill the requirement, the aspect configurations become
invalid. As soon as the fragment detects that it can fulfill the configurations, they be-
come valid again. These transitions can be signalled to the client via a call-back inter-
face. So, the client could try to use another, perhaps less strict, configuration. Addition-
ally, the client can configure how method invocations are handled in case of invalid as-
pect configurations. The invocations can be blocked as long as the configuration
remains invalid (useful when requirements are needed in any case, e.g., communication
has to be encrypted). They can raise a run-time exception, signalling the invalid config-
uration to the client, or they can ignore the invalidity and proceed as usual.



If a fragment detects that it cannot fulfill the requirements it might know another
fragment implementation that will do. In this case, the local implementation can be
transparently replaced by the other one. In any case, the fragment interfaces and the lo-
cal aspect configurations remain the same.

3.3 Self-Organization

AspectlXobjects should be able to self-organize their internal structure. The internal
structure of a service and its development over time should be encapsulated in the ob-
ject. This urges the object developer to make certain structural decisions inside of frag-
ment implementationg\spectiXsupports the programmer by asking him first to strictly

and carefully separate mechanisms from policies. Mechanisms have to be implemented
inside of fragment implementations. Then, the developer has to define decision points
at which a certain decision concerning a mechanism has to be made (e.qg., “Which pro-
tocol shall | use?”, “Which fragment implementation shall I load?”). Instead of encod-
ing this decision into the fragment, the developer formulates a decision request and pro-
vides policy rules. The decision request is delegated to a decision subsystem provided
by AspectlX The central component of this subsystem consists of a policy engine [14].
The policy engine has access to policy rules and all parameters that may influence a de-
cision. These parameters include the requirements set up by the client via aspect con-
figurations and environment conditions of the system. The actual decision is found by
the decision engine consulting the policy rules.

We separate two sets of policy rules: developer and default policies. The first set
contains rules defining under which conditions the fragments will operate properly. The
second set describes rules for a default behavior of the object. The distinction between
the two sets has to be carefully made to allow flexible extensions of the policy system
as we will see in the next section. For a decision, the policy engine will first consult the
developer policies. Those can decide not to make a definitive decision and to delegate
the decision to lower prioritized rule sets instead, e.g., to the default policies. When the
delegate rule sets made their decision, these decisions can be checked and possibly
overwritten by the rule that initiated the delegation.

Policy rules can access the aspect configurations of a client and they can lookup en-
vironment variables of the runtime system. Examples are the currently available size of
virtual memory or stable storage, and the available network bandwidth. External servic-
es, that hide the platform-dependent issues, provide this information to the policy en-
gine. Other external services that may be needed for policy rule evaluation include nam-
ing, directory, location and security services (e.g., DNS [15], Globe Location Service
[24], and PolicyMaker [3]).

Coming back to our simple information service, we now have four different frag-
ment implementations and three different, supported aspects, of which one is a true QoS
requirement. First of all, the developer finds out for which aspect configurations the
fragments can work well or cannot work at all. The result for our service is displayed in
Fig. 3.3. A stub fragment makes most sense when the client does not use the object con-
tinuously. Server and replicating fragment make most sense when their lifetime is not
too short. A caching fragment is best suited for continuos usage with data actuality
greater than a certain limit. Below that limit the cache would always have to verify re-
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Fig. 3.3 Optimal and invalid aspect configurations for the fragments of a
simple information service.

turned results. This is not optimal and our developer decided not to allow it, because it
implies extra latency. Finally, the cache’s lifetime should not be too $hort.

There are other restrictions that the developer has to set up, e.g., there can be either
a single server fragment or several replica fragments. So, the developer has to define
how one fragment implementation can be replaced by another. In our case this is easy
for most of the possibilities because they do not need any state transfer from old to new
fragment implementation. The only exceptions are replacing server and replica frag-
ments by each other, which needs some transfer of state. This is implemented by some
internal hand-over interface that both server and replica have to provide.

For an implementation, the developer has to separate mechanisms from policies. For
our example we first focus on two decision points and the decision they need:

* Binding of a client to an object: Which fragment implementation should be loaded?
» Replacing the local fragment: Which fragment implementation should be loaded?

The underlying mechanism is the loading of a new fragment implementation. The first
decision pointis inside of thaspectIXmiddleware, the second inside of a fragmentim-
plementation. Both will need the same decision, which is formulated as an appropriate
decision request to the decision subsystestisionRequest(needs FragmentType)

For supporting this decision the developer has to write policy rulesAgyectiX
aims at providing generic support for policies, we have decided to use a general purpose
programming language to formulate policy rules in our prototype. Specific—and thus
problem-dependent—policy description languages would limit the expressiveness to
their specific problem domain. For the sake of simplicity, we will only use an abstract
and more readable representation of policies in this paper. A policy rule consists basi-
cally of a signature describing the possible result of a decision (named “provides”
clause), a signature describing the dependencies of the rule (“needs” clauses), and the

6. A careful reader may have noticed that none of the fragments is optimal for continuos usage for a short
time, but we could have expected that because such a configuration would be hardly meaningful.



actual rule. The latter is separated into a “decide” clause containing the decision and a
“check” clause that can verify and correct a decision returned by a potential delegation.

A policy decision request only consists of a “needs” clause. The policy engine will
search for policy rules that generate the desired decision. Their “needs” clauses are sat-
isfied by recursively searching for other policies that provide the needed information.
Under-specification and cycles are currently detected and signalled as’ e®ues-
specification is solved by priorities.

provides : FragmentType

needs : FirstFragmentType, ReplicaAllowed, CacheAllowed

decide : if (#Fragments==0) then FragmentType = FirstFragmentType
else delegate

check : if ( (FragmentType == REPLICA && ReplicaAllowed == FALSE) ||

(FragmentType == CACHE && CacheAllowed == FALSE) ||
FragmentType == UNKNOWN) then FragmentType = STUB

provides : FirstFragmentType
decide : delegate
check : if ( FirstFragmentType != REPLICA && FirstFragmentType = SERVER )

then FirstFragmentType = SERVER

provides : ReglicaAIIowed
decide : ReplicaAllowed = TRUE; delegate
check : if (#Replicas >= MaxReplicas ||

#Replicas == 0 && this.FragmentType != SERVER )
then ReplicaAllowed = FALSE

provides : CacheAllowed
decide : CacheAllowed = TRUE; delegate
check : if (‘aspect(DA.maxAge) < MinAgeCache ) then CacheAllowed = FALSE

Fig. 3.4 Developer policies for a simple information service.

The developer policies describe the capabilities and restrictions of the various fragment
types as outlined in Fig. 3.4. The first rule implements the decision requests for a frag-
ment type which is based on the other rules. The second rule is for determining the type
of the very first fragment. The third policy rule describes when a replica is allowed. It
implements an upper bound for the number of replicas, e.g., imposed by the used con-
sistency model and protocols. The first replica can only be created from a server frag-
ment. The fourth rule takes care that caches are not used when the maximal age required
by the client is below a certain limit. To enable the policy engine to give satisfying an-
swers to the decision requests, we have also to provide default policies as outlined in
Fig. 3.5. These rules provide a default decision on fragment types. They choose the op-
timal fragment type for an aspect configuration and are only used when the correspond-
ing developer policy delegates its decision.

So far, the object will start with a server object and clients will bind with a stub or
cache fragment, but the object will never deploy replicating fragments. To extend the
objects structural self-organization we assume that in most fragment implementations
there is a so-called QoS manager running that constantly monitors certain system con-
ditions and the delivered quality of service. In our example, if the QoS manager detects
a high load in form of local invocations, it uses additional decision requests to decide

7. Automatic cycle recovery is subject of current research.



provides : Fra?mentType

needs : ReplicaAllowe

decide : if ( aspect(BL.lifetime) == _short) then FragmentType = STUB
elsif ( ReplicaAllowed && aspect(RAC.pattern)==rare )
then FragmentType = REPLICA
else FragmentType = CACHE

provides : FirstFragmentType
decide : FirstFragmentType = SERVER

Fig. 3.5 Default policies for a simple information service.

on the creation of new replicas, and initially on replacing the server by the first replica.
The decision point and the corresponding decisions are:

* QoS manager detects high load: Shall | create a replica? Where?

The server's QoS manager will request a decisioRepticaRequired  and if true the
server will replace itself by a replica. The replica’s QoS manager will request the same
decision and if a new replica is required it requests for an additiRepitalocation
decision. The creation of additional replicas is supported by so-called dwelling services.
These are ordinary distributed objects that can be requested to bind to another object at
a certain place and to set a certain aspect configuration. With this binding, a local frag-
ment will be created which can be a local replica depending oRrélgmentType deci-
sion. The additional developer and default policies are outlined in Fig. 3.6 and Fig. 3.7.
provides : Rep[licaReguired
needs : ReplicaAllowe!
decide : delegate

check : if ( ReplicaRequired == TRUE && ReplicaAllowed == FALSE )
then ReplicaRequired = FALSE

Fig. 3.6 Additional developer policies.

provides : ReplicaRequired
needs : Loa% 00High

decide : if (LoadTooHigh == TRUE) then ReplicaRequired = TRUE
else ReplicaRequired = FALSE

provides : LoadTooHigh

decide : if Zserwce%SystemLoad) > MaxLoad ) then LoadTooHigh = TRUE
else LoadTooHigh = FALSE

provides : Rep[licaLocation

decide : ReplicaLocation = service( Trader.findNearestDwellingService )

Fig. 3.7 Additional default policies.

Itis clear that this example is somewhat simplified as otherwise we could not explain it
in this paper. However, our policy system is able to deal with much more complex pol-
icy decisions and policy rules as they are necessary in a completely self-organizing glo-
bally distributed service. With the definition of developer and default policies, the frag-
ment developer is enabled to separate policies from mechanisms. Decision code is not
scattered over the fragment’s implementation but collected in form of policy rule sets.
This makes the development of fragment implementations much easier and every object

instance may encapsulate its own policy decision and rules, which remains transparent
to clients.
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3.4 Administrative Scalability

The developer alone can not anticipate the optimal service configuration for all possible
situations. Thus, we have to introduce further individuals and allow them to use their
knowledge for tailoring the service according to their specific needs. To achieve that,
we adopt policy concepts that are commonly used in system management [23,13]. We
have identified three additional classes of individuals that should be allowed to formu-
late additional policy rule sets: application administrators, domain administrators and
users. As we have adopted role concepts [4] when doing this analysis, we catbleem
classes

Individuals belonging to the application administrator role class are driven by busi-
ness goals. They are responsible for the service as a whole and have knowledge about
the structure and the characteristics of the data that is processed by the service. Domain
administrators have a totally different view. Their influence is limited to their local do-
main, where they are responsible for all facets of system management. This includes
knowledge about the local network topology, available computing resources and secu-
rity demands. Finally, users should also be enabled to define policies. As it should be
avoided that users are required to have some internal knowledge about the distributed
service, their influence should normally be limited to the definition of user preferences,
i.e. the selection of their favorite text processor or Web browser.

Highest [ Developer Policies
- Application Policies Delegation inside of
Priority Domain Policies Policy Rules

User Policies
Lowest | Default Policies

Fig. 3.8 Priority of the policy rule sets.

The role classes define an inherent priority scheme on their rule sets as depicted in Fig.
3.8, e.g., no user is allowed to override domain policies. On the other hand, an applica-
tion policy is able to delegate decisions to appropriate domain or user policies. Devel-
oper policies still own the highest priority within the system whereas default policies
can be overridden by any other policy.

provides : FirstFragmentType
decide : FirstFragmentType = REPLICA

Fig. 3.9 An exemplary application policy.

provides : ReplicaAllowed
decide : if 1serV|ce([ocaStorage)>MinStorage)

then ReplicaAllowed = TRUE else ReplicaAllowed = FALSE

Fig. 3.10 An exemplary domain policy.

In our exemplary information service, an application administrator who knows that a
large number of users will use this service can decide that the first instantiated fragment
should already be a replica. As shown in Fig. 3.9, he can override the default policy
FirstFragmentType by an application policy. Similarly, a domain administrator can
adapt the service to the local circumstances by requiring a lower limit of available stora-

—-11 -



ge for the creation of a replica. He takes advantage of the delegation in the
ReplicaAllowed  developer policy and defines his own policy rule shown in Fig. 3.10.

When applying these concepts to globally distributed services, the system must be
capable of supporting a large number of policy rules. This is achieved by exploiting lo-
cality. All individuals belonging to role classes are scattered all over the distributed sys-
tem and their political standpoints often depend on the administrative domain they be-
long to. Moreover, not all policies are valid for every distributed service. Thus, the va-
lidity of most policies is limited to administrative domains or certain classes of services.
With the introduction of/alidity annotationgor every rule that can be based on princi-
pals, on the type of the distributed services, and on administrative domains, the number
of policies can be reduced to the required minimum when making decisions. Validity
annotations also allow improvements of the distribution strategies that are applied when
a large number of policies have to be distributed within the service. Together with this
potential for numerical and geographical scalability [18], a large number of different
policies—and therefore a large number of different domains—can be supported.
AspectiXthus achieves administrative scalability by offering political influence on an
object’s internal decision processes to a large number of individuals.

4. Related Work

As explained in Section Z0SandGlobeuse a partitioned object model. In SOS, all
intra-object communication is either modelled by so-called channels or by other pre-
defined fragmented objects. TRespectiXapproach of communication end points al-
lows more flexibility (e.g., legacy code can be accessed by standard protocols). Globe
and SOS neither consider QoS requirements nor address how a distributed object is or-
ganized and maintaineéspectiXprovides both, QoS requirements in form of aspect
configurations and a sophisticated architecture for object-internal decision processing.
This allows administrative scalability and flexible, self-organizing objects.

QuO[28, 30] andMAQSI1, 2] extend CORBA and support quality-of-service re-
quirements. MAQS can only deal with one-dimensional QoS requirements, whereas
AspectiX objects can support arbitrary aspect-configuration sets. Both, QuO and
MAQS use a local object at the client side to implement the QoS requirements (called
delegate or mediator). As this object is only QoS-related but not to the object’'s seman-
tics it is difficult to integrate functional properties with QoS. This will be necessary if
we like to have a client-side local cache to gain performance but less data actuality.

The majority of work within the policy area uses policies as a concept for system
management [23, 13]. Much work about the definition of policies [9, 16], policy hier-
archies [29], conflict management [11], and the use of roles [4, 10] is available. We used
these results as a basis for exploring administrative scalability. The main difference be-
tweenAspectliXand those systems is, that we also integrate the developer into the policy
definition process. By supporting the separation of mechanism and policy at a very ear-
ly stage of the service’s software design, we achieve a tighter integration of service de-
sign and service management than other approaches.

An IETF workgroup currently defines a policy framework for the management of
network systems [27]. They have defined a set of classes, that allow policies to be de-
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fined and stored [17] and also employ role concepts to map policies to specific compo-
nents. The IETF policy framework offers little abstraction for the policy programmer.
Due to its concentration on a specific problem domain, it does not provide a generic so-
lution as we do.

5. Conclusion and Future Work

We presented the novel middleware architecAspectlX Its partitioned object model
allows an object developer to partition a single service object into multiple distributed
components, which can be deployed for building numerically and geographically scal-
able distributed services. TRespectiXpolicy subsystem enables a developer to strictly
separate mechanisms from policies. The developer has to implement the mechanisms,
to identify the decision points and to express the capabilities, restrictions and the default
behavior in policy rules. Administrative scalability is achieved by allowing additional
administrator and user policies that can influence the object’s decision. The policy en-
gine itself can be made scalable as rule sets have some local area of validity and as the
relevant rules can be easily found for a decision. Thus, with usapgctlXscalable and
completely self-organizing, globally distributed objects can be designed and operated.

In this paper we presented only QoS requirements that deal with scalability. In prin-
ciple, all kinds of requirements can be handled and implemented in multiple fragment
implementation. This is subject of further research.

So far, we have multiple prototype implementations validating our concepts: a non-
distributed prototype validating the object model and implementing the replacement of
local fragments, an implementation of communication end points, and a nondistributed
prototype of our policy subsystem that is able to find the appropriate decision with pol-
icy rule sets applied. In the near future, we will build an integrated prototype in Java.
We are also working on a development environment that will support the developer in
designing policy rules and implementing fragments.
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