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ABSTRACT
Invasive Computing is a research program that aims at developing
a new paradigm to address the hardware- and software challenges
of managing and using massively-parallel MPSoCs of the years
2020 and beyond. The program encompasses twelve projects from
the areas of computer architecture, system software, programming
systems, algorithm engineering and applications. The core idea is
to let applications manage the available computing resources on a
local scope and to provide means for a dynamic and fine-grained
expansion and contraction of parallelism.

In this paper we present initial thoughts on operating-system
support for the invasive paradigm and discuss first experimental
results with run-time support for invasive programs.

1. INTRODUCTION
Multi-core architectures are actually yesterday’s news in the par-

allel systems community. On the horizon, however, there arise
many-core architectures with 103 and more processors on a chip1.
These devices will be heterogeneous in terms of on-chip processors,
communication facilities and memory organization. In the future,
shared and distributed memory will coexist on a single chip. At a
certain level, cache coherence is no longer implemented in hardware
analog to Intel’s single-chip cloud computer (SCC). With future
many-core systems we will have so many cores available on a chip
that every single thread will be able to run on his own private core.
Single-threaded cores will be the normality, multi-threaded ones
the exceptional case. This calls for a radical change in the way
operating systems manage processors; it also calls for programming
and system paradigms suited for very fine-grained parallelism.

These issues are addressed by the Transregional Collaborative
Research Centre “Invasive Computing” (SFB/TR 89) funded by
the German Research Foundation.2 At the time being, the cen-
tre runs 12 projects from the areas computer architecture, system
software, programming systems, algorithm engineering, and appli-
cations (high-performance computing, robotics). A total of 60+
researchers explore hard- and software of future massively parallel
systems (multi-processor systems on chip, MPSoC) for the years
2020 and beyond. The research program is structured into three
phases of four years each, with the current Phase 1, launched in
Q3/2010, encompassing a funding volume of about e 9 millions.

This paper presents first thoughts on operating-system support
for the parallel machines envisaged and developed as part of this

∗This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre
“Invasive Computing” (SFB/TR 89).
1http://www.itrs.net
2http://www.invasic.de
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Figure 1: Structure of an invasive program

program and also discusses preliminary results of experiments in
run-time support for invasive computing.

2. INVASIVE COMPUTING
One way to benefit from future MPSoCs, and bring their per-

formance upward, is to have the running programs manage and
coordinate the processing resources (i.e., processor cores, commu-
nication links, cache lines) themselves to a certain degree and in
context of the local state of the underlying compute hardware. The
notion of such a self-organising parallel program behaviour is inva-
sive programming:

Invasive Programming denotes the capability of a program running
on a parallel computer to request and temporarily claim processor,
communication and memory resources in the neighbourhood of
its actual computing environment, to then execute in parallel the
given program using these claimed resources, and to be capable to
subsequently free these resources again. [11]

The dynamic and fine-grained potential parallelism of invasive pro-
grams calls for a radical change in the way the operating system man-
ages its resources—in order to not become the bottleneck: Setup-
times (for control-flow creation and distribution) have to be kept
low and resources have to be managed locally wherever possible.

2.1 Programming Model
On the system level, invasive programming maps to three funda-

mental primitives: invade(), infect(), and retreat(). Fig. 1
shows theses primitives and the typical state transitions that occur
during the execution of an invasive program:

First, an initial claim of resources has to be allocated by issuing a
call to invade(). By claim we denote a set of processing elements,
memory regions, and communication links the application can use
to execute its parallel program. Claim requests to invade() are
described in a declarative manner by a set of claim properties (e.g.,
the maximum available p processing elements with p = 2n that are
not multiplexed) and may be fulfilled only partially.

Second, a problem-specific assort() function (provided by the
compiler or algorithm developer) structures the parallel problem
with respect to the actually invaded resources (the claim) by assem-
bling a team. By team we denote a set of interrelated threads of
execution of an invasive-parallel program.
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Fig. 1 Levels of parallelism including process-level, thread-level, loop-level, instruction-level as
well as word-level and bit-level. The architectural correspondence is shown on the right side in-
cluding parallel computers, heterogeneous MPSoCs and tightly-coupled processor array architec-
tures, finally VLIW and bit-level parallel computing. Invasive computing shall be investigated on
all shown levels.

and levels of architectural parallelism as shown, for example, in Figure 1. Starting
with process- and thread-level applications running on high performance computing
(HPC) machines or heterogeneous Multi-Processor System-on-a-Chip architectures
(MPSoCs) down to the loop-level for which tightly-coupled processor arrays match
well, and finally instruction and bit-level type of operations.

Obstacles and Pitfalls in the Years 2020 and Beyond

Already now can be foreseen that MPSoCs in the years 2020 and beyond will allow
to incorporate about 1000 and more processors on a single chip. However, we can
anticipate several major bottlenecks and shortcomings when obeying existing and
common principles of designing and programming MPSoCs. The challenges related
to these problems have motivated our idea of invasive computing:

• Programmability: How to map algorithms and programs to 1000 processors or
more in space and time to benefit from the massive parallelism available and by
tolerating defects and manufacturing variations concerning memory, communi-
cation and processor resources properly?

• Adaptivity: The computing requirements of emerging applications to run on an
MPSoC may not be known at compile-time. Furthermore, there is the problem

Figure 2: Levels of parallelism

Third, infect() is used to deploy and start the actual application
code (the team) on the claim. During execution, the claim may be
altered by calling invade() or retreat(), respectively to either
expand or shrink the application’s claim. Alternatively, when the
execution finishes and the degree of parallelism has not changed,
it is also feasible to dispatch a different team onto the same set of
resources by issuing another call to infect().

Finally, if a call to retreat() leaves the claim empty, there are
no computing resources left for further execution of the program,
hence it terminates its execution and exits.

Note that invade(), infect(), and retreat() are considered
as the fundamental primitives of invasive programming at the system
level. They are provided by the operating system and (to a certain
degree) by the hardware that will be developed within the project.
Application developers do not necessarily have to deal with these
primitives. The goal is that points of potential parallelism are given
as annotations or, in the ideal case, can even be deduced by the
compiler. For this purpose, applications shall be developed in a
high-level programming language for parallel computing, which
most probably will be an extension of the X10 language [3].

2.2 Hardware Model
Over the last decade, we have seen the advent of a multitude of

(typically domain-specific) massively parallel MPSoCs: Besides
“traditional” multi-core CPUs we have GPUs, DSPs, or, as a re-
cent development, network-on-chips, with the SCC as the most
prominent example. These technologies exploit different levels of
parallelism (Fig. 2): From traditional process- and thread-level
parallelism (multi-core CPU) over loop-level parallelism (GPUs,
tightly-coupled processor array (TCPA)) to instruction-level and
even word-level parallelism (DSP, application-specific instruction
set processor (ASIP)).

Invasive computing shall be investigated on all these levels and
the MPSoCs going to be developed within the project will integrate
all of them. The goal of the hardware development is to eventually
merge these heterogeneous processing elements onto a single chip.
Tiles comprising similar processing elements and memory will be
interconnected by a common on-chip network.

Moreover, some of the hardware will provide dedicated support
for invasive programs: On a TCPA employed for loop-level paral-
lelism, for instance, regions of invasion may be managed directly
by the hardware (Fig. 3), so that invade(), infect() and re-

treat() can be implemented with an overhead of just a few clock
ticks. On a tile of multi-core CPUs for thread-level parallelism,
the operating system has to provide for efficient abstractions in this
respect.

3. SYSTEM DESIGN ISSUES
This section overviews design principles as well as concepts and

abstractions of OctoPOS, the parallel operating system (POS) aimed
at supporting invasive computing in a heterogeneous environment
of parallel hardware beyond multi- or many-core processors.3 As
the project is still in its starting period, the following description is
more a design rationale and development proposal rather than an
experience report.

3.1 Overall Goals
Key aspect in the design and development of OctoPOS is to make

all the capabilities of the underlying hardware available to higher
(software) levels in an “unfiltrated” way—especially to application
programs—and yet leave these levels gradationally hardware inde-
pendent. For the “balancing act” between disclosure and conceal-
ment of hardware properties, system abstractions will be provided
whose implementations result in equal-zero-overhead at run-time.
Logically, these abstractions will be organised in a hierarchy of ded-
icated abstract machines. Physically, the boundaries between these
machines need to become indistinct depending on the operating
mode a given processing element (that is, real machine) shall be
subjected to at user behest.

The resolution of abstract machine boundaries is enabled through
state-of-the-art program generation tools as, for example, known
from software product-line engineering. As a matter of fact, the
system software going to be developed thus appears as a family of op-
erating systems whose individual members implement tailor-made
solutions of application-specific system functions for the domain of
invasive programming. Customisation of system software will be
achieved to a large extent by means of an aspect-aware design [5] and
aspect-oriented programming [10]. An additional aim is to employ
the concept of invasion as far as possible also at system level, for
example, in the course of global resource management, in order to
strive for highly scalable solutions regarding the parallel/distributed
implementation of selected system functions.

The overall scientific objective is to define an operating system ar-
chitecture in which contention, latency and efficiency is controllable
by higher-level user/system functions in a problem-oriented manner.
Herein, the challenge is to find lower-level (central) abstractions
whose implementations are either free of or minimise contention,
support latency hiding, and can be used to compose higher-level (pe-
ripheral) abstractions of gradually increased performance overheads
depending on the application needs. The system software comprises
a number of decentralised services for hardware-aware, dynamic,
time- and resource-constrained loading, unloading and protection of
threads on different types of parallel processing resources. Rather
than developing all required system functions from scratch, a num-
ber of these shall be application-specific extensions of a standard
UNIX-like host operating system such as Linux.

Generally speaking, OctoPOS provides all system-related mech-
anisms to partition, virtualise, and control parallel processors as

3Prefix “Octo” stems from the denotation of a nature which is
highly parallel in its action as well as adaptable to its particular
environment: the octopus, being able to act in parallel by means
of its tentacle, adapt oneself through colour change, and, due to its
highly developed nervous system, attune to dynamic environmental
conditions and impact.
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Fig. 6 Options for invasion (uni- vs. multi-directional) and retreat phases.

At this level, dynamic load-balancing techniques might be applied to imple-
ment invasion. For example, diffusion-based load balancing methods [4, 1, 12] are
a simple and robust distributed approach for this purpose. Even centralised algo-
rithms based on global prioritisation can be made scalable using distributed priority
queues [13]. Very good load balancing can be achieved by a combination of ran-
domisation and redundancy, using fully distributed and fast algorithms (for example,
[14]).

Figure 7 shows by example how invasive computing for loosely-coupled multi-
core architectures consisting of standard RISC processors could work. These cores
may—together with local memory blocks or hardware accelerators (not shown in
the figure)—be clustered in compute tiles, which are connected through a flexible
high-speed NoC interconnect. In general, an operating system is expected to run
in a distributed or multi-instance way on several cores and may be supported by a
run-time environment.

To enable invasive computing on such MPSoCs, an efficient, dynamic assignment
of processing requests to processor cores is required. Time constants for starting
processing on newly claimed CPUs is expected to be considerably longer than in
the case of tightly-coupled processors. Therefore, we envision the corresponding

Figure 3: Three invasive programs on a TCPA

well as measures for contention prevention/avoidance, locality main-
tenance, and latency hiding and, in this respect, shares ideas with
Corey [2], Barrelfish [9], and fos [12]. Concerning resource manage-
ment against the background of invasive computing, strategic plan-
ning, allocation, and control will be handled by software agents [6,
1] acting on behalf of an application process. For a subset of abstrac-
tions arranged in the functional hierarchy of the system software,
different implementations of the same functional interface will exist.
These implementations vary in their non functional properties (e. g.,
with respect to contention, latency, or efficiency) and serve a fine-
grained exposure to trade-offs arising from multiplexing hardware
amongst competing invasive parallel processes.

3.2 Claims and Teams
For the purpose of complying with the operating system issues of

invasive computing and, thus, supporting the execution of invasive-
parallel programs, OctoPOS comes along with two fundamental
concepts: claim and team. A claim represents a particular set of
hardware resources made available to an invading application. Typ-
ically, a claim is a set of (tightly- or loosely-coupled) processing
elements, but it may also describe memory or communication re-
sources. Claims are hierarchically structured as to allow for the
marshalling of homogeneous or heterogeneous clusters of process-
ing elements. More specifically, a claim of processing elements also
provides means for implementing a place [3], which is the concept
of X10 to support a partitioned global address space. However,
unlike places, claims do not only define a shared memory domain
but also aim at providing a distributed-memory dimension.

In contrast, a team is the means of abstraction from a specific use
of a particular claim in order to model some run-time behaviour as
intended by a given application. Similar to conventional computing,
where a process represents a program in execution, a team represents
an invasive-parallel program in execution. Teams provide means for
the clustering or arrangement of interrelated threads of execution
forming an invasive-parallel program.

OctoPOS considers a team as the processing unit being subject
to, for example, gang scheduling, co-scheduling, preemption, sus-
pension, or load balancing [8]. At some higher level of abstraction,
a team is additionally specified by an optional description of the
dependencies between the members of the set. This way, by using
the OctoPOS interface, a programmer or compiler will be able to
provide an indication of the scheduling and coordinated execution
of teams among themselves—for example, indications for the order

of team execution to make explicit (programmed) synchronisation
unnecessary, for anticipatory team release to enable pipelined exe-
cution, or for team-wise exclusive execution to mitigate memory,
respectively cache contention. As this interface will be specifi-
cally designed to also ease compilers in the generation of efficient
invasive-parallel machine programs, OctoPOS logically extends into
the run-time system of the programming language employed.

3.3 Variability and Customization
The design and development of OctoPOS keeps in mind that the

actual parameters of the primitives for invasive computing are as-
sembled automatically, as far as possible, through static program
analysis, if applicable. It is further assumed that a compiler possibly
generates code patterns from respective higher-level language con-
structs supporting invasive-parallel programming (e. g., async [3]).

However, depending on precision and coverage of a priori know-
ledge available at programming or compile-time, not only the use
pattern of these primitives may vary but also their semantics. This
results in implementation variants not only of the same primitive
but also OctoPOS functionality. There is no reason to trade off
one case for another in this respect: Solutions for both are not only
valid but also demanded by applications—and if one exercises a
more detailed analysis of this problem domain, even more levels
of abstractions will appear when reasoning about possible system-
level implementations of these primitives (cf. below). Therefore,
OctoPOS will be designed and developed as a program family [7].
Individual members of this family provide dedicated support in de-
pendence on the properties and semantics of the three key primitives
of invasive-parallel programming.

3.3.1 Claim Properties
The respective members of the OctoPOS program family are

classified according to the claim attributes submitted to invade().
OctoPOS releases claims to an application in different shape, de-
pending on the type and properties as specified by the requesting
authority. The following properties can be given to an individual
claim:
incoherent/coherent A claim is termed to be coherent if its ele-

ments have to reside within some physically defined proximity
such as, for example, in case of a set of processing elements
of some TCPA. A claim is incoherent otherwise.

heterogeneous/homogeneous A claim is termed to be homoge-
neous if all of its elements have to be of the same type such
as, for example, given with a TCPA or Nehalem octa-core. A
claim is heterogeneous otherwise, as exemplified by the Cell
processor or an ASIP.

temporally preemptible/non preemptible A claim is termed to
be temporally preemptible if virtualisation in time shall be
possible to afford multiplexing between teams. In functional
respect, revocation and reallocation of processing elements
currently in use is unnoticed by execution threads. A claim is
temporally non preemptible otherwise.

spatially preemptible/non preemptible A claim is termed to be
spatially preemptible if virtualisation in space shall be pos-
sible to afford paging, swapping, or migration of teams. In
functional respect, the replacement of areas in the physical
address space of some processing element is unnoticed by
execution threads. A claim is spatially non preemptible other-
wise.

Actually, these types and properties will identify a specific level of
abstraction in the functional hierarchy of OctoPOS. At the bottom
of this hierarchy, an individual claim is coherent, homogeneous,



and non preemptible in temporal and spatial respects. This means
the system software on this hierarchy level will be devoid of all
functionality needed to support heterogeneity and preemption thus
resulting in a slimmed down operating system interface and imple-
mentation that reduces execution overhead. The run-time behaviour
of teams mapped onto such a simple claim is entirely dictated by
the hardware.

Later on in Section 4 we will describe and evaluate such a slim
implementation for a simple set of attributes. For applications, that
are content with these attributes, it therefore can provide a fast
execution platform.

3.3.2 Functional Enrichment
Passing through the hierarchy bottom-up, only a single claim

property gets changed, but without hiding that very changed prop-
erty. With each of the thus added properties, a functional enrichment
of the respective level of abstraction goes hand in hand. In this
sense, every single level forms a new “hardware machine” of well-
defined properties in terms of the claims made possible by OctoPOS,
respectively. In addition to other OctoPOS functions, each level
in particular implements a variant of invade(), infect(), and
retreat() covering exactly these attributes supported by this spe-
cific variant of OctoPOS. All of these variants are made available at
the OctoPOS API in order to support execution of invasive-parallel
programs as requested and in a problem-oriented manner. Ideally,
the compiler makes the decision which sort of “hardware machine”
(i. e., level of abstraction) executable code shall be generated by
evaluating context information from static program analysis.

Picking up the thought on a minimal incremental change in claim
properties implemented by OctoPOS, the level right above the “hard-
ware machine” offering coherent claims solely adds incoherent
claims. The next higher level adds heterogeneous claims, which is
extended by temporally preemptible claims, which, in turn, extend to
spatially preemptible claims. There are also incidental attributes that
can be given to individual claims at invade()-time. An example is
pinning of data such that, after an already executed retreat(), the
next infect() applied to the same claim comes upon the data left
by the previous computation phase.

At the very top, claims may also be subject to preclaiming and
reclaiming. In the former case, claims are, at the latest, already
known at program load time. OctoPOS will account for the resource
requirements of the respective programs in advance and feeds corre-
sponding (concurrent) processes to long-term scheduling. The latter
case, reclaiming, concerns temporally or spatially non preemptible
claims. These sorts of claims generally place severe restrictions on
autonomous global resource management and self-organisation of
(massively) parallel systems. In order to be able to freely manage
the computing system in spite of non preemptible claims, Octo-
POS will provide for optional functions to signal requests for claim
release to the user level. Similar to interrupt requests of a real
hardware machine, these signals may be disabled by higher (user)
levels to temporarily or even permanently ignore release requests of
the virtual “hardware machine” OctoPOS. However, once enabled,
OctoPOS will be able to accomplish improved claim management
on behalf and by assistance of the concurrent processes if claim
virtualisation is not an option. Note that these reclaim signals will
be mapped to exceptions by the X10 run-time system such that
developers of invasive-parallel programs may employ high-level lan-
guage exception handling concepts for convenient resource-aware
programming.

3.4 Concurrency Playground
An architectural decision of OctoPOS that has a serious influence

on contention and latency refers, for instance, to the question of
how coordinated execution of a critical section by several execution
threads is ensured. One option is to enforce sequential execution
of such sections by falling back on one of the many implementa-
tion variants of the concept of mutual exclusion. In other words,
consistency of shared data is ensured at the point in time the crit-
ical section is entered. As a consequence, execution threads are
potentially blocked. This case relates to blocking synchronisation.
Another option is to allow for concurrent execution, but not without
falling back to a sophisticated procedure to ensure consistency of
shared data at the point in time when the critical section is left. As a
consequence, execution threads are never blocked—but they may
suffer from starvation, depending on the progress guarantee of that
procedure given to the system or individual execution threads. This
case relates to non-blocking synchronisation.

Again another option is to render these explicit synchronisation
measures unnecessary at all by exploiting a priori knowledge. This
works with offline as well as online scheduling of execution threads
(i. e., teams in terms of OctoPOS). However, while such an approach
helps to let application-level programs forget critical sections, it
does not necessarily relieve an execution platform from taking care
of explicit (blocking/non-blocking) synchronisation interiorly. Al-
though (top-down) a priori knowledge regarding team ordering, for
example, may result in a deterministic schedule of the respective
execution threads, unpredictable (bottom-up or middle-out) events
nonetheless result in non deterministic system behaviour (i. e., thread
executions at system level). All of these aspects cross-cut design
and implementation of system software (such as OctoPOS), and
they have a decisive impact on an operating system architecture.

Which of these different synchronisation concepts—or many
implementation variants of these concepts—performs, respectively
scales best for invasive computing in general depends on the use
case as defined by a given application, on the operating mode of the
computing machine, on its load, and of course on the actual hardware
properties. In the specific situation of OctoPOS, this problem also
depends on the execution pattern of an invasive-parallel program,
on the number and structure of claims and teams, and on the data
dependencies of the teams.

4. FIRST RESULTS
As a starting point the first prototype of OctoPOS is implemented

on a traditional MPSoC system. The system implements a minimal
set of claim properties (see Section 3.3.1): The computing cores
are homogeneous and coherent, as they are all of the same type
and access the same piece of memory with uniform access costs.
The system itself does not implement preemption neither spatial nor
temporal.

4.1 Hardware Setup
The basic layout of the MPSoC architecture used for evaluation

consists of six SPARC LEON 3 processor cores and a DDR 2
memory module connected via a shared AMBA AHB-Bus.4 The
components are implemented in VHDL and are taken from the
Gaisler GRLIB IP Library [4]. The individual SPARC LEON 3 cores
are configured to use two-set 16 KB instruction and data caches and
support the complete SPARC V8 instruction set including multiply
and divide instructions.

The system is implemented on a Xilinx Virtex 5 XC5VLX110T
FPGA. The processors and the interconnecting bus run at 80 MHz,
the DDR2 memory at 190 MHz.

4We use this rather unusual hardware platform as it forms the basis
for hardware development within SFB/TR 89 "Invasive Computing".



As memory access is done through a common bus by all cores,
the evaluation system is a typical symmetric multiprocessing system
with a uniform memory architecture. Code and data are located
inside the same physical memory, so the system acts as a classical
von-Neumann architecture.

4.2 Thread Model and Control
We chose not to implement a traditional threading scheme within

our OctoPOS prototype, to most efficiently implement the core func-
tionality of invasion. The teams used to model the single computing
phases of the application are not implemented as fully fledged inde-
pendent threads. Instead, they are modelled as functions. infect()
dispatches one such team to the application’s claim, which, in our
implementation, simply comprises the set of cores the application
currently uses. Once the execution of a team member finishes, the
executing core is ready to accept members of another team.

The individual team members have run-to-completion semantics.
So when they finish, the overhead to switch to a member of the
next team is comparable to an indirect function call, as no context
information of the preceding one has to be preserved.

One remaining issue is the synchronisation of the invade(),
retreat() and infect() phases. As can be seen in Fig. 1, an
infect() phase can always be followed by either an invade(),
retreat() or another infect() phase. However, by calling in-

fect(), a parallel portion of the program is started and then ex-
ecutes on all cores belonging to the claim simultaneously. When
modifying the claim through invade() or retreat(), or dispatch-
ing a new team to the cores with infect(), the previously running
program on all cores must be finished. To achieve this globally,
some kind of barrier is needed to ensure the current computing
phase is finished before the claim is modified or another computing
phase starts. In our current implementation explicit calls to a barrier
implementation are used inside the application code to achieve this
synchronisation of the respective computing phases.

4.3 Basic Invasive Constructs
The core of the system software comprises the implementation of

the basic invasive constructs invade(), infect() and retreat().
These provide the means to manage applications with a varying
degree of parallelism.

Invade and retreat.
Both primitives have a similar interface: They take an integer

parameter denoting the number of cores to be allocated or deallo-
cated and return a boolean value indicating if the operation was
successfully executed. Using invade() and retreat(), an appli-
cation can adjust the number of cores it uses at run-time to match its
varying degree of parallelism. This frees unused cores during less
parallel periods which then can be used by other applications. The
necessary bookkeeping is done by means of a free list that contains
core descriptors for all currently unused cores in the system. The
cores used by a specific application (i.e., its claim) are collected
within a claim descriptor. Allocation of a core through invade()

is now simply done by copying a reference to the core descrip-
tor from the free list to the calling application’s claim descriptor.
Deallocation through retreat() is done accordingly.

Both operations can fail if there aren’t enough cores available ei-
ther in the free list in the case of invade() or in the claim descriptor
in the case of retreat().

Infect.
This primitive takes as argument a team describing the parallel

application and distributes it to the cores comprising the applica-

∆c 1 2 3 4 5
invade 31 42 52 62 70
retreat 33 43 52 62 71

∆c: Number of de-/allocated cores
k 1 2 3 4 5 6
infect 27 51 65 98 133 184

k: Number of infected cores

0

50
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150

200
cycles

1 2 3 4 5 6 cores

invade

infect

retreat

Figure 4: Execution times for invade, infect and retreat given in CPU cycles
of 12.5 ns

tion’s claim. The dispatching functionality mainly consists of two
distinct parts:

1. Infection on behalf of the application by calling infect().
The producer part that feeds the team members into the dis-
patching algorithm.

2. By means of infection placed code running on all the cores of
the system. The consumer part, as it receives and subsequently
executes team members.

The individual team members in our implementation are realised
as functions, hence the code portion of a team can be flexibly ref-
erenced by a set of function pointers. The data part can either be
represented as function parameters, embedded into the function code
or be addressed by other means, e.g. processor id.

These function pointers are the main item passed around inside
the system to identify a certain team member: All cores in the
system execute a loop querying a memory location for new team
members in the form of function pointers. As soon as a new one
is found, the function pointed to is executed and after its execution
finishes, the core goes back to querying the memory location for its
next team member.

Dispatching of a team to a set of cores is done by writing the
team’s set of function pointers to the memory locations queried
by the cores. This design enables the programmer to use different
functions for every core.

4.4 Setup-times of invade, infect and retreat
All measurements are taken on the platform described in Section

4.1 by means of toggling an external output pin to mark the areas of
interest in the implementation and an oscilloscope. All measured
data is averaged over thousand iterations.

The measurements shown in Fig. 4 represent the execution time
of invade() and retreat() for the allocation/deallocation of ∆c
cores and the execution time for infect() of k cores. There are no
test results with ∆c = 6 for invade(), as the test cases start with a
one element claim and increases it by ∆c cores, meaning ∆c cannot
surpass five on our six-core machine. Same holds for retreat(), as
the resulting claim always has at least one element left. In general,
these numbers represent a best case scenario, as there is no real
algorithm running in between the calls to the invasive primitives, so
the system software can use the cache almost exclusively.

As can be seen in Fig. 4, both invade() and retreat() have
strictly linear execution time behaviour depending only on the num-



ber of cores to be invaded or released. This is comprehensible, when
looking at the implementation described in Section 4.3, that needs
∆c copy operations for ∆c function pointers.

The same should hold for infect(), as k function pointers have
to be written for k cores. However, the results in Fig. 4 look different.
This can be explained, when looking closer at the implementation
details. Though infect() writes k function pointers to the memory
locations of the claim’s cores, on the receiving side there are k cores
querying these memory locations. So for the function pointers to
arrive at the destination core, the data has to travel over the bus
connecting processors and memory. As this is a shared resource
between all cores, it becomes a bottleneck, when infecting an in-
creasing number of cores. This explains the non linear behaviour of
infect() for a rising number of affected cores. Invade, however,
only runs on a single core without the involvement of other cores
and so has no scalability issue, as memory accesses mostly operate
on the core’s cache.

The numbers for infect() denote only the execution time on the
infecting core. However, one has also to take into account the time
it actually takes until the program starts running on the infected core.
Therefore, we also measured the time passing from the infecting
core writing the function pointer into memory to the moment the
function actually starts executing on the infected core. This takes
exactly 64 cycles within our implementation.

4.5 Discussion of the Results
Based on the constaints imposed by the testbed it is clear that

it will not be possible to simply transfer our OctoPOS protoype
to a 1000-core machine. However, it still can serve as a building
block when supporting invasion for large scale MPSoCs comprising
multiple tiles of processing elements. In this case inner-tile invasion
is supported by means of the minimal subset of OctoPOS functions
evaluated, while cross-tile (global) invasion will need minimal Oc-
toPOS extensions (Section 3.3.2) which are going to be developed
next in the project.

At the time being, even application and hardware development of
the project is still at the beginning and, thus, does not support cross-
tile invasion. At this stage and, generally, as long as the application
does not need to cross tile borders, any additional operating system
functionality entails unnecessary overhead—and contradicts the idea
of an operating system family.

Another goal of our minimal implementation is to determine the
lowest possible overhead introduced through the use of invade(),
infect() and retreat(). This gives us a reference point against
which we can measure future implementations gradually supporting
more attributes (see Section 3.3.2)

This overhead of invasion determines at which point it pays off
to parallelise the program by using invasion. When looking at
systems with 1000 cores or more it is obvious that applications have
to exploit as much parallelism as possible to efficiently use these
architectures. The overhead generated by parallelisation is, in our
implementation, determined by the execution time of invade(),
infect() and retreat(). Therefore, if this overhead is as small
as possible, it pays off to even parallelise loops comprising only a
few instructions.

In general, it pays off to parallelise loops when the parallelised
run-time of the loop T

p for p cores including the overhead of invasion

is smaller than the sequential run-time T : T
p +Overhead < T

The break even point for parallelisation can thus be computed
using T = Overhead·p

p−1
With the numbers obtained during our evaluation (Fig. 4), we

can compute the overhead for different scenarios. Going from one

to six cores takes invade(5) + infect(6) + 64 = 318 CPU cycles
and then subsequently returning to a sequential execution takes
retreat(5)+ infect(1)+64 = 162 CPU cycles. Hence, the overhead
for this scenario is 480 CPU cycles. So it pays off to parallelise loops,
as soon as their serial execution time surpasses T = 480 ·6/6−1 =
576 CPU cycles.

To put these numbers into perspective, we did some measurements
on a 16-core x86 machine with four sockets populated with Intel
Xeon E7340 quadcore chips running at 2.40 Ghz and using Linux
2.6.32.21 as an operating system. We measured the time it takes
to wake up six threads pinned to different processors using pthread
mutexes. This took approximately 120000 CPU cycles. So for the
parallelisation of a loop to be profitable the loop body would have
to take at least T = 120000 · 6/6− 1 = 144000 CPU cycles. This
shows that current traditional (general-purpose) operating systems
set a rather high barrier for exploiting micro-parallelism. With a
minimal (special-purpose) operating system however, it becomes
feasible to accelerate even rather short loops through parallelisation.

5. SUMMARY
In this paper, we introduce OctoPOS, an operating system for

invasive computing. Its focus lies on optimally using the underlying
hardware depending on the properties of the application. With an
operating system specifically tailored to the needs of the application
it is possible to keep overheads low. This is particularly important
in massively parallel systems, as it helps to avoid bottlenecks in the
operating system implementation itself.

First results show that by using a very slim implementation it is
possible to exploit even so-called micro-parallelism. This shows,
that applications with low demand on the operating system indeed
can profit from such an implementation.
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