
Implementing Real-Time Actors
with MetaJava

Michael Golm, Jürgen Kleinöder

August 1997 TR-I4-97-13

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Germany

Technical Report

Department of
Computer Science

Operating Systems
(IMMD IV)

Univ. of Erlangen • IMMD IV
Martensstr. 1
D-91058 Erlangen
Germany

Phone: +49.9131.85.72 77
Fax: +49.9131.85.87 32
URL: http://www4.informatik.uni-erlangen.de



This paper was published as:

Michael Golm, Jürgen Kleinöder: Implementing Real-Time Actors with MetaJava.
ECOOP ‘97 - Workshops; Lecture Notes in Computer Science; Springer, Berlin,
Heidelberg, to appear 1997.



– 1 –

Implementing Real-Time Actors with MetaJava

Michael Golm, Jürgen Kleinöder1

University of Erlangen-Nürnberg, Dept. of Computer Science IV
Martensstr. 1, D-91058 Erlangen, Germany

{golm, kleinoeder}@informatik.uni-erlangen.de

Abstract. Actors are a suitable abstraction to manage concurrency in real-
time applications. Meta-level programming can help to separate real-time
concerns from application concerns. We use reflection to transform pas-
sive objects into active objects. Then we extend the meta-level implemen-
tation of the actors to be sensitive to soft real-time requirements.

1 Introduction

Meta-level interfaces allow the service provided by a base-level API to be ad-
justed to specific application needs and run-time environments. MetaJava [4] ex-
tends the Java Virtual Machine by a meta-level interface (MLI). The MetaJava
MLI allows metaobjects to modify the interpreter’s object model. We show, how
the meta-level interface can be used to implement active objects. Active objects,
or actors, are an appropriate abstraction to manage concurrency in real-time sys-
tems. Most real-time systems have a reactive nature. They respond to signals
from sensors and do control actuators. The signal/response behavior of real-time
systems maps well with the message/reply scheme of actors. To be useful in an
environment with real-time constraints the originally developed actor system
must be extended. The proposed actor implementation is not intended for hard
real-time systems. To satisfy hard real-time constraints, it is necessary to find out
worst-case execution times, use incremental garbage collection, use resource ne-
gotiation, etc. This was investigated in RT-Java[8].

The paper is structured as follows. Section 2 introduces relevant concepts of
MetaJava. Section 3 discusses the actor model. Section 4 explains the actor im-
plementation and Section 5 the real-time extensions to this implementation. Sec-
tion 7 discusses related work and Section 8 concludes the paper.

2 MetaJava

MetaJava is an extension to the Java Virtual Machine [6] that supports struc-
tural and behavioral reflection [2] in Java. The base-level object model is the Java
model. MetaJava provides mechanisms to modify this object model and to add
extensions—for example, persistent objects, remote objects, replicated objects,
or active objects.

1. This work is supported by theDeutsche Forschungsgemeinschaft DFG Grant
Sonderforschungsbereich SFB 182, ProjectB2.



– 2 –

Base-level objects and meta-level objects are defined separately. Meta-level
objects that inherit from the classMetaObject can be attached to base-level ob-
jects. After a metaobject is attached, it can register for events of the base-level
computation (lines 3,4 of Fig. 1). Operations that can raise an event include
method invocation, variable access, object creation, and class loading. An event
description contains sufficient information about the event and enables the
metaobject to reimplement the event-generating operation. A method-event de-
scription, for example, contains the following information:

– a reference to the called object
– the method name and method signature
– the method arguments
An event is delivered to the event-handler method of the attached metaobject

(line 5 of Fig. 1). This method is responsible for an appropriate implementation
of the operation. It could continue with the default mechanism or customize it.
The default mechanism for method executions is provided with the methodcon-
tinueExecutionVoid (line 6 of Fig. 1).

When attaching a metaobject to a base-level object, base level and meta level
are visible. During this process information about the semantics of the base-level
object can be passed to the metaobject. This information consists of details about
methods, instance variables, and other object properties. As the current version
of MetaJava uses a standard Java compiler, there is no linguistic support for re-
flective programming. This means, that the names of those methods or instance
variables must be passed to the metaobject as strings.

Once the metaobject has been attached, the meta level is transparent to the
base-level object.

3 Actors

The actor model, developed by Hewitt [3] and Agha [1], is a approach to man-
age concurrency. Recently, it has been applied to the domain of real-time pro-
gramming [10], [9].

One advantage of the actor model is the easy synchronization. In the original
actor model, there is exactly one thread active in one actor and thus there is no
need to synchronize inside an actor. However, in multiprocessor real-time sys-
tems it can be beneficial to have more than one thread executing in an actor—for
example, if the threads execute read-only methods.

1 public class MetaObject {
2 protected void attachObject(Object baseobject) { ... }
3 protected void registerEventMethodCall(Object baseobject) { ... }
4 protected void registerEventMethodCall(Object baseobject, String methods[]) { ... }
5 public void eventMethodEnterVoid(Object o, EventDescMethodCall event) { ... }
6 protected void continueExecutionVoid(Object baseobject, EventDescMethodCall event) { ... }
7 ...
8 } Fig. 1 The MetaObject class



– 3 –

Our actor model differs from the original actor model in two points: message
passing is not asynchronous and there can be an arbitrary number of threads ex-
ecuting in an actor.

The use of actors leads to a very dynamic and adaptable system. Actors are a
means to implement abest-effort real-time system—that is, a system that tries to
meet timing constraints but cannot guarantee this a priori. Actor systems are not
intended for hard real-time systems with guaranteed timing behavior.

4 Implementing Actors at the Meta Level

Active objects are an extension of the passive object model. A passive object
implements the functional aspect of the actor. The actor behavior is implemented
at the meta level, as shown in Fig. 2. TheMetaActive metaobject transforms a

passive object into an actor. The constructor of MetaActive configures its state
according to the parameters and attaches itself to the base-level object.

Fig. 2 shows a part of the implementation of the MetaActive metaobject. The
constructor initializes the active-object execution environment, consisting of
Queue andExecutor and attaches itself to the base-level object. MetaActive re-
implements the method-call mechanism to support the actor behavior.

When receiving a method-enter event
MetaActive creates a new message ob-
ject and inserts it into the message
queue. Then the caller thread blocks
until it is notified by the Executor. The

meta level

method invocation
transition between base-level and meta-level

base level

O.m()

Q

insert(m)

M

continueExecution(O,m,…)

Fig. 2 Separation of base level and meta level in
the actor implementation

ObjectX calls methodm of the
active object O. This base-
level action is implemented at
the meta level as follows:
➀ Meta objectMetaActive (M)
is attached toO and thus it
receives the method-enter
event. ➁ MetaActive inserts
the message inQueue (Q).
Until the message is inserted
into the queue, all operations
are performed by the caller
thread. Then the caller thread
is blocked until theExecuter
(E) returns from thecontinue-
Execution call. ➂ The
Executer receives a message
from Queue. ➃ It invokes the
appropriate method at the
base-level object O using
continueExecution.

next

O

E

➀

➁

➂
➃

X

method-enter

1 public interface Queue {
2 public void insert(Object event);
3 public Object next();
4 }

Fig. 3 The QueueManager interface



– 4 –

Executer object continuously obtains messages from the Queue. To enable dif-
ferent message scheduling policies, MetaActive and Executer merely use the in-
terfaceQueue (Fig. 3).

5 Real-time Extensions to the Actor Metaobject

To handle real-time requirements, the actor metaobject developed in the pre-
vious section must be extended to include temporal considerations. We consider
the following real-time related aspects of actors:
(1) The policy to accept messages and insert them into the message queue. This

includes the policy to assign priorities to messages. Priorities can be based
on the message name, the message sender or the message receiver.

(2) The policy to map messages to methods and execute them. Some methods
may need wrapper functions that check pre- and post-conditions. In special
situations it is possible to use a separate thread to execute the method.

(3) The synchronization policy. If multiple threads are active in one actor, a syn-
chronization policy for these actors is needed.

(4) The policy to control method execution.It is possible to specify a maximum
time quantum for method execution. If this quantum is exceeded, the method
execution is aborted. Aborting a method could lead to an inconsistent object
state. Therefore, after aborting a method, another method to clean up must
be invoked.

These considerations are implemented by a different actor metaobject. This
metaobject is parametrized with information about message properties. A mes-
sage property consists of

– the message name
– the name of methods that must be invoked before and after the called method
– the message priority
– the maximum time quantum of the message, including wrapper functions
As shown in Fig. 4, only the metaobject constructor must be reimplemented

to initialize a new execution environment for active objects with real-time prop-
erties.

The priority in the message-property specification is used by theinsert method
of RTQueueManager for a placement decision. TheRTExecutor (Fig. 5) uses the
message property to execute the wrapper functions (lines 19 and 21 of Fig. 5) and

1 public class MetaRTActive extends MetaActive
2 {
3 public MetaRTActive(Object obj, MessageProperties props) {
4 // init real-time active object execution environment
5 queue_ = new RTQueue(props);
6 RTExecutor executor = new RTExecutor(queue_,obj, props);
7 (new Thread(executor)).start();
8 // establish base-meta link
9 attachObject(obj);
10 registerEventMethodCall(obj);
11 }
12 } Fig. 4 The MetaRTActive class



– 5 –

to control maximal execution times. To control maximal execution times, a
watch-dog thread is started, which blocks until the time quantum is over and then
sends the thread a stop signal. This causes the thread to throw aThreadDeath ex-
ception. The exception is caught (lines 22 to 25 of Fig. 5) and this way it triggers
the clean-up function.

6 Related Work

The main difference between our work and other implementations of real-time
actors is, that we do not need any support for actors from the run-time system.
We solely rely on a minimal object model with reflective capabilities.

The actor model described in this paper was inspired by the Real-Time Ob-
ject-Oriented Modeling language ROOM [10]. ROOM’s primary focus lies on
the design of actor-based real-time systems. The actor model is predefined in the
ROOM virtual-machine layer and can not be extended by applications.

DROL [11] is an actor implementation based on the ARTS kernel. It relies on
kernel support for active objects, but can control the execution of actors with
metaobjects. MetaJava provides means to implement an object model that sup-
ports active objects. This way, different active object semantics can co-exist
within the same program.

1 class RTExecutor extends Executor
2 {
3 MessageProperties props_;
4
5 public RTExecutor(QueueManager queue, Object o, MessageProperties props) {
6 super(queue,obj);
7 props_=props;
8 }
9
10 public void run() {
11 EventDescMethodCall event;
12 for(;;) {
13 ActorMessage msg = (ActorMessage) queue_.next()
14 EventDescMethodCall event = msg.getEvent();
15 MessageProperty prop = props_.getProperty(event.methodname, event.signature);
16 ... prepare the wrapper event descriptions ...
17 ... initialize and start the watchdog thread ...
18 try {
19 doExecute(obj_, pre_wrapper_event);
20 continueExecutionVoid(obj_, event);
21 doExecute(obj_, post_wrapper_event);
22 ... terminate watchdog thread ...
22 } catch(ThreadDeath e) {
23 ... prepare the cleanup_event description ...
24 doExecute(obj_, cleanup_event);
25 }
26 msg.notifyAll();
27 }
28 }
29 }

Fig. 5 The RTExecutor class



– 6 –

RTsynchronizers [9] extend an actor model with real-time constraints. These
constraints on message executions are defined separately from the actor defini-
tion and thus the actor can be reused in a different environment. RTsynchronizers
define conditions over time variables. These conditions must be fulfilled before
a message is scheduled for execution.

7 Conclusion and Future Work

We described a scheme to implement real-time sensitive actors using the re-
flective Java interpreter MetaJava. More work needs to be done to support well-
known policies for real-time–sensitive actors. This includes message schedule
times, periodic tasks, etc. It would be interesting to investigate the possibilities
of combining the actor meta system with other metaobjects, such asMetaRemote
[4] or MetaReplication[5].

8 References

1. Agh86G. Agha.Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

2. Fer89J. Ferber. Computational Reflection in class based Object-Oriented Languages.
OOPSLA ‘89,New Orleans, La., Oct. 1989, pp. 317–326.

3. Hew77C. Hewitt. Viewing control structures as patterns of passing messages.Journal of
Artificial Intelligence, 8(3) 1977, pp. 323-364

4. KlG96aJ. Kleinöder, M. Golm. MetaJava: An Efficient Run-Time Meta Architecture for Java.
IWOOOS ‘96, October 27-18, 1996, Seattle, Wa, 1996.

5. KlG96bJ. Kleinöder, M. Golm.Transparent and Adaptable Object Replication Using a
Reflective Java, TR-I4-96-07, University of Erlangen, IMMD IV, Sept. 1996

6. LiY96T. Lindholm, F. Yellin.The Java Virtual Machine Specification. Addison-Wesley,
Sept. 1996.

7. MY93S. Matsuoka, A. Yonezawa. Analysis of Inheritance Anomaly in Object-Oriented
Concurrent Programming Languages. in G. Agha, A. Yonezawa, P. Wegner.Research
Directions in Concurrent Object-Oriented Programming. MIT Press, 1993. pp. 107-
150

8. Nil96K. Nilsen. Issues in the Design and Implementation of Real-Time Java. inJava
Developer’s Journal, June 1996.

9. RAS96Ren, G. Agha, Saito. A Modular Approach for Programming Distributed Real-Time
Systems. Special Issue of theJournal of Parallel and Distributed Computingon
Object-Oriented Real-Time Systems, 1996.

10. SGW96B. Selic, G. Gullekson, P.T.Ward.Real-Time Object-Oriented Modeling. John Wiley
& Sons, Inc., 1996.

11. ToT92K. Takashio, M. Tokoro. DROL: An Object-Oriented Programming Language for
Distributed Real-Time Systems.OOPSLA ‘92,pp. 276-294


