Hans Reiser, Martin Steckermeier, Franz J. Hauck

IDLflex:
A flexible and generic compiler
for CORBA IDL

Technical Report TR-14-01-08 (Replaces TR-14-01-06)
2001-09-10

Friedrich-Alexander-University
Erlangen-Nurnberg, Germany

Informatik 4 (Distributed Systems and Operating Systems)
Prof. Dr. Fridolin Hofmann

A prior version of this paper was published as:

Hans Reiser, Martin Steckermeier, Franz J. Hauck: IDLflex: A flexible and generic compiler

for CORBA IDL. Proc. of the Net.ObjectDayrfurt, Germany, Sep. 10-13, 2001), 2001.
pp. 151-160.

IDL flex:
A flexible and generic compiler for CORBA IDL

Hans Reiser, Martin Steckermeier, Franz J. Hauck
Informatik 4, University of Erlangen-Nirnberg
{reiser, mstecker, hauck}@informatik.uni-erlangen.de

Abstract. For the development of CORBA applications, an IDL compiler is
needed that generates code for communication stubs, helper classes and imple-
mentation skeletons. For each IDL language mapping, for every version of a par-
ticular language mapping, and for every CORBA implementation, the generated
code has to be different. Traditionally the code generation is hard-wired into a
compiler, thus many different compilers have to be programmedfléRIs a ge-

neric IDL compiler which is able to generate arbitrary code for arbitrary languag-
es. Only a mapping program written in an XML-based mapping language and a
language-specific utility class have to be provided. Thus fli@®{can be adapted

to another target programming language, to another mapping or to another ORB
implementation in a very fast way. Furthermore, fizix allows to easily inte-
grate additional functionality into a CORBA-based system, as it was done within
the AspectiXmiddleware project.

1 Introduction

For the development of distributed applications, middleware platforms are used which
support communication between the distributed components of an application. One
such middleware is the Common Object Request Broker Architecture (CORBA) [5].
CORBA is an architecture that is realized by a particular CORBA implementation. Tra-
ditionally there are many vendors distributing different CORBA implementations.

CORBA allows the development of applications in terms of distributed objects,
which can be written in various programming languages. To hide an object’s implemen-
tation language from its clients, CORBA provides an Interface Definition Language
(IDL) which is used to define the interfaces of distributed objects. For each program-
ming language, a language-mapping standard defines how IDL types are mapped to lan-
guage types, how parameters are passed, how the interface of an object looks like, how
the client can use object references, etc.

Communication in CORBA is defined in terms of remote object invocations. Clients
can hold object references and invoke methods at the referred object. The invocation of
a method will finally invoke a method at the possibly remote server object. For the im-
plementation of remote invocations, CORBA uses a client-side stub. The stub code de-
pends on the corresponding IDL-based interface definition, the language mapping and
on the particular communication mechanisms used by a CORBA implementation. The
stub code is automatically generated by a code-generator tool, usually called an IDL
compiler.

First, an application developer describes the interface of a distributed object in IDL.
Second, he runs the IDL compiler for the chosen ORB implementation and target pro-
gramming language. The IDL compiler generates a so-called skeleton which is a code
frame for the object implementation. The application developer has to insert the actual
object code into the skeleton in order to create the object implementation. For the client
side of a remote object, the IDL compiler generates code for the necessary stub objects.
However, the chosen programming language for stub objects may be different from the
programming language for the object implementation, as CORBA supports heteroge-
neous programming environments; different IDL compilers may be used to generate ei-
ther code. Beside skeleton and stub code, an IDL compiler generates code for auxiliary
programming elements that are prescribed by the corresponding language mapping
(e.g., the Java language mapping defines holder and helper classes for certain types [4]).

Thus, an IDL compiler is an important part of each particular CORBA implementa-
tion. Usually, such compilers are not very flexible, because the code generation is hard-
wired into the compiler. For each supported programming language there needs to be a
different compiler. With every new version of a language mapping the compiler code
has to be adapted. Different vendors may have to use different compilers because the
communication code inside of stub objects is usually vendor-dependent.

IDLflexis a novel approach to IDL compilers. The IDL-specific part is hard-wired
into the compiler code whereas the mapping-specific code is generic and can be exter-
nally programmed and influenced in a very broad way. Thus, the compiler can run dif-
ferent mapping programs without any need to change the compiler itself. As the config-
uration of IDLflex is very easily changed, ICflex is also very appropriate if ORB de-
velopers have to experiment with different generated code. The driving force behind
IDL flex has been théspectIXmiddleware projectAspectiXextends CORBA by ge-
neric quality-of-service support, and the implementatioAgectiXneeds completely
different stub objects than standard CORBA. So, flek helped to design the stub ob-
jects forAspectliXand became th&spectIXIDL compiler.

This paper is organized as follows: Section 2 introduces the implementation of
IDLflex. In Section 3, we outline the advantages of fl2k demonstrated by examples
of the IDL-to-Java language mapping. Section 4 compare§¢Rto related work. Sec-
tion 5 will give our conclusions. Finally, in an appendix we will briefly define f#Hx's
mapping and configuration language.

2 Implementation

The internal structure of IDllex's implementation is outlined in Fig. 1. The two parts

on the left side are responsible for reading in the IDL description and generating an in-
ternal representation of one or more interfaces that shall be processed figxIOhe

third part, on the right side, will process the IDL descriptions and generate code.

IDL flexis entirely written in Java and thus portable to every platform that provides
a Java Virtual Machine.

S
“ IDL Fillel‘ Mapplng L(J:tllggs

\

T

IDL XML _ IDLflex
| Parser Parser
IR Internal Code
Reader Representatlo Generato

Code

Fig. 1. Internal structure of IDflex.

2.1 Reading IDL

As a first step, the IDL descriptions that shall be processed byl¢Rbave to be read
into the compiler. An internal data representation of an IDL interface has to be gener-
ated. This internal representation will finally serve as the basis for code generation.

In our first version of IDlflex, we retrieve IDL descriptions from an interface repos-
itory. The interface repository (IR) stores interface descriptions in form of CORBA ob-
jects. The types and the behavior of those objects are defined by the CORBA standard.
As an interface repository is necessary for other CORBA mechanisms like type check-
ing and the Dynamic Invocation Interface (DIl), it is usually part of any CORBA im-
plementation. A reader component inside of f2ix can read an existing interface re-
pository, retrieve the IDL information, and convert it into the internal representation
needed for code generation. So, the IDL description of an interface first has to be loaded
into an interface repository and then be processed bffdioL

As this is cumbersome in certain cases, we incorporated an existing interface repos-
itory including a corresponding IDL parser into Ifdx (see the left hand, dashed part
in Fig. 1). The parser can read files containing IDL descriptions and feed them into the
interface repository, which finally is read by the IR-reader component. In our imple-
mentation we used the interface repository and IDL parser of the open source CORBA
implementationJavaORRB2. 2.

Reading from an interface repository has the disadvantage that it can only process
IDL descriptions that are usually stored there. For example, the interfaces of CORBA
pseudo objects are not stored in an interface repository. Pseudo objects are used within
the CORBA standard to make internal mechanisms and services appear as CORBA ob-
jects. The indirect reading of IDL descriptions via an internal repository also wastes re-
sources. Thus, the next version of Ifléx will have an additional internal IDL parser
that can directly read IDL files and convert them into the internal representation (see
the dashed component in the middle part of Fig. 1).

1. This ORB is no longer supported by its developers. HoweverJthw@ORBtechnology migrated to
OpenORBalso an open source project.

The internal data representation is similar to the representation inside of an interface
repository. However, certain things have been simplified for the later processing. As an
alternative we could have decided to directly generate code from the objects inside of
an interface repository. We ruled this out due to the complex interface to the repository
objects and for efficiency reasons.

In the internal IDL representation, every IDL item is represented by a Java object.
So, IDL modules, interfaces, operations, attributes, exceptions, etc. are represented
each by a particular object. All these objects inherit from a common base class called
IDLObject , which provides generic access to retrieve all the necessary information
(like kind of IDL item, name, type, etc.) and to de-reference child objects (like members
of an interface or parameters of a method). TheObject interface is designed to
be easily usable from the XML-based mapping language. A simple IDL interface defi-
nition of asumserver with one method namexdd() is shown in Fig. 2.

interface sumserver

void add(in long s1, inlong s2, outlong res);
Fig. 2. A simple IDL interface.

The interfacesumserver is internally represented by an object of tylpierfaceObj

Such an object contains references to other objects representing either members of the
interface and inherited interfaces. In this example, just one reference is contained, a re-
ference to an object of typ@perationObj representing methoatld() . The operation

object in turn contains references to objects representing its return type and its parame-
ters. Parameter objects contain references to objects representing their types. The com-
plete representation of the example interface is shown in Fig. 3. The internal objects
also contain attributes to distinguish abstract and local interfaces as virell iasut

andout parameters, etc.

:PrimitiveObj :ParameterObj
type="void" name="s1" \
tInterfaceObj f :ParameterObj :PrimitiveObj
name="sumserver" g T
=! -1 =
\ :OperationObj name='s2 type="long
name="add :ParameterObj /
name="res"

Fig. 3. The internal representation of interfaueserver .

2.2 Code Generation

As the code generation shall be generic there is no built-in code for code generation.
Instead IDLlflex provides an interpreter for a simple programming language. In this lan-
guage the specific code generation depending on the IDL description fed inflexDL
can be programmed. This program is called a mapping.

The programming language to describe mappings is XML-based. The language de-
fines statements as XML tags whereas ordinary text is usually directly written to the
output code. There are three types of statements that are supported: output control, con-
trol flow and access to the internal data representation.

The output control allows to specify the names of output files where the generated
code will be written. Usually a CORBA language mapping specification defines, which
files have to be generated. With the output control, the mapping program can generate
code for and switch between multiple files. Furthermore, the output control allows to
write code to internal string variables, which can later be inserted at arbitrary places by
the mapping program. This is useful for code that has to be inserted multiple times.

Control flow statements allow to group mapping code into so-called components
that can be invoked like sub-routines. Thus, common mapping code can be extracted
and put into an own component. This serves for modularity and code reuse. Parameters
can be passed to components by filling the above mentioned string variables. Further-
more, conditions can be tested at run-time and according to such a condition multiple
control flows can be chosen in the mapping program. Often the same mapping has to be
done for a set of objects of the internal representation (e.g., for all members of an inter-
face). A special statement allows to iterate over such sets.

Another statement allows to retrieve information from an object of the internal rep-
resentation. At any time the flow of control inside of the mapping program is implicitly
associated with one of the objects of the data representation. This is similar to the im-
plicit this pointer in object-oriented languages. The mapping program starts with the
root object of the representation, representing an IDL module containing other modules
and interfaces. With the access statement (XMLG&J), it is possible to retrieve the
name, type and other information from the representation object. With different values
for an XML attribute of tagsETthe actual information is named. Access to other objects
of the internal representation is possible by explicit de-referencing which is allowed for
certain cases. Implicit de-referencing takes place when the iteration operator is used. In-
side of the loop, the implicit representation object is always switched to another mem-
ber of the iteration set, e.g., to the next member of an interface or to the next base inter-
face.

As some mapping mechanisms need complex algorithms it is not reasonable to pro-
gram these algorithms using the statements of our mapping language. Therefore, those
algorithms can be provided in form of a utility class. Some defined methods of the util-
ity class can intercept attribute values of Gi€Ttag and thus replace this XML tag by
arbitrary strings that are put instead into the output code. As an example, the utility class
for the Java language mapping will provide the correct file name for an IDL interface
as prescribed by the Java language mapping. Another example is the conversion of IDL
names to language names. This procedure has to especially handle language keywords
and other reserved names.

The utility class is usually used to encapsulate language-mapping—specific algo-
rithms. As those algorithms are defined in the mapping standard there is hardly any
need to change the utility class if itis already available for a certain target language. The
utility class is dynamically bound to IClex. The class name is defined in the mapping
program. The mapping program that is to be executed byl&Rican be configured as

a command-line parameter. The mapping program is parsed by an XML parser and read
into memory as a DOM element tree. IBéxuses thépache XerxeXML library. The
mapping-program interpreter operates on the DOM elements. With the execution of the
mapping statements in the mapping program, output code is generated. After comple-
tion of the mapping program IDlex terminates.

2.3 Example

As a brief example of the code generation, Fig. 4 shows three components of the map-
ping program for the IDL-to-Java language mapping. The first component, named
OperationCompiler is called whenever an operation has to be mapped to a Java method
declaration. This is necessary both for stub objects and for skeletons. We assume that
the output file is already selected by the calling component. Ordinary text, like the word
public, is then directly written to the selected output file. The nekTtag de-refer-
ences the return type from the impli€iperationObj -Object and retrieves the Java type
declaration. The followin@ETtag retrieves the name of the implicit operation object.
Then a loop is executed iterating over all parameter objects stored in the implicit oper-
ation object. Within the loop each parameter object once becomes the implicit represen-
tation object for the loop body. Inside of the loop another component for the parameter
type definition is executed followed by the name of the parameter. Finally, all defined
exceptions are processed in another loop by calling yet another component.

<I-- Processing an operation -->
<COMPONENT NAME="OperationCompiler">
public <GET OBJ="RETURN" T="JAVA:TYPE.decl'/> <GET T="JAVA:TYPE:name'/> (
<ITERATE NAME="PARAM">
<CALL NAME="ParametersDefCompiler'/> <GET T="JAVA:TYPE:name"/>

</ATERATE>)
<ITERATE NAME="EXCEPT"><CALL NAME="ThrowsDefCompiler'/> </[TERATE>

</COMPONENT>

<!-- Processing the parameters -->
<COMPONENT NAME="ParametersDefCompiler">
<IF ATTR="LOOP:NotFirst> , </IF>
<IF ATTR="IDL:inarg"><GET OBJ="BASE" T="JAVA:TYPE:decl'/>
<ELSE/><GET OBJ="BASE" T="JAVA:TYPE:holder'/>
<AIF>
</COMPONENT>

<!-- Processing thrown exceptions -->
<COMPONENT NAME="ThrowsDefCompiler">

<IF ATTR="LOOP:First"> throws <ELSE/>, </IF><GET T="JAVA:TYPE:decl'/>
</COMPONENT>

Fig. 4. Mapping components for operations in the IDL-to-Java mapping.

The definition of theParametersDefCompiler ~ component shows two conditional state-
ments of the mapping language. WitBOP:NotFirst ~ a conditional statement can re-
trieve whether it belongs to the first run of a loop or not. The second statement checks
whether the implicit parameter object isianparameter or not.

Executing the componer®perationCompiler on the internal operation object
namedadd of our sumserver interface (see Fig. 2 and 3) leads to the output shown in

Fig. 5. For theout parameteres a holder type has to be inserted. The IDL tyqre
is mapped to Java's typ@ . This mapping happens in the utility class which processes
the requesiAVA:TYPE:decl

The output text is post-processed by a simple formatter that prunes unnecessary
white space characters which are introduced as delimiters for mapping statements. This
makes the output code more readable.

public void add(int sl, int s2, org.omg.CORBA.IntHolder res)
Fig. 5. Result of theDperationCompiler for operatioradd.

3 Advantages

The advantage of IDillex lies in its flexibility. Existing mapping programs can be
adapted to the needs of a certain CORBA implementation. One example is the genera-
tion of client-side stub objects. Stub objects have to look like the actual object but for-
ward invocation request to the remote object on another host. Therefore, stub objects
have to use communication mechanisms to contact the remote host, or more precisely,
the remote object adaptor responsible for the remote object. These communication
mechanisms are often vendor-specific; every CORBA implementation may use differ-
ent, sometimes even incompatible, communication mechanisms. In this case, for each
CORBA implementation just another, slightly different mapping program has to be pro-
vided.

In the Java mapping, communication mechanisms are entirely encapsulated outside
of the stub object, so that stub objects of all vendors could look similar. However, the
Java language mapping allows two different implementations of stub objects: one based
on the dynamic invocation interface (DII) and another one based on output streams.
With IDL flex one could just use different mapping programs for each implementation.
Even better, a mapping program for IBé&x can contain both variants and the variant
is chosen by a command line option at execution time offl®L Fig. 6 shows the map-
ping code for the selection. A command-line parameter naBHUiStub selects the
mapping for DIl-based communication. Otherwise the stream-based mapping is select-
ed. The two mapping variants are each defined in an own mapping component.

<IF ATTR="DEF:DIIStub">
<CALL COMP="DIIStubCompiler'/>
<ELSE/>
<CALL COMP="StreamStubCompiler'/>
</IF>
Fig. 6. Selection of two mapping variants.

IDL flex has also been used for creating stubs, and object references respectively, of the
AspectiXmiddleware platform [3, 2]AspectiXis a CORBA-based system, but inte-
grates general quality-of-service requirements into distributed objects. To that end, cli-
ent-side stub objects can carry object-specific codssipect!X because quality-of-ser-

vice implementation often need not only code at the server- or object-side but also at
the client side, e.g., for maintaining a communication link based on special protocols.

The client-side part of aAspectiXobject is called a fragment. It consists of a generic
part that can easily be generated by fl2k by adapting the stub mapping of the stan-
dard Java mapping. The generic part forwards invocations to an object-specific part,
called the fragment implementation. For that implementation,fl&X.can generate
skeletons, similar to servant skeletons in plain CORBA. ForAkpectiXproject,

IDL flex proved to be an efficient platform for experimenting with different code gener-
ation. Changes in the output code were very easy and the turn-around time for testing
the newly designed output code, the new mapping program respectively, was very
small.

4 Related Work

The only comparable project Elick (Flexible IDL Compiler Kit) [1]. Flick is very
flexible as it can deal with CORBA IDL, Sun RPC, Mach Messages and other interface
description languages. Multiple back-end modules of the compiler kit allow to generate
code for different languages and mappings. The back-end modules are explicitly pro-
grammed for a specific mapping. However, there is one back-end that allows to include
a SGML-based mapping description into the code generation.

While Flick is a very complex system which urges the programmer to write C++
code for complex mapping changes, liEx has a lean design and a powerful but still
simple mapping language allowing the description of CORBA IDL language mappings.

5 Conclusion

IDL flexis a flexible IDL compiler as it allows to specify the code generation for a spe-
cific language mapping including vendor-specific code by programming the output in
an XML-based mapping language. Language-specific mapping constructs can be en-
capsulated in a utility class. However, we anticipate that the utility class is hardly ever
changed for a specific language mapping, e.g., for Java. So the same IDL compiler can
be used with different mapping programs for producing code for different languages
and CORBA implementations.

IDL flexhas been used to generate special object references/AdpleetIXORB ar-
chitecture. Especially for experimenting with differeAspectIXimplementations,
IDL flexwas very helpful, because just the mapping file had to be changed and there was
no need to adapt the IDL compiler.

6 Availability

The IDLflex software is available to the public and can be downloaded under the URL
http:/iwww.aspectix.org/IDLflex/ . IDLflex has been put under the terms of the
GNU Public License (GPL). The current version, as of July 2001, is beta software, and
lacks some documentation. Currently we have a mapping program for the CORBA 2.3
Java language mapping. This mapping does not yet consider value boxes.

References

[1] E. Eide, J. L. Simister, T. Stack, J. Lepreau: Flexible IDL compilation for complex
communication patternScientific Progr, 7(3, 4), 1999. pp. 275-287.

[2] F. J. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, M. Steckermeier: AspectIX: a
quality-aware, object-based middleware architectBrec. of the DAIS 2001 Confto appear
2001.

[3] F. J. Hauck, E. Meier, U. Becker, M. Geier, U. Rastofer, M. Steckermeier: A middleware
architecture for scalable, QoS-aware and self-organizing global serPices. of the USM ‘00
Conf.(Munich, Sept. 12—14, 2000), LNCS 1890, Springer, 2000.

[4] Object Mgmt. Group, OMG:Java language to IDL mapping specificatioBMG Doc.
formal/99-07-59, June 1999.

[5] Object Mgmt. Group, OMG:The Common Object Request Brakarchitecture and
specification. Ver. 2.4.2, OMG Doc. formal/01-02-33. Framingham, Mass., Feb. 2001.

Appendix: The IDL flex mapping language

This section describes the XML elements of the mapping language, their attributes, and
their semantics.

<IDLflex> Root element of the XML-based language. AttribuR@0Tdescribes the component
that processes the root of the internal representation ob#dt$TY specifies the class
name for the mapping-specific utility clas8RITERspecifies the class name for a class
post-processing the output.

<COMPONENTElement that specifies a mapping component. AttriblN&dEspecifies the name
of the component.

<CALL> Element executes the mapping code of a referenced component. AttribBiesferenc-
es an internal representation object that is used within the component code; if omitted the
internal object is not re-assigned. For allowed values foOhkag see th&ETtag.NAME
is the name of the executed component.

<ITERATE> This elements iterates over a list of internal objects. AttribuNésEdenotes the kind
of objects used within the loop. The object set depends on the current internal object. Ex-
amples areMEMBERor the members of modules, interfaces and enAbiMEMBERS$or
the members of interface including inherited memb&t&EMENTSfor the members of
structs, unions and exceptiordNIQUEfor a list of all unique union memberBASEfor
the immediate base interfaces of interfadd$BASEfor all inherited interface<sEXCEPT
for the list of exception®ARAMor the list of parameters of an operation.

<IF> Starts a conditional control flow. AttributeBYPEchecks the type of the current represen-

tation objectOBJselects another representation object for consideration. For allowed val-

ues see th6ETtag.ATTRchecks a condition defined in the utility class. Allowed condi-

tions are:

DEF:name Checks for a command line argumBntame

LOOP:First True if the first representation object of [RBRATE element
likewise definedLOOP:NotFirst, LOOP:Last, LOOP:NotLast

HAVE:RETURN True if an operation object has a non-void return type

HAVE:name True if the named element list (allowed names see ati$Ritef
ITERATE) is nonempty.

IDL:ireadonly True if attribute object is read-only

IDL:abstractif True if interface is abstract

IDL:inarg , outarg ,inoutarg Exactly one is true for parameter objects

IDL:wide ,bound True if string object is wide or bound

IDL:unique True if union member is unique
IDL:isdefault True if union member is default
IDL:needsdef True if implicit default label necessary for unions

Conditions may be inverted with theoperator and concatenated by the or-opetator

<SWITCH> Element denoting a conditional expression with several branches. It may contain an
arbitrary number oCASEelements and one optionBEFAULTelement. The allowed at-
tributes of SWITCHare the same as of thie-tag. TheDEFAULTelement has no attributs.
Only the firstCASEwith a true condition is evaluated, tB&FAULTelement is used if no
true condition was found.

<FILE> Redirects the following output text to a specific file. Attribut8BEC selects a file. Al-
lowed names are defined by the mapping-specific utility class. For the Java mapping the
same names as fBILE :name of attribut& of tagGETare allowed.

<SBOX>Redirects the following output test to an internal variable. AttributiddiEof the SBOX
variable.

<GET> This is the generic tag to access external information, e.g., from the internal representa-
tion objects. AttributesT denotes what is to be retrieve@BJ denotes the internal repre-
sentation object to be used for retrieval; if omitted the current object is @&ddnay
have the following content:
BASE The type object of an array, attribute, constant, parameter, sequence,
union or struct member
CONTAINER The object the current object is contained in as a member

DISCR The type object of the union discriminator

RDISCR Same a®ISCR but typedefs are resolved

RESOLVE Referred internal object for typedefs

RETURN The return type of an operation object

SUPER The internal object for the enum of an enum member; the union or struct

object of a union or struct member

Attribute T may have the following values (partially defined by the Java utility class):
DEF:name Retrieves content of command line optidbmame
IDL: name Retrieves information from an internal objewtme could be:

bound Size of an array, sequence or string

defdiscr Smallest discriminator value of union

digits/scale Digits and scale of a fixed width number

diser Label number of union discriminator value
id/name/fullname ID, name and qualified name of an internal object
length Size of an array or sequence

value Value of an enum member

CONSTVAL Java code for the value of a constant object

LIST:COUNT: name Number of elements of object lists (SEERATE for allowedname¢
LOOP:Count Total number of list elements for &iERATE loop

LOOP:Index Index of the currenfTERATE loop (counted from 0)

DISCR:num/sym Numeric or symbolic reference to union discriminator of a union member
SBOXname Retrieves the content of &80Xvariable

FILE :name Retrieves the file name fdAVA:TYPE:nameclass of the Java mapping.
JAVA:PACKAGEDEF Java package declaration for current object

JAVA:PACKAGENAME Name of surrounding Java package

JAVA:TYPE: nameConversion for the Java language mapping. Allowed valuesafoe

decl Java-mapped type declaration of internal object
helper/holder Name of mapped helper/holder class

name Java-mapped name of internal object

operationif Interface name of operation interface
stub/skeleton/tie Stub/skeleton/tie Java class name

signatureif Interface name of signature interface

-10-

	Appendix: The IDLflex mapping language

