
Efficient Time-Triggered
Execution in an Interrupt-Driven
Real-Time Operating System

Diplomarbeit im Fach Informatik

vorgelegt von

Daniel Danner

geboren am 18. März 1986 in Erlangen

Angefertigt am

Lehrstuhl für Informatik 4 – Verteilte Systeme und Betriebssysteme
Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer:

Dipl.-Inf. Wanja Hofer
Dr.-Ing. Daniel Lohmann
Dr.-Ing. Fabian Scheler

Prof. Dr.-Ing. habil. Wolfgang Schröder-Preikschat

Beginn der Arbeit: 01.01.2012
Abgabe der Arbeit: 02.07.2012

Erklärung
Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser
als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich
oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 02.07.2012

Abstract

Traditional time-triggered real-time operating systems are usually implemented
by multiplexing the predefined schedule onto a single hardware timer. At each
hardware timer interrupt, the planned task is looked up in the static table, the timer
is reprogrammed to the subsequent activation point and the task is dispatched. The
overhead of this software effort leads to a considerable latency between interrupting
the CPU and executing the actual task function.

This thesis explores the possibility of minimizing the overhead by making
use of flexible timer cells as they are available in large arrays on modern 32-bit
microcontrollers. It is shown that these cells can be set up to autonomously maintain
a schedule and thereby eliminate most of the software overhead involved in time-
triggered activations and other time-based mechanisms such as deadline monitoring
and execution budgeting. A reference implementation of this design on the Infineon
TriCore TC1796 is presented and evaluated along with two commercially available
solutions. The comparison shows that this novel concept significantly reduces the
overhead in time-triggered operating systems, with up to three-figure speed-ups.
Additionally, undesirable effects that could be observed in traditional designs such
as situations of priority inversion and unnecessary interrupts are avoided by this
new design.

Zusammenfassung

In Standardimplementierungen zeitgesteuerter Echtzeitbetriebssysteme wird der
statisch vorkonfigurierte Ablaufplan üblicherweise auf einen einzelnen Hardware-
Zeitgeber abgebildet, welcher die CPU zum Zeitpunkt der nächsten geplanten
Einlastung unterbricht. In der entsprechenden Behandlungfunktion dieser Unter-
brechnung wird der zu aktivierende Task aus der statischen Tabelle herausgesucht,
der Zeitgeber auf das darauffolgende Ereignis umprogrammiert, und schließlich der
Task eingelastet.

Im Rahmen dieser Arbeit wurde untersucht, inwiefern der damit verbundene
erhebliche Rechenaufwand durch den Einsatz von, auf modernen 32-Bit-Mikro-
controllerplatformen in großer Anzahl verfügbaren, Zeitgebereinheiten minimiert
werden kann. Es wird gezeigt, wie es durch die geschickte Konfiguration dieser
Einheiten möglich ist, die Aufgabe des Abarbeitens eines Zeitplans an das Zeitge-
bermodul auszulagern, und dadurch die Latenzen zeitgesteuerter Einlastung stark
zu reduzieren. Eine Referenzimplementierung für die Plattform Infineon TriCore
TC1796 wird vorgestellt, die neben dem zeitgesteuertem sowie gemischt zeit- und
ereignisgesteuertem Betrieb weitere zeitbasierte Mechanismen wie Überwachung von
Terminen und Zeitbudgets bietet. Eine Evaluation dieser Implementierung im Ver-
gleich mit zwei kommerziell angebotenen Systemen zeigte neben einem vorteilhaftem
Laufzeitverhalten durch Vermeidung von Prioritätumkehr und unnötigen Unterbre-
chungen eine durchweg verbesserte Leistung gegenüber den Vergleichssystemen um
bis zu dreistellige Faktoren.

Contents

1 Introduction 1
1.1 The Sloth Concept . 1
1.2 Outline of this Thesis . 2

2 Background 3
2.1 OSEKtime . 3
2.2 AUTOSAR OS . 4

3 Platform Considerations 7
3.1 Platform Requirements . 7
3.2 Timer Cell Model . 8

4 Design 11
4.1 General Design Considerations . 11
4.2 Time-Triggered Operation . 12
4.3 Mixing Time-Triggered and Event-Triggered Operation 14
4.4 Deadline Monitoring . 15

4.4.1 Individual Deadline Cells . 16
4.4.2 Task-Wise Multiplexing . 17

4.5 Execution Budgeting . 17
4.6 Synchronization . 19
4.7 Summary . 20

5 Implementation 21
5.1 TriCore TC1796 . 21
5.2 Timer Cell Implementation . 24
5.3 Coherent Cell Control . 26
5.4 Summary . 27

i

6 Evaluation 29
6.1 Evaluation Setup . 29
6.2 Quantitative Evaluation . 30

6.2.1 Time-Triggered Operation 30
6.2.2 Mixed Operation . 31
6.2.3 Deadline Monitoring . 33
6.2.4 Execution Budgeting . 34
6.2.5 System Services . 35

6.3 Qualitative Evaluation . 36
6.3.1 Avoiding Unnecessary IRQs 36
6.3.2 Avoiding Priority Inversion 37

6.4 Discussion . 38

7 Related Work 41

8 Conclusion 43

Bibliography 45

List of Figures 47

ii

Chapter 1

Introduction

In time-triggered real-time systems, the central responsibility of the operating
system at run-time is to maintain a predefined dispatcher table by activating tasks
at specified points in time. Traditionally, this is implemented by multiplexing the
various software timers onto a single hardware timer, which is set up to request
a scheduling interrupt to the processor each time a new task is planned to be
dispatched. The need to decide in software which task is scheduled on a particular
timer interrupt and then reconfigure the system timer for the next event makes up
for most of the overhead in such a system.

In order to further reduce overheads, this thesis proposes to let arrays of timer
cells available on modern microcontroller platforms perform the time-triggered
activations of individual tasks without multiplexing a single timer in software.
Ideally, all run-time effort of maintaining an execution schedule is thus offloaded
from the CPU onto the timer and interrupt periphery.

This approach closely follows the Sloth concept introduced in [1], which
endorses the use of existing hardware components for efficient and low-latency
scheduling and dispatching.

1.1 The Sloth Concept
The Sloth system is an alternative approach to a task implementation that
proposes to model all control flows in an operating system as interrupts, eliminating
the traditional distinction between tasks and interrupts. Given an application
configuration, Sloth attaches each task to a specific IRQ source on the hardware
platform, which is assigned an interrupt priority according to the task configuration.
When a task is activated synchronously, the kernel triggers the corresponding IRQ
from software. This initiates an arbitration process which the highest priority of all

1

pending IRQs and compares it to the current CPU priority. If a running task has a
higher priority than any pending IRQ its operation will not be disrupted. If, however,
a pending interrupt has a priority above the current CPU priority, an interrupt
request is sent to the CPU, preempting the running task and dispatching the pending
one. This means that all scheduling decisions are performed entirely within the
interrupt controller, thus moving a significant part of the kernel responsibilities—and
the involved overhead—from the software to the hardware.

The resulting design has been shown to be very light-weight, run with low
overheads, and generally outperform traditional software-based kernels by one- to
two-figure factors. Despite working at a low level, close to the specific hardware,
the simplicity in design allows for a concise implementation that is easily ported to
new platforms.

So far, Sloth is restricted to an event-triggered architecture, complying with
the OSEK-ECC1 standard for event-triggered real-time systems. The goal of this
thesis is to explore the possibilities of expanding into the time-triggered domain
while closely adhering to the Sloth design philosophy of minimizing software
effort by exploiting peripheral hardware for kernel responsibilities. The resulting
system will be called Sloth on Time. Many modern microcontroller platforms
are equipped with large arrays of timer cells usually with the intended purpose
of generating complex waveforms for motor control appliances. Given that such
timer cells regularly act as IRQ sources, too, they appear as viable candidates for
autonomously maintaining time schedules in a Sloth system.

1.2 Outline of this Thesis
This thesis is structured as follows. First, some background information on operation
system standards with time-triggered architectures is provided in chapter 2, in order
to establish the system behavior and features expected by Sloth on Time. Based
on these specifications, a set of hardware platform requirements is formulated in
chapter 3, leading to a generalized, abstract model of timer cells as they would be
available on a suitable platform. Based on these building blocks, chapter 4 presents
the design for realizing the mechanisms required for time-triggered execution,
followed by an introduction into the timer subsystem of the platform selected for
the reference implementation and details on the implementation itself in chapter 5.
The resulting system is then evaluated and compared with existing implementations
in chapter 6. The thesis concludes with a discussion of related work in chapter 7
followed by a summary and an outlook for possible future work in chapter 8.

2

Chapter 2

Background

As a reference for time-triggered operating system abstraction, OSEKtime [2] and
AUTOSAR OS [3] two widely adopted standards from the automotive industry,
have been selected. Both standards are closely related to and share many similarities
with the OSEK standard which the existing event-triggered Sloth implementation
conforms to. The focus of these standards on automotive applications, however,
does not constitute any limitation of the Sloth on Time design regarding the
applicability outside of this domain. The choice is mainly based on the simplic-
ity of the interfaces and for practicable comparison with commercially available
implementations.

2.1 OSEKtime
The OSEKtime standard for time-triggered systems was published in 2001 for
applications in the automotive domain by OSEK, a standards body of a consortium
of automotive industry companies. Although it appears as an extension to the more
feature-rich, event-triggered OSEK standard from 1995, it describes a system that
is independent of OSEK, except for the option to combine both types of systems in
a layered manner. This relation and the fact that the existing Sloth design and
implementation follows the OSEK standard, makes OSEKtime a suitable reference
for incorporating time-triggered elements into Sloth.

OSEKtime offers two types of control flow abstractions, ISRs for handling
external events and tasks that are managed based on time. The activation of the
latter is controlled by one or more statically configured dispatcher tables, of which
one at a time can be selected to execute at run-time. It is processed cyclically with
a fixed run length that is equal for all tables and consists of a set of expiry points
at given offsets in time, each initiating the activation of a given task. Tasks are

3

t
0 200 400 600 800 1000 1200

idle

Task1

Task2

dispatcher round length

Figure 2.1: The model for time-triggered activation and deadlines in the OSEKtime
specification [2]. In this example of a dispatcher table, task activations are depicted
by circles, their deadlines by crosses. Later task activations preempt currently
running tasks, yielding a stack-based execution pattern.

scheduled in a stack-based manner, such that a task activation invariably preempts
any running task, dispatching the new task.

Incorporated in the dispatcher table as well is a mechanism for deadline moni-
toring. Instead of triggering a task activation at this offset, such a deadline marks
a point in time at which its associated task is required to be terminated, otherwise
error handling is initiated. Since the same task can be activated multiple times
within one dispatcher round, the number of deadlines per task is unlimited as well.

Figure 2.1 shows an exemplary sequence of activations (circles) and deadlines
(crosses) in an OSEKtime setup with two tasks. The stack-based execution pattern
can be observed in the preemption of Task1 by a planned activation of Task2 that
coincides with the execution of Task1 in the first half of the dispatcher round. The
opposite situation arises when both tasks are activated in reverse order, as shown
in the second half of the dispatcher round.

In distributed environments with multiple nodes communicating over a common
bus, it is often necessary for each system to synchronize its dispatcher table against a
global time base. OSEKtime describes a very generic mechanism for synchronization,
stating that when enabled, the system should regularly check for the occurrence of
drift and adjust the execution of the dispatcher table accordingly.

2.2 AUTOSAR OS
In 2005, an international standards committee by the name of AUTOSAR formed
to develop a successor to the OSEK/OSEKtime standards. It covers a wide range
of aspects in automotive systems, with only the operation system specification

4

AUTOSAR OS being relevant here. This part of AUTOSAR is strongly based on
OSEK/OSEKtime and remains backwards compatible. However, instead of provid-
ing a separate, independent standard for time-triggered operation as OSEKtime,
AUTOSAR OS seamlessly integrates this domain into its otherwise event-triggered
architecture. This leads to an inherently mixed-mode system without any clear
distinction between time- and event-triggered control flows. Time-triggered activa-
tions to not inevitably preempt any running task like they do in OSEKtime, but
instead are regularly included in the scheduling process according to the static
priority assigned to each task. This happens within the same priority space used
for event-based operation. Furthermore, dispatcher rounds (named schedule tables
in AUTOSAR OS) are not limited to a single one at a time, running cyclically
with a globally defined, static length as in OSEKtime, but can rather be started
simultaneously at run-time and have individually configured lengths, optionally
being non-cyclic.

Besides time-based activation of tasks, another feature of AUTOSAR OS that is
addressed in this thesis is execution budgeting, a monitoring mechanism that aims
to replace OSEKtime’s deadline monitoring. It works by limiting the amount of
time a task spends in the running state. For this, the system needs to implement
facilities that allow to account the budget of the individual tasks at run-time, based
on the state each task currently resides in.

5

Chapter 3

Platform Considerations

With the specification requirements now established, this chapter first outlines
the requirements a platform needs to fulfill in order to allow a hardware-based
implementation. Then, an abstract model of timer cells is established, providing a
generic, hardware-independent basis for approaching the design step in chapter 4.

3.1 Platform Requirements
Two crucial platform requirements to facilitate purely time-triggered task activation
in hardware components outside of the central processor can be identified:

• The platform must provide a sufficiently large array of independently operating
timer cells, so that all time-based duties of the operating system can be
performed by dedicated hardware units, avoiding as much software effort at
run-time as possible.

• The provided timer cells need to be able to trigger individually configurable
interrupt handlers in order to activate the execution of specific tasks.

When deriving from purely time-triggered paradigms and mixing with the event-
triggered components of Sloth, additional requirements need to be fulfilled, which
match the demands of a regular Sloth system:

• The platform must offer at least as many interrupt priorities as the amount of
priority-controlled tasks required by the application, since each task priority
is represented by a dedicated priority level of an interrupt source. If it is not
possible for multiple interrupt sources to share the same priority (as it is the
case on the Infineon TriCore platform), each time-triggered OSEKtime task

7

requires a dedicate priority level as well. Two or three additional priority
levels are allocated for purely time-triggered OSEKtime operation.

• The platform needs to provide a method for triggering interrupt requests from
software as a way to implement synchronous task activations.

The minimum functionality required from each such timer cell consists in the
generation of events after a configurable number of clock cycles, with a periodic
repetition at a likewise configurable interval. Favorable but not required is the
possibility to disable the periodic operation and only trigger a single event at the
given timeout. The number of timer cells available has no explicit lower bound.
However, in order to go without partially falling back to multiplexing several planned
events onto single timer cells and thus requiring regular software intervention at run-
time, the number of available cells should naturally correspond to the requirements
of the particular application. As it will be shown later, apart from the complexity
of the schedule, other factors like enabling execution budgeting or the choice of the
method used for deadline monitoring contribute to the eventual demands in terms
of array size.

Another non-essential feature that helps to eliminate some more latencies or
improve accuracy is the ability to control cell operation for a group of cells at
once, this way making it possible to control schedule tables as a whole rather than
needing to control its cells sequentially.

3.2 Timer Cell Model
As a basis for developing a system design in accordance to the given standards,
this section establishes an abstract model of a timer cell that corresponds to the
formulated hardware requirements.

Figure 3.1 includes a block diagram of such an abstract timer cell consisting
of an incrementing counter field that is continuously compared to a user-defined
compare value. If both values match and the request enable switch is set, the cell
requests a hardware interrupt in the attached IRQ source and resets the internal
counter to zero. The operation of the entire cell can be halted by disabling the cell
enable switch, which disconnects the counter register from the cell’s clock source.
The external unit labeled control cell represents the previously mentioned hardware
switch allowing the simultaneous control of multiple timer cells at once.

8

Figure 3.1: The abstract model for available timer components on modern micro-
controller platforms, introducing the terminology used in this thesis.

9

Chapter 4

Design

Taking the specified behaviors of the timer-related components of both OSEKtime
and AUTOSAR OS into account and employing the outlined model of timer cells
as building blocks, a system design is developed that satisfies the given require-
ments along with the non-functional concerns of minimized latency and overhead.
This chapter first describes a setup for the strictly time-triggered architecture of
OSEKtime, then leads over to the modifications necessary to combine this with
an event-triggered OSEK system are presented, followed by the adaptation of the
AUTOSAR OS specification of integrating time-based activations into an otherwise
event-triggered architecture. Afterwards, it will be shown how to realize the addi-
tional time-based concepts of schedule table synchronization, deadline monitoring,
and execution budgeting.

4.1 General Design Considerations

The main idea of this design is to distribute all timer-related duties among a
sufficiently large set of timer cells in a static manner and therefore have the run-
time behavior predefined in the initialization phase as much as possible. This
aims at avoiding dynamic decisions at run-time, reducing the system overhead and
freeing up processor time for the actual user code. The assignment of individual
timer cells to the configured objects of an application is part of the configuration,
leaving the user in full control of how the available hardware is allocated by the
operation system and what is kept available for purposes of the application itself.

11

4.2 Time-Triggered Operation
On the configuration level, a dispatcher table consists of a list of expiry points,
ordered by their time offset relative to the beginning of the table. It has a fixed
length and is periodically processed. In a traditional, software-based approach,
the schedule of the application is usually represented by a static lookup table
in the kernel, which is sequentially traversed from expiry point to expiry point,
exactly like it is configured. At run-time, the schedule is maintained by perpetually
programming the single system timer for each time a new task activation is planned.
This entails the significant overhead of querying a static lookup table for the
particular task to be dispatched and the next delay to which the system timer is
reprogrammed.

Instead of such a multiplexing mechanism, Sloth on Time employs one
timer cell for each expiry point in each dispatcher table, eliminating the need
for reconfiguration at run-time for as long as no switching to another table is
requested. The proper preparation of the cells consists in the following initialization
parameters:

• Set the compare value to the length of the dispatcher table, yielding a cyclic
event triggering at this interval.

• Set the initial counter value to the length of the dispatcher table minus the
expiry point offset. This way, the length of the expiry point offset elapses
before cyclic repetition sets in.

• Set the interrupt number to the IRQ handler corresponding to the task that
should be activated, such that a cell event sets the pending bit for this task.

Once the prepared cells are enabled, the correct amount of initial offset elapses
in each cell before the first interrupt request, followed by a continuous repetition of
interrupts at the interval of the dispatcher table. Without the need for any coordi-
nation efforts after initialization, this setup correctly maintains the application’s
schedule through a set of independently operating timer cells.

Figure 4.1 presents an example setup with a dispatcher table that is 200 ticks
long and contains two task activations, Task1 at an offset of 60 and Task2 at 170.
Both cells employed for this schedule are set up with compare values equaling the
dispatcher round length and initial counter values of 200− 60 = 140 for the first
cell and 200 − 170 = 30 for the second cell. The two bottom graphs show how
the counter value of each cell repeatedly increments over time until it matches the
compare value and is reset to zero. This yields two sawtooth patterns of repeated

12

Dispatcher Table
(length = 200)

t
0 50 100 150 200

Act. Task1
offset=60

Act. Task2
offset=170

1st dispatcher round 2nd dispatcher round

t

counter

0

100

200

0 50 100 150 200 250 300 350 400

t

counter

0

100

200

0 50 100 150 200 250 300 350 400

Cell 1
compare value
initial counter

Cell 2
compare value

initial counter

E IRQ Task1 E IRQ Task1

E IRQ Task2 E IRQ Task2

Figure 4.1: Example of the timer cell configurations for a dispatcher table with
two time-triggered activations. The initial counter values define the delay of the
first interrupt request, which then is followed by repeated requests corresponding
to the compare value.

activations, which are aligned on the time axis according to the particular offset of
each activation in the dispatcher table.

In order to obtain an execution pattern in which each activation inevitably leads
to dispatching the task, the interrupt priority assigned to the handlers of time-
triggered activations needs to be set to a level that is guaranteed to be higher than
the current execution priority of an already running task. This is done by lowering
the CPU priority to a suitable level within the task prologue prior to entering
the user code. Due to the run-to-completion semantics of interrupt handlers, this
implicitly yields the desired last-in-first-out execution pattern whenever planned
activations collide with previously running tasks.

13

4.3 Mixing Time-Triggered and Event-Triggered
Operation

As introduced in chapter 2, both OSEKtime and AUTOSAR OS offer provisions
for mixing time-triggered and event-triggered architectures in one application.
OSEKtime approaches this in a more separated manner, by allowing to encapsulate
an entire event-triggered OSEK system within the idle task of OSEKtime, which
gets processor time only if no OSEKtime task is currently running or preempted.
Apart from operating on one piece of hardware, there are, however, no points of
contact between both systems and no sharing of software resources takes place.
AUTOSAR OS, on the other hand, takes a more integrated approach by enhancing
its otherwise event-triggered architecture with mechanisms for time-based activation
of tasks, without incorporating the principles of a time-triggered architecture, such
as strictly stack-based scheduling. This means, regular event-triggered tasks in
AUTOSAR OS may additionally be activated by expiry points defined in a schedule
table, but nonetheless are subject to priority-controlled scheduling regardless of the
source of activation.

In the design of Sloth on Time, the OSEKtime approach of mixed operation
is achieved by splitting the interrupt priority space into two sections. The boundary
line is defined by an OSEKtime execution priority that can be chosen in the
application configuration. This priority is the level, all time-triggered tasks of the
OSEKtime component in the mixed system will be executed at. In order to ensure
the preemptive behavior of time-triggered tasks, the interrupt sources assigned
to these tasks are set to an OSEKtime trigger priority that is higher than the
execution priority. The interrupt handler then immediately lowers the current
CPU priority to the execution level before entering the task function. This means,
outside of the brief moment between entering the interrupt routine and lowering
the CPU priority, all interrupt handlers of time-triggered tasks are guaranteed to
have a priority above the current execution priority and therefore always preempt
the running task.

Additional attention needs to be paid to critical sections in the kernel. In the
regular, purely event-triggered Sloth such sections are secured by temporarily
disabling all interrupts. With separated priority spaces for event-triggered and time-
triggered tasks, however, disabling interrupts within the event-triggered scope would
penetrate the upper half of priority space reserved for time-triggered operation.
This issue can be addressed by reserving a priority level between the OSEKtime
execution level and the highest level assumed by any event-triggered task. Then
instead of disabling interrupts, the current CPU priority can merely be raised to
this priority, thereby still allowing time-triggered tasks to preempt the underlying
OSEK system.

14

Figure 4.2 shows an exemplary control flow in a mixed OSEK/OSEKtime
setup in Sloth on Time, along with a graph of the CPU priority. Initially, an
event-triggered task ET1 is running at its dedicated priority of 1, right below the
OSEKtime execution priority of 2. At t1, the time-triggered task TT1 is activated,
triggering an interrupt at the OSEKtime trigger priority of 4. As it can be seen
in the bottom graph, the priority level is then lowered to the execution priority
of 3 shortly afterwards. This procedure repeats with the activation of another
time-triggered task TT2 at t2. Note how the CPU priority does not change when
TT2 terminates at t3, resuming the preempted context of TT1, which was running
at the same priority. On termination of TT1 at t4, the priority drops below the
boundary between the two domains, as the originally running event-triggered task
ET1 is resumed.

In contrast to the concept of mixed operation in OSEKtime, AUTOSAR OS
is not composed of two clearly separated domains for event-triggered and time-
triggered operation, but merely specifies mechanisms for activating event-triggered
tasks based on time. In Sloth on Time, this is accomplished by simply omitting
the mechanism for lowering the execution priority of time-triggered tasks to a
common level. With all tasks sharing a common priority space and keeping the
assigned priority after dispatching, no distinction between event-triggered and
time-triggered tasks exists as it does in mixed OSEK/OSEKtime operation. The
responsibilities of the timer cells used for activations defined by the running schedule
table are thereby reduced to setting the pending bit for the appropriate interrupt
that is already prepared as part of the regular, event-triggered Sloth system.

4.4 Deadline Monitoring

On the configuration level, OSEKtime’s mechanism of deadline monitoring is very
similar to the planned task activations. Both are defined by points at a certain
offset in the dispatcher table. In conventional, software-based designs they are
usually implemented as part of the same static lookup table used for activations and
essentially only differ in the code that is eventually executed: instead of entering
the task function, a deadline expiry point verifies a task’s current state and possibly
initiates error handling.

Sloth on Time includes two alternative approaches to deadlines each with its
own characteristics with regard to the added overhead and the way they scale with
the amount of configured deadlines.

15

t

time-triggered act.

time-triggered act.

idle

ET1

TT1

TT2
time-triggered
domain
event-triggered
domain

t

CPU Priority

0idle priority

1ET1 priority

3OSEKtime
execution priority

4OSEKtime
trigger priority

Task ET1

IRQ handler TT1

Task TT1

IRQ handler TT2

Task TT2 Task TT1

Task ET1

t1

t1

t2

t2

t3

t3

t4

t4

Figure 4.2: Example of the control flow and priority changes in a mixed OSEK/OSEKtime
application in Sloth on Time. The event-triggered task ET1 gets preempted by the activation
of time-triggered task TT1 at t1, which in turn gets preempted by another time-triggered task
(TT2) at t2. Both time-triggered activations are performed by a high-priority interrupt request
whose handler then lowers the CPU priority to the common execution level of all time-triggered
tasks. The priority level does not change when TT2 terminates and TT1 is resumed at t3. On
termination of the only running time-triggered task TT1 at t4, the event-triggered task ET1 is
resumed.

4.4.1 Individual Deadline Cells
For the first method, one timer cell is allocated per deadline. With regard to the
initial counter and compare values, the cells are configured identically to regular
task activations cells. Their request enable bit, however, remains cleared after
initialization and will not be set until the corresponding task is dispatched. For this,
the prologue of any task that has deadline monitoring enabled in its configuration
will be extended with static code that enables the triggering of interrupts in all
cells which represent deadlines for this particular task. When this task successfully
terminates in time—that is, without violating its deadline—the equally extended
epilogue clears the request enable bits for all deadline cells. This way, when reaching
the point in time at which a deadline expires after the monitored task has terminated,
it will pass without disrupting the current operation. Consequently, the interrupt

16

handler attached to a deadline cell does not need to perform any checks against
the task’s state, but instead directly enters the user-defined error hook routine.

4.4.2 Task-Wise Multiplexing
One apparent disadvantage of the first solution is that the overhead introduced
into affected epilogues and prologues grows linearly with the number of deadlines
assigned to the same task. This is remedied by the second approach, which employs
only a single timer cell for all deadlines of one task and then multiplexes multiple
deadlines onto this cell. In a static analysis step during build time, the order of
activations and deadlines within one dispatcher round is determined for each task
and transformed into a lookup table. The purpose of this table is to provide the
run-time environment with the intervals between subsequent deadlines of each task.
Using this information, a routine that is inserted into the task epilogue is able to
reconfigure the deadline cell such that it represents the next scheduled deadline.
This is done by increasing the current compare value of the cell by the interval
between the current and next deadlines as it is read from the lookup table.

With this approach, unviolated deadlines no longer imply the uneventful passing
of the expiry time due to a cleared request enable bit in this cell. Instead, the
deadline cell will never experience a match in counter and compare value for as long
as no deadline is violated. Consequently, the clearing and setting of the request
enable bit—as it is done in the first method—can be omitted, thereby eliminating
any deadline related overhead from the task prologue.

In comparison to the previous method, such task-wise multiplexing introduces
a more complex overhead through cell reconfiguration and offset lookups. On the
other hand, the overhead does not increase with the numbers of deadlines. Another
possible performance advantage stems from the fact that no additional overhead
is introduced to the task prologues, but only to their epilogues. While epilogue
overhead naturally contributes to the latency of dispatching the task that was
previously preempted and therefore is undesirable as well, reducing the latency of
task activation generally is preferred over faster task termination.

4.5 Execution Budgeting
Alternatively to deadline monitoring in OSEKtime, AUTOSAR OS specifies its
own means for enforcing timing constraints called execution budgeting. Instead of
defining fixed points in time at which a task is required to be completed, execution
budgeting aims at limiting the cumulative amount of time a task spends in the
running state since the most recent activation or release from blocked state. This

17

t

A

B C Fault Handling

idle

Task1

Task2

t

Budget
of Task2

400

0

t

Budget
of Task1

0 200 400 600 800 1000 1200

400

0

start

start

stop

reset

start

E Budget Violation

Figure 4.3: Example of an event-triggered application with execution budgeting
enabled. The top graph shows the control flow, the dashed lines indicate how
task activations and terminations effect the starting, resuming and resetting of the
corresponding budget cells.

way, tasks can be monitored regardless of the exact point in time at which they are
dispatched.

Here, Sloth on Time employs one timer cell for each task that has a limited
budget and attaches the interrupt handler directly to an error handling routine.
In contrast to the setups for activation or deadline monitoring, such a cell is not
embedded into the time line of any dispatcher round, but operates independently
of time-triggered activations. The budget assigned to a task is represented by the
difference between the initial values for the counter and compare register. Setting
the compare value to the maximum and initializing the counter with the maximum
value minus the amount of budget yields a countdown mechanism that automatically
triggers error handling on expiry.

In order to properly account for the budget spent by a task, the cell needs to
be paused, resumed, and reset at all points of state transitions of this task. For

18

global
time

local
time

1000 2000 3000

1000 2000 3000

Act. Act. Sync Act. Act. SyncAct. Act. Sync

dispatcher round adjustment dispatcher round

detected drift

Figure 4.4: Illustration of the OSEKtime synchronization mechanism as it is
implemented in Sloth on Time. The synchronization cell at the end of the
dispatcher round detects a clock drift, decreases the counter value of all cells
allocated by the schedule accordingly, thereby shifting the entiry schedule forward
in time.

the task prologues, this means both pausing the budget cell that is monitoring
the previously running task, if there is one, and starting the cell associated with
the task that is going to be dispatched (see markers A and B in Figure 4.3). On
termination (marker C), these two steps are reversed by resetting the cell of the
terminated task and resuming the cell of the previously preempted task that is
about to be restored. Beyond these extensions to prologues and epilogues, the
run-time environment does not need to pay any attention to maintaining counters
in software.

4.6 Synchronization

The synchronization mechanism in OSEKtime provides the means for coordinating
multiple nodes in a distributed environment, which usually requires the synchro-
nization against a common, global time. This is achieved by frequently—usually
at the end of each dispatcher round—determining the current clock drift and then
either inserting a suitable delay between the end of one dispatcher round and the
beginning of the next, or advance the beginning of the next round. The amount of
such a negative drift is naturally constrained by the amount of unallocated time
between the last expiry point of one round and the first one of the next round.

19

Enabling synchronization in Sloth on Time requires the allocation of a
dedicated cell in the configuration and a user-provided time offset at which syn-
chronization should be carried out. The choice of this offset affects the possible
range of negative drift and can be chosen freely according to the requirements of
the application. The cell is prepared almost identically to a regular activation cell
except for the attached interrupt handler, which is a special function performing the
synchronization. Depending on the current clock drift that needs to be compensated
for, this function adjusts all cells that are part of the dispatcher table arrangement
(including the synchronization cell itself) in a sequence of read-modify-write instruc-
tions adding or subtracting the appropriate value from their respective counter
register. In consequence, the next cycle of the dispatcher table as performed by
these cells is postponed or pulled forward, thereby adjusting for the clock drift.
Although the correction is not applied simultaneously to all involved cells, the
procedure accurately preserves the original order of counter values along the time
line, since each instruction takes the same amount of time between reading the
current value and writing back the modified value. Figure 4.4 provides an example
of a dispatcher round with two task activations and synchronization enabled. At
the synchronization point, the local time is compared to the global time source, a
drift is detected and the three cells assigned to this dispatcher round are adjusted
accordingly.

4.7 Summary
The presented design of Sloth on Time unifies the requirements of a time-triggered
OSEKtime system and the two different approaches to combining an event-triggered
architecture with time-based activations. It also seamlessly integrates with the
existing event-triggered Sloth, enabling large parts of the implementation to be
shared between the different domains and modes of operation.

It has been shown how the auxiliary time-based mechanisms in OSEKtime and
AUTOSAR OS can be realized with individual timer cells as well. For deadline
monitoring, an alternative solution that reduces the number of required timer cells
has been presented.

Overall, the design achieves the goal of avoiding software efforts at run-time to
maintain the configured behavior as much as possible.

20

Chapter 5

Implementation

This chapter introduces the TriCore TC1796 microcontroller platform, which has
been selected for the reference implementation of Sloth on Time. A detailed
insight into its general purpose timer array module is provided, while focusing on
the components required for the implementation. It then proceeds to the specifics
of arranging and configuring the array in compliance with the timer cell abstraction
introduced in chapter 3, reflecting the design described in chapter 4.

5.1 TriCore TC1796
Infineon’s TriCore architecture is a single-core, 32 bit, RISC design that is specifically
oriented towards embedded real-time systems in the automotive domain. The choice
for the TC1796, a controller from the TriCore family, is based on two main reasons.
First, the existing reference implementation for the Sloth system is already tailored
to this platform, eliminating the need for additionally porting the code base to new
hardware. Secondly, it fulfills all requirements for Sloth on Time formulated in
chapter 3, as will be seen in this section.

Featured as an on-chip peripheral is a sophisticated timer module called general
purpose timer array (GPTA), which contains several types of timer cell arrays
and can trigger a total of 92 different interrupt requests, or service request nodes,
in TriCore terminology. The following subsection provides a detailed insight into
structure and functionality of the GPTA, with an emphasis on the components
that are relevant to the implementation of Sloth on Time.

On the top level, the GPTA module consists of three blocks, two virtually
identical GPTA kernels, denoted GPTA0 and GPTA1, and one extra kernel called
LTCA2, which contains some of the same elements as the GPTAn kernels and is
similarly structured but lacks some components and functionality. Figure 5.1 shows

21

Signal
Generation Unit

GT1

GT0

FPC5

FPC4

FPC3

FPC2

FPC1

FPC0

PDL1

PDL0

DCM2

DCM1

DCM0

DIGITAL
PLL

DCM3

GTC02
GTC01
GTC00

GTC31

Global
Timer

Cell Array

GTC03

GTC30

C
lo

ck
 B

us

GPTA0

Clock Generation Unit

Signal
Generation Unit

GT1

GT0

FPC5

FPC4

FPC3

FPC2

FPC1

FPC0

PDL1

PDL0

DCM2

DCM1

DCM0

DIGITAL
PLL

DCM3

GTC02
GTC01
GTC00

GTC31

Global
Timer

Cell Array

GTC03

GTC30

C
lo

ck
 B

us

GPTA1

Clock Generation Unit

Clock
Conn.

 Clock Distribution Unit
fGPTA

fGPTA

LTC02
LTC01
LTC00

LTC63

Local
Timer

Cell Array

LTC03

LTC62

LTC02
LTC01
LTC00

LTC63

Local
Timer

Cell Array

LTC03

LTC62

LTC02
LTC01
LTC00

LTC63

Local
Timer

Cell Array

LTC03

LTC62

LTCA2

I/O Line Sharing UnitI/O Line Sharing Unit

I/O Line
Sharing Unit

Interrupt Sharing Unit Interrupt Sharing Unit
Interrupt

Sharing Unit

 Clock Distribution Unit

Figure 5.1: Overview of the GPTA module in a TC1796 microcontroller. Taken
from the TriCore User’s Manual [4].

a block diagram of the complete assembly. Each GPTAn is divided into a clock
generation unit (CGU), a signal generation unit (SGU), an I/O line sharing unit
and an interrupt sharing unit. Following the flow of information, the global GPTA
clock signal fGP T A is first fed into the clock generation unit which offers many
mechanisms to manipulate the signal into multiple derived clock signals that are
eventually distributed among the components of the signal generation unit. The
SGU is split up into two arrays of timer cells: one array of 32 global timer cells
(GTCs) with two global timers (GTs), and one array of 64 local timer cells (LTCs).

A special role is taken by the I/O line sharing unit. Being interconnected with
all other components of the GPTA kernel, it provides the means for flexibly routing
the various output lines from the CGU and the individual local and global timer
cells to the respective input lines of these units.

Since each of the two GPTA kernels has a total of 111 service request sources—

22

that is components that are able to trigger an interrupt—but the entire GPTA
module only represents 92 distinct service request nodes, the interrupt sharing unit
combines up to five sources together into one group and attaches a single service
request node to each group. In consequence, the actual request sources are not
discernible in software but can merely be attributed to any of up to five units. In
the case of local timer cells, such a group is consistently composed of four LTCs.

Global Timer Cells

Each GTC is equipped with a 24-bit register and receives two timer values of
the same width from the two global timers the array of GTCs is prefaced with.
Available output signals are one line to the output multiplexer, two lines to the
next GTCs within the array, and a service request line that allows to trigger an
interrupt. Analogous to the two output lines going into the next GTC, each cell
naturally receives the same two input lines from the previous one, in addition to
the regular input signal coming from the input multiplexer. Using the available
input data, a global timer cell can operate in two different modes:

Capture Mode: On an input event, save the current value of the selected global
timer to the internal register

Compare Mode: Compare a current global timer value with the internal register
and generate an output signal or interrupt if the set condition is true.

Local Timer Cells

Unlike GTCs, local timer cells are not connected to a bus of global timer values,
but instead maintain an internal timer counter using their internal 16-bit register.
Depending on the mode of operation, a timer increase is triggered by an external
event, received either from the previous cell in the array or from the input multiplexer
(i.e., an actual clock), an external device or a global timer Cell from within the
same GPTA module. Figure 5.2 indicates the several input signals and a 16-bit
wide register value each cell receives from the previous one. In order to facilitate
signaling in both directions along the array, an event line going from each cell to
the previous one is also available. This interconnected layout makes it possible for
a group of cells to cooperate in order to perform tasks that are more complex than
what a single cell is able to do. Local timer cells offer several modes of operation,
partly resembling the modes of global timer cells:

Capture Mode: On an input event, save the 16-bit value currently read from
the preceding cell into the local register.

23

Local Timer Cell LTC00
YO

YI EO

EI

TI

TO

LTC00IN
SQT00
LTC00OUT

Local Timer Cell LTC01
YO

YI EO

EI

TI

TO

LTC01IN
SQT01
LTC01OUT

0x0000 0

Figure 5.2: Structure of a local timer cell, showing the relations between neighboring
cells with the LTC array

Compare Mode: Compare the current value read from the preceding cell with
the internal register and generate an output signal or interrupt if both values
match

Timer Mode: Increase the internal register value on a certain input signal
and optionally generate an output signal whenever an overflow occurs (Free
Running Timer Mode). In Reset Timer Mode, it resets its counter to 0xFFFF
if an event is received from the adjacent (next) cell—for example, if that cell
is operated in compare mode and detected matching register values.

Each mode allows for a detailed configuration of what will exactly qualify as an
input event, what kind of output event will be generated, or if certain behaviors of
the particular mode are enabled.

5.2 Timer Cell Implementation
Considering the different modes of operation offered by a local timer cell, it quickly
becomes clear that a single cell is not able to implement the behavior required for
Sloth on Time timer cells. One LTC can either represent an incrementing counter
but then lacks the ability to trigger interrupts at arbitrary intervals. Alternatively,

24

it can hold a fixed value that might represent an interval length, which is pointless
without a current clock counter to compare it with.

The setup developed for Sloth on Time therefore instruments two adjacent
local timer cells to act together in order to perform as a fully functional timer cell.
In alignment with the groups of four defined by the Interrupt Sharing Unit, the
first cell is set to operate in Reset Timer mode. Interrupt request generation when
wrapping around is disabled and the I/O multiplexer is set to feed an unmodified
clock signal to its input line. The internal register of the first cell represents the
counter value in the abstract timer model.

The second cell is put into Compare Mode and holds the static compare value in
its internal register. On each timer update happening in the first cell, the internal
register is compared to the value read from the first cell. If a match is detected,
the second cell triggers an interrupt and prompts the first cell to reset its internal
value to 0xFFFF. After the wrap around in the subsequent cycle, the first cell will
then restart counting upwards from zero, repeating the cycle. Taking into account
the extra cycles required for resetting and wrapping around, this setup triggers an
interrupt precisely every c + 2 clock ticks, where c is the value written to the second
cell’s internal register.

In order to allow the setup to continue counting and resetting along with an
entire schedule table but disable the generation of interrupt requests, the request
enable bit (REN) of the second cell can be cleared. This ensures undisrupted
operation of the two cells while prohibiting any further interrupt requests.

For the implementation of the cell enable bit of the abstract timer cell model,
an inconspicuous detail of the local timer cells is exploited. Given the fact that the
cells are driven by the full speed GPTA module clock, the cells are by construction
restricted to process their input signal in level-sensitive mode. With the sampling
rate matching the frequency of the input signal, the timer cell ultimately senses a
constantly high level on its input line. Consequently, the bit controlling the choice
of which level the cell is sensitive to—either active high or active low—directly
controls if the timer is incrementing or halting.

Table 5.1 shows the final configuration of both LTCs employed for one functional
timer cell. Full documentation of all fields can be found in the TriCore User’s
Manual [4, p. 24-180 ff.].

As an additional feature that goes beyond the abstract timer cell model, the
one-shot mode (OSM) field of local timer cells can be used for implementing non-
repeating schedule tables. When set, this bit causes the automatic deactivation of
the cell at the next internal event. Applying this to all cells of a schedule table
that is configured to be non-repeating, yields an arrangement that will halt after
performing a single dispatcher round without the need of explicitly stopping the
table from software.

25

Reset Timer Cell
MOD = 3 → reset timer mode
OSM = 0 → no one-shot mode
REN = 0 → no service request on internal event
AIL = 1 → input signal is active low (cell is initially paused)
ILM = 1 → level-sensitive mode

Compare Cell
MOD = 1 → compare mode
OSM = 0 → no one-shot mode
REN = 0 → no service request on internal event
SOL = 1 → compare operation enabled on low input level
SOH = 1 → compare operation enabled on high input level
EOA = 0 → enable local events

Table 5.1: LTC configuration values of all relevant bits for two adjacent local timer
cells forming a functional timer cell in Sloth on Time

5.3 Coherent Cell Control

Although controlling a timer cell comes as inexpensive as a single write to the
memory-mapped control register of the corresponding LTC, it can entail a significant
amount of time when a larger group of cells needs to be switched off or on. The
system services for starting and stopping schedule tables, for instance, require such
management of all cells used for the particular table at once. Furthermore, initiating
timer cells in a sequential manner introduces an unintended offset between their
counter values, potentially decreasing the accuracy of time-triggered actions.

As a solution for coherently controlling multiple timer cells at once, a setup has
been developed that involves the use of global timer cells. Given that the reset
timers used in the LTC array do not necessarily require a clock signal on their
input line, the I/O sharing unit can as well be configured to connect these cells
to the output line of some unit other than a clock. If this signal is then similarly
controllable by a simple write into a memory-mapped register, it could be routed to
multiple timer cells at once, thus taking the role of a global switch for these cells.

However, the structure of the I/O multiplexing facility imposes a few restrictions
on which connections between cells can be established. For instance, it is not
possible to route the output signal of an LTC to the input signal of another LTC.
In consequence, employing an LTC as a switching cell is ruled out, which leads to

26

the choice of Global Timer Cells. Additionally, although the output line of one
GTC may be routed to the input ports of several LTCs, it cannot be routed to
all LTCs but is confined to a certain subset. Besides requiring special attention
when configuring an application in order to meet these restrictions, it also limits
the number of LTCs involved in such a setup to two groups of 8 consecutive LTCs.
Due to the previously shown grouping of four cells into one service request node,
this ultimately leaves four functional time cell assemblies to be connected to one
GTC.

Another obstacle is the fact that global timer cells do not offer a direct way to
set the state of their output line from software, thus requiring a bit of a workaround.
According to the specified behavior of a GTC, the output signal is determined
by the output control mode (OCM) field. This 3-bit vector allows to select if and
how the output signal is manipulated whenever an internal cell event occurs. In
combination with the output immediate action (OIA) bit, which triggers an internal
event when written, the GTC output state can eventually be controlled in two
steps. First, the OCM is set to either „output line is forced to 0” or „output line is
forced to 1”. Then, by setting the OIA bit, the selected action is applied, resulting
in the output line being set accordingly.

While this setup provides Sloth on Time with the desired functionality
of a global switch for multiple timer cells it is restricted by the aforementioned
constraints of the I/O sharing unit. Consequently, each schedule table configured
to make use of this feature is limited to a maximum number of four expiry points.

5.4 Summary
This chapter has shown how the TriCore TC1796 is a suitable hardware platform
for implementing Sloth on Time. It was shown, how the arrays of local timer
cells in its general purpose timer array can be instrumented to perform as specified
by the timer cell model. Additionally, a setup could be devised that allows the
control of multiple cells in groups, switch them on and off in a single memory-write
instruction. Applying the Sloth on Time design to the low-level configuration of
the timer cells as developed in this chapter, yields a fully functioning Sloth on
Time system that meets the specifications of OSEKtime and AUTOSAR OS.

27

Chapter 6

Evaluation

This chapter covers the evaluation of the Sloth on Time implementation along
with a comparison to ProOSEK/Time and tresosECU, two commercially available
implementations of OSEKtime and AUTOSAR OS, respectively. First, the setup
used for obtaining quantitative measurements of overheads and latencies is intro-
duced in section 6.1. section 6.2 then provides the results of this analysis, followed
by qualitative observations made when examining the run-time behavior of each
implementation in section 6.3. The chapter concludes with a discussion of these
results in section 6.4.

6.1 Evaluation Setup
In order to assess the performance of Sloth on Time, a TriCore TC1796 evaluation
board with a Lauterbach PowerTrace unit attached has been used for benchmarking.
Besides providing detailed execution traces for observing the preemption patterns
in various settings, the device also features built-in functionality for collecting com-
prehensive statistics on the run-time behavior. Given a benchmarking application
and predefined measurement points in the form of code symbols, the scripting
interface of the PowerTrace software front end TRACE32 allows to directly obtain
the average number of cycles spent within the specified code range. In cases where
measurements could be automated this way, a minimum number of 1,000 samples
was used in order to get reliable readings. The system was set up to operate both
the CPU and the GPTA module at a clock frequency of 50 MHz. Undesirable
caching effects were prevented by loading both code and data into the internal
RAM, which is not cached.

For the comparison with Sloth on Time, two commercially available solutions
supporting the TriCore TC1796 platform have been selected: ProOSEK/Time as an

29

OSEKtime implementation, and tresosECU as an AUTOSAR OS implementation.
Both systems are a product offered by Elektrobit Automotive and are used by
well-known manufacturers such as BMW and VW.

6.2 Quantitative Evaluation
The following section is divided into five parts. The first part addresses the results
of the quantitative evaluation of purely time-triggered operation in Sloth on Time
compared to ProOSEK/Time. It is followed by the results for mixed operation, with
comparisons to both ProOSEK/Time and tresosECU. After that, measurements
regarding deadline monitoring, execution budgeting, and the performance of related
system services are provided.

6.2.1 Time-Triggered Operation
Looking at purely time-triggered operation, there are two measurable system
overheads occurring at run-time. For one, the latency of activating a task is
represented by the time that passes between the occurrence of a timer interrupt
corresponding to a scheduled task activation and the moment when the first
instruction of the user-supplied task function is reached. And second, the overhead
of terminating a task and resuming the previously preempted task is obtained
by measuring from the last instruction of the task function up to the first task
instruction running in the restored context.

A simple application consisting of two tasks, with one task preempting the other,
provides both of these transitions. However, special attention needs to be paid
to the measurement of the task termination. Since it is not statically predictable
which instruction of the preempted task will be the first executed after restoring its
context, TRACE32 needs to be instructed to use a range instead of a single code
address as the second checkpoint. In this case, the range needs to cover the entire
code of the preempted task. This of course implies that the task function must not
be left by calling any non-inlined functions at the time it gets preempted.

Figure 6.1 shows the results of this benchmark for Sloth on Time and
ProOSEK/Time, given in numbers of cycles. The third row represents the speed-up
achieved by Sloth on Time compared to ProOSEK/Time. As anticipated, Sloth
on Time only takes the small amount of 14 cycles for both task entry and resuming
the preempted task on termination. With 120 cycles for dispatch, ProOSEK/Time
is 8.6 times slower, due to the conventional approach requiring significant effort to
manage the dispatcher table in software and reconfiguring the system timer. In
contrast, task termination in ProOSEK/Time does not require such actions and

30

Sloth on Time ProOSEK/Time Speed-Up
Time-triggered dispatch 14 120 8.6
Terminate 14 38 2.7

Figure 6.1: Run-time overhead for task dispatch and termination in purely time-
triggered OSEKtime systems, comparing Sloth on Time with ProOSEK/Time
(in number of clock cycles).

therefore only takes 38 cycles, which is, however, still 2.7 times more than in Sloth
on Time.

6.2.2 Mixed Operation
For combining the elements of time-triggered and event-triggered operation in one
application, Sloth on Time implements two different approaches. On the one hand,
there is the OSEK/OSEKtime solution, which stacks a time-triggered OSEKtime
system on top of an event-triggered OSEK system. This is also what is offered by
ProOSEK/Time in such way that it allows the integration of the closely related but
independently marketed event-triggered ProOSEK system. And on the other hand,
there is the approach of the AUTOSAR OS standard, which is essentially an event-
triggered system allowing time-triggered task activations. This is implemented in
Sloth on Time by omitting the priority space separation and subjecting all tasks
to priority-based scheduling. For this variant, the performance of Sloth on Time
will be compared to the commercial AUTOSAR OS implementation tresosECU.

OSEKtime

Similar to the benchmark for time-triggered operation, the relevant overheads are
the cycles required for time-triggered dispatch and termination with dispatch of
the preempted task. In the mixed-system case, however, multiple variants of task
transitions arise. Depending on the conformance class, OSEK systems support two
types of tasks. Basic tasks are restricted to run-to-completion semantics, while
extended tasks support blocking at run-time in order to wait for an event to be set
by another task. For Sloth, the support for extended tasks has been added in the
Sleepy Sloth proposal [5]. The Sleepy Sloth design introduces more complex
prologues and epilogues for the tasks in an application with support for extended
tasks, leading to increased overheads in these cases.

In the benchmarking application for mixed OSEK/OSEKtime operation, this cir-
cumstance is reflected in additional measurements, such that each type of preempted

31

Preempted State Sloth ProOSEK Speed-Up

Time-triggered task dispatch idle loop 14 120 8.6
Time-triggered task dispatch basic task 14 120 8.6
Time-triggered task dispatch extended task 30 120 4.0

Task termination with dispatch idle loop 14 38 2.7
Task termination with dispatch basic task 14 38 2.7
Task termination with dispatch extended task 30 38 1.3

Table 6.1: Latencies of time-triggered task activation and dispatching in time-
triggered OSEKtime systems running on top of an event-triggered OSEK system,
comparing Sloth on Time with ProOSEK/Time (in number of clock cycles).

control flow is measured separately. Table 6.1 shows the results and along with an
indication for each test case which kind of transition was measured. The results for
Sloth on Time in all cases of basic task transitions show the same 14 cycles of
overhead as measured before, for both dispatching and terminating time-triggered
tasks. The extended task cases show additional 16 cycles for both dispatch and
termination in Sloth on Time. ProOSEK/Time exhibits 120 cycles for dispatch
and 38 for termination as previously in all three cases, since in traditional designs
the task type has no effect on the complexity of these procedures. The speed-ups
of Sloth on Time against ProOSEK range between 4.0 and 8.6 in a basic system
and between 1.3 and 2.7 in an extended system.

AUTOSAR OS

In AUTOSAR OS, time-based activations can affect both basic and extended tasks.
Therefore, the benchmarking application for this scenario covers three types of
time-triggered activations: a basic task activation in an otherwise idle system,
a basic task preempting another basic task, and an extended task preempting
another extended task. Table 6.2 lists the measurement results for these cases in
comparison to the same scenario in tresosECU. It is revealed that it has no effect on
the overheads in tresosECU whether the involved tasks are of the basic or extended
type; it takes 2,400 cycles to activate and dispatch, and 532 cycles to terminate.
However, in an otherwise idle system, the overheads reduce to 2,344 for activation
with dispatch and 382 for termination. Sloth on Time achieves the regular 14
cycles in all cases except for the extended task cases, in which the more complex
prologues and epilogues cause overheads of 77 cycles for the activation, and 88
cycles the termination. Overall, Sloth on Time achieves speed-ups between 31.2
and 171.4 for task activations and 6.0 to 38.0 for task terminations.

32

Sloth on Time tresosECU Speed-Up

Time-triggered task act. with dispatch
idle loop → basic task

14 2,344 167.4

Time-triggered task act. with dispatch
basic task → basic task

14 2,400 171.4

Time-triggered task act. with dispatch
extended task → extended task

77 2,400 31.2

Task termination with dispatch
basic task → idle loop

14 382 27.3

Task termination with dispatch
basic task → basic task

14 532 38.0

Task termination with dispatch
extended task → extended task

88 532 6.0

Table 6.2: Latencies of time-triggered task activation and dispatching in event-
triggered AUTOSAR OS systems, comparing Sloth on Time with tresosECU (in
number of clock cycles).

6.2.3 Deadline Monitoring

Enabling deadline monitoring in the application configuration extends the task
prologues and epilogues with additional code for enabling and disabling deadline
cells, leading to increased overheads. As presented in section 4.4, Sloth on
Time offers two different approaches to managing timer cells used for deadline
monitoring. The solution that uses individual deadline cells is expected to entail
linearly increasing overheads corresponding to the number of deadlines. With
task-wise multiplexing of a single cell, on the other hand, the additional overheads
should be constant regardless of the number of deadlines.

The measurements listed in Table 6.3 reveal that the anticipated linear increase
in the first method settles at around 10 cycles per deadline cell. The resulting
overhead for a time-triggered dispatch of a task with four deadlines therefore
amounts to 44 cycles; the same applies to its termination.

In contrast, the approach of multiplexing all deadlines of a task onto a single
cell entails no additional overhead at all for the task entry, and a fixed increase of
16 cycles on termination. This means, that even in the case of a single deadline
per task, the task-wise multiplexing method is the preferable variant in terms of

33

Sloth on Time ProOSEK/Time Speed-Up

Time-triggered (TT) dispatch 14 120 8.6
Terminate 14 38 2.7

TT dispatch w/ 1 deadline 26 120 4.6
TT dispatch w/ 2 deadlines 34 120 3.5
TT dispatch w/ 3 deadlines 44 120 2.7
Terminate w/ 1 deadline 24 38 1.6
Terminate w/ 2 deadlines 34 38 1.1
Terminate w/ 3 deadlines 44 38 0.9

TT dispatch w/ muxing deadlines 14 120 8.6
Terminate w/ muxing deadlines 30 38 1.3

Table 6.3: Run-time overhead of time-triggered task dispatch and termination with
deadline monitoring enabled, comparing Sloth on Time with ProOSEK/Time
(in number of clock cycles).

total overhead introduced to both the prologue and the epilogue of the affected
task. ProOSEK/Time, in comparison, does not exhibit any effect on overheads by
enabling deadlines in the application.

6.2.4 Execution Budgeting

As shown in section 4.5, the execution budgeting mechanism of AUTOSAR OS is
approached in Sloth on Time by enhancing the prologues and epilogues with
instructions to control dedicated cells, which are each responsible for accounting
the spent budget of a particular task. In order to measure the overhead caused
by this, a benchmarking application is employed that includes synchronous task
activations using the ActivateTask() and ChainTask() system services, as well
as task termination with TerminateTask(). Each of these test cases is measured
beginning from the service call and ending at the first instruction of the subsequently
dispatched task.

The results listed in Table 6.4 reveal that enabling execution budgeting in
Sloth on Time increases the run-time overhead of task switches by 26 to 52 cycles.
In comparison, tresosECU exhibits additional overhead that is between 13 and 26
times larger than those of Sloth on Time. The total task switch overheads in
tresosECU with execution budgeting enabled range between 1209 and 1544 cycles,
whereas Sloth on Time requires between 40 and 118 cycles of overhead.

34

Sloth on Time budgets disabled budgets enabled ∆
ActivateTask() with dispatch 60 91 31
TerminateTask() with dispatch 14 40 26
ChainTask() with dispatch 66 118 52
tresosECU budgets disabled budgets enabled ∆
ActivateTask() with dispatch 768 1476 690
TerminateTask() with dispatch 536 1209 673
ChainTask() with dispatch 856 1544 688

Table 6.4: Run-time overhead of task switches with and without execution budgeting
enabled in Sloth on Time compared to tresosECU (in number of clock cycles).
The last column provides the difference between the first and second column.

6.2.5 System Services

For the use in applications that require more flexibility at run-time than con-
figuring a set of automatically started schedule tables, AUTOSAR OS specifies
two system services for starting and stopping schedule tables at run-time, Start-
ScheduleTableRel() and StopScheduleTable(). The first one takes an argument
controlling the initial delay between calling the system service and the point the
schedule table is started. The specification of such a delay or any situation when
a previously stopped table is restarted makes it necessary to partially repeat the
initialization procedure on the cells allocated by this table. While the configu-
ration bits of the cell remain intact during the execution, initial counter values
need to be reset and possibly adjusted according to the initial delay passed to the
StartScheduleTableRel() call. In the test case created for this measurement, the
started and stopped schedule table contains four expiry points and—specifically
in the configuration of Sloth on Time—is controlled by a global timer cell for
enabling and disabling cell operations. Table 6.5 provides the results yielded in
this benchmark, showing a speed-up of 10.2 for StartScheduleTableRel() and
37.6 for StopScheduleTable() compared to tresosECU. Note, however, that the
costs of StartScheduleTableRel() in Sloth on Time linearly increase with the
size of the involved schedule table if no common control switch for the entire is
employed.

35

Sloth on Time tresosECU Speed-Up
StartScheduleTableRel() 108 1,104 10.2
StopScheduleTable() 20 752 37.6

Table 6.5: Overhead of time-triggered system services in event-triggered AUTOSAR
OS systems, comparing Sloth on Time with tresosECU (in number of clock
cycles).

6.3 Qualitative Evaluation

Aside from evaluating the performance of Sloth on Time on the basis of micro
benchmarks, a few important qualitative observations could be made as well
when examining the run-time behavior of Sloth on Time, tresosECU, and
ProOSEK/Time with the help of a hardware tracing unit.

6.3.1 Avoiding Unnecessary IRQs

In section 4.4, the Sloth on Time approach to OSEKtime deadline monitoring
was presented, which is based on the idea of canceling the expiry of a given deadline
as soon as the corresponding task has terminated and therefore met its deadline.
Traditional designs usually perform deadline monitoring by disrupting the current
control flow at the point of deadline expiry, checking if the monitored task is
running, and resuming the preempted context. In order to verify this assumption
and evaluate the impact, a test scenario is laid out in which three tasks are scheduled
for execution, one after the other. The first two tasks (Task1 and Task2) have
assigned deadlines that expire shortly after the point when Task3 is planned to be
executed. The user-code of Task3 is made to run long enough to ensure that the
expiry of both deadlines coincides with the execution of Task3.

Figure 6.2 shows the execution traces obtained from this scenario in both Sloth
on Time and ProOSEK/Time. In the trace for Sloth on Time, the execution
of Task1 and Task2 is seen, followed by an uninterrupted completion of Task3.
The deadline cells allocated for Task1 and Task2 are successfully deactivated upon
termination of both tasks and do not trigger an IRQ during the execution of Task3.
In ProOSEK/Time, however, Task3 is seen to be interrupted twice in order to
perform the deadline checks for Task1 and Task2. Manual examination of the trace
reveals that these interrupts amount to 95 cycles of overhead each and constitute a
significant disturbance of the execution of an otherwise uninvolved task.

36

(a) Sloth on Time

(b) ProOSEK/Time

Figure 6.2: Comparison of execution traces of an OSEKtime application with two
deadlines in (a) Sloth on Time and (b) ProOSEK/Time. Non-violated deadlines
of Task1 and Task2 interrupt the execution of Task3 in ProOSEK/Time, but not
in Sloth on Time.

6.3.2 Avoiding Priority Inversion

When examining the traces of tresosECU, it can be observed that high-priority
tasks are routinely preempted by timer interrupts at activation points of tasks with
a lower priority. Figure 6.3 gives an example of such a scenario, represented by
traces of Sloth on Time and tresosECU. The corresponding schedule table is
set up to first activate the high-priority task Task3 and shortly afterwards—close
enough to the activation of Task3 to ensure overlapping—trigger two tasks of lower
priority, Task2 and Task1. The first trace, depicting the run-time behavior of
Sloth on Time, shows how this setup correctly pans out to a full completion of
Task3, then Task2, then Task1. In tresosECU, however, an interrupt originating
from the system timer can be seen at the time of activation of both Task1 and
Task2, disrupting Task3 in its execution for 2,075 cycles each time. This undesirable
behavior of keeping a high-priority task from running due to the execution of code
on behalf of a low-priority task is known as rate-monotonic priority inversion [6].
Sloth on Time manages to prevent this phenomenon by its fundamental design
of letting the hardware make the scheduling decisions. Instead of requiring code
execution on the CPU to decide if a planned task activation will lead to dispatching

37

(a) Sloth on Time

(b) tresosECU

Figure 6.3: Execution trace revealing rate-monotonic priority inversion in tresosECU
occurring on time-triggered activation of lower-priority tasks. The trace of the same
dispatcher table in Sloth on Time shows no interruption of Task3.

the task as well, time-triggered activations merely set the corresponding interrupt
pending bit and leave it to the IRQ arbitration to decide on interrupting the CPU
according to the current execution priority.

6.4 Discussion
The evaluation of Sloth on Time has shown that the approach and design is very
beneficial towards the system overhead and the latencies involved in time-triggered
operation. It has also shown that mechanisms that go beyond time-triggered
scheduling can be efficiently realized in Sloth on Time. For deadline monitoring
it could be observed that overheads are introduced at different points in Sloth on
Time compared to ProOSEK/Time. While Sloth on Time requires additional
efforts in task epilogues but avoids interrupts for non-violated deadlines, deadline
monitoring in ProOSEK/Time does not change the performance of task switches
but entails interrupts for verifying task states. These interrupts are not needed by
the application semantics and were shown to trade significantly more overhead to
the interrupted task than deadline monitoring in Sloth on Time does.

The comparison of the two implementation alternatives for deadline monitoring
in Sloth on Time has also revealed that employing task-wise multiplexing is

38

practically always beneficial towards the overall performance. Although in the case
of a single deadline, the overhead added to the task epilogue is smaller without
task-wise multiplexing, including the prologue overhead in the comparison shows
that the task-wise multiplexing method trades less overhead in total, even for a
single deadline per task. A remaining drawback of this variant is the additional
demand in memory for keeping track of the current position in the offset look-up
table, amounting to one 8-bit value per task.

Despite the superior performance compared to traditional implementations,
the Sloth on Time design has its limitations. Due to the complexity of a
time-triggered application directly relating to the demand in hardware units, the
hardware requirements of the application itself compete with the demands of the
operating system. In consequence, Sloth on Time may not be applicable in
scenarios in which the majority of timer cells is already required for purposes of
the application.

Further limitations stem from minor details of the hardware platform but are still
propagated up to the configuration level in a way that is not notable in traditional
software-based systems. For instance, the 16-bit width of counter registers available
in the local timer cells of the TriCore platform imposes a limit on the length of
dispatcher rounds and the amount of initial delay when starting schedule tables at
run-time. However, when sacrificing timer resolution is acceptable, this could be
compensated with the use of a clock prescaler in the GPTA.

39

Chapter 7

Related Work

There is only little work so far that has focused on improving time-triggered
scheduling by hardware assistance. While this might stem from the generally simple
and straight-forward implementations of such schedulers [7], there has been ample
research on efficient software-based timer abstractions, nonetheless.

Soft timers [8] aim to reduce the overall timer interrupt load by performing
timer callbacks on opportunities such as traps and system calls instead of meeting
the exact time of expiry. At the end of each system call, page fault handler, etc.,
the system checks for due timer events and executes the associated handlers, saving
the costs of a context switch as it would happen on a separate hardware timer
interrupt. The random uncertainty of delaying the timer event past its scheduled
expiry is bounded by a periodic hardware interrupt checking for overdue events.
As an advantage of this design, the frequency of these periodic interrupts can be
lowered, while still maintaining high timer granularity in the average case.

Adaptive timers [9] focus on optimizing the choice of timeout values by observing
the timer behavior at run-time and adjusting the timeout values accordingly via a
continuous feedback loop. Instead of improving the underlying implementation of
timers, this can help reduce the amount of timer events at their source.

The idea of hashed and hierarchical timing wheels [10] addresses the data
structures used for maintaining the set of timers. It proposes to perform a variation
of bucket sorting in which each bucket covers a larger range of values, such that the
farther in the future a timer will expire, the coarser it is sorted. With time moving
forward, the timer events are moved to buckets of finer granularity, effectively
implementing an incremental sorting mechanism. This way, less effort of sorting
all timer events by their expiry is wasted for timers that are prematurely canceled,
which is often the case, for example on busy networked servers. This design has
been adopted by the timer implementation of the Linux kernel [11].

41

However, the assumptions of these concepts are that 1) software timers inevitably
need to be multiplexed due to the limited availability of hardware timers and that
2) timers and expiry points are a set up dynamically at run-time instead of being
statically predefined and that 3) reprogramming hardware timers is costly and
needs to be avoided as much as possible [12]. With the availability of timer cells
in large arrays on current 32-bit microcontroller platforms, the first assumption
does no longer universally apply. While the second assumption holds for general
purpose operating systems, it is not valid for time-triggered real-time operation
systems, which rely on statically configured schedules with only little flexibility at
run-time. Both of these facts allow the Sloth on Time concept to disregard the
third assumption by distributing the timer objects of the operation system among
dedicated hardware timer cells, eliminating the need for reprogramming timers at
run-time.

42

Chapter 8

Conclusion

In traditional designs for time-triggered real-time systems, the maintenance of a
static table for time-based task activations is usually implemented by instrumenting
a hardware timer in a fashion that multiplexes the various software timers onto this
single timer. In such systems, the effort required to manage the schedule in software
and reconfigure the hardware timer after each event constitutes the majority of
overhead consumed by the operation system.

This thesis proposed a novel approach to implementing a time-triggered archi-
tecture that aims at minimizing software overhead and latencies. It has been shown
that, by making use of hardware timer cells available in large arrays on modern
microcontrollers, the overhead of managing timers in software at run-time can be
eliminated. Instead, all timers and time-based mechanisms on an application are
mapped to individual timer cells, which are preconfigured during the initializa-
tion phase and autonomously maintain a planned schedule at run-time without
the need for software intervention. The devised system not only facilitates the
time-based task activation mechanisms specified by the OSEKtime and AUTOSAR
OS standards but also incorporates additional timer mechanisms such as deadline
monitoring and execution budgeting.

A reference implementation of this design for the TriCore TC1796 platform
has been presented and compared in both quantitative and qualitative aspects
to two commercial implementations. It has shown to achieve significantly lower
overheads as well as exhibit beneficial run-time behavior with regards to unnecessary
interrupts and priority inversion.

During the development of the Sloth on Time design and implementation, the
TriCore TC1796 has shown to be very well suited as a reference platform for this
novel concept. Features such as individually controllable IRQ enable bits per timer
cell, and memory-mapped interface for programming the cells in general proved to

43

be beneficial towards a concise implementation and low overhead when controlling
the cells. Despite the close connection between the design and the architecture of the
particular hardware platform employed for this thesis, the Sloth on Time concept
should be well adoptable to other platforms—for example, the Freescale MPC55xx
and MPC56xx embedded PowerPC families—and future platform developments,
which possibly differ a lot from the TriCore TC1796 in their design of timer array
modules. Adaptations to new platforms potentially require modifications to the
assumed timer cell model and subsequently might suggest more abstraction on the
application configuration level as well. For instance, the allocation of timer units
could be handed to a dynamic mapping procedure that automatically determines
a suitable allocation of hardware resources according to the given schedule and
configuration of the application.

44

Bibliography

[1] Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-
Preikschat. Sloth: Threads as interrupts. In Proceedings of the 30th IEEE
International Symposium on Real-Time Systems (RTSS ’09), pages 204–213.
IEEE Computer Society Press, December 2009.

[2] OSEK/VDX Group. Time-triggered operating system specification 1.0. Tech-
nical report, OSEK/VDX Group, July 2001. http://portal.osek-vdx.org/
files/pdf/specs/ttos10.pdf.

[3] AUTOSAR. Specification of operating system (version 4.1.0). Technical report,
Automotive Open System Architecture GbR, October 2010.

[4] Infineon Technologies AG, St.-Martin-Str. 53, 81669 München, Germany.
TC1796 User’s Manual (V2.0), July 2007.

[5] Wanja Hofer, Daniel Lohmann, and Wolfgang Schröder-Preikschat. Sleepy
Sloth: Threads as interrupts as threads. In Proceedings of the 32nd IEEE
International Symposium on Real-Time Systems (RTSS ’11), pages 67–77.
IEEE Computer Society Press, December 2011.

[6] Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz. Predictable
interrupt management for real time kernels over conventional PC hardware.
In Proceedings of the 12th IEEE International Symposium on Real-Time and
Embedded Technology and Applications (RTAS ’06), pages 14–23, Los Alamitos,
CA, USA, 2006. IEEE Computer Society Press.

[7] Jane W. S. Liu. Real-Time Systems. Prentice Hall PTR, Englewood Cliffs, NJ,
USA, 2000.

[8] Mohit Aron and Peter Druschel. Soft timers: Efficient microsecond software
timer support for network processing. ACM Transactions on Computer Systems,
18(3):197–228, August 2000.

45

http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf
http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf

[9] Simon Peter, Andrew Baumann, Timothy Roscoe, Paul Barham, and Rebecca
Isaacs. 30 seconds is not enough! A study of operating system timer usage. In
Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer
Systems 2008 (EuroSys ’08), pages 205–218, New York, NY, USA, March 2008.
ACM Press.

[10] G. Varghese and T. Lauck. Hashed and hierarchical timing wheels: Data
structures for the efficient implementation of a timer facility. In Proceedings of
the 11th ACM Symposium on Operating Systems Principles (SOSP ’87), pages
25–38, New York, NY, USA, 1987. ACM Press.

[11] Ingo Molnar. kernel/timer.c design. http://lkml.org/lkml/2005/10/19/46,
2005.

[12] Antônio Augusto Fröhlich, Giovani Gracioli, and João Felipe Santos. Periodic
timers revisited: The real-time embedded system perspective. Computers &
Electrical Engineering, 37(3):365–375, 2011.

46

http://lkml.org/lkml/2005/10/19/46

List of Figures

2.1 The model for time-triggered activation and deadlines in the OSEKtime
specification [2]. In this example of a dispatcher table, task activations
are depicted by circles, their deadlines by crosses. Later task activations
preempt currently running tasks, yielding a stack-based execution pattern. 4

3.1 The abstract model for available timer components on modern micro-
controller platforms, introducing the terminology used in this thesis. . . 9

4.1 Example of the timer cell configurations for a dispatcher table with two
time-triggered activations. The initial counter values define the delay of
the first interrupt request, which then is followed by repeated requests
corresponding to the compare value. 13

4.2 Example of the control flow and priority changes in a mixed OSEK/OSEKtime
application in Sloth on Time. The event-triggered task ET1 gets preempted by the
activation of time-triggered task TT1 at t1, which in turn gets preempted by another
time-triggered task (TT2) at t2. Both time-triggered activations are performed by
a high-priority interrupt request whose handler then lowers the CPU priority to
the common execution level of all time-triggered tasks. The priority level does not
change when TT2 terminates and TT1 is resumed at t3. On termination of the only
running time-triggered task TT1 at t4, the event-triggered task ET1 is resumed. . . 16

4.3 Example of an event-triggered application with execution budgeting
enabled. The top graph shows the control flow, the dashed lines indicate
how task activations and terminations effect the starting, resuming and
resetting of the corresponding budget cells. 18

4.4 Illustration of the OSEKtime synchronization mechanism as it is imple-
mented in Sloth on Time. The synchronization cell at the end of the
dispatcher round detects a clock drift, decreases the counter value of all
cells allocated by the schedule accordingly, thereby shifting the entiry
schedule forward in time. 19

47

5.1 Overview of the GPTA module in a TC1796 microcontroller. Taken
from the TriCore User’s Manual [4]. 22

5.2 Structure of a local timer cell, showing the relations between neighboring
cells with the LTC array . 24

6.1 Run-time overhead for task dispatch and termination in purely time-
triggered OSEKtime systems, comparing Sloth on Time with ProOSEK/-
Time (in number of clock cycles). 31

6.2 Comparison of execution traces of an OSEKtime application with two
deadlines in (a) Sloth on Time and (b) ProOSEK/Time. Non-
violated deadlines of Task1 and Task2 interrupt the execution of Task3
in ProOSEK/Time, but not in Sloth on Time. 37

6.3 Execution trace revealing rate-monotonic priority inversion in tresosECU
occurring on time-triggered activation of lower-priority tasks. The trace
of the same dispatcher table in Sloth on Time shows no interruption
of Task3. 38

48

	Introduction
	The Sloth Concept
	Outline of this Thesis

	Background
	OSEKtime
	AUTOSAR OS

	Platform Considerations
	Platform Requirements
	Timer Cell Model

	Design
	General Design Considerations
	Time-Triggered Operation
	Mixing Time-Triggered and Event-Triggered Operation
	Deadline Monitoring
	Individual Deadline Cells
	Task-Wise Multiplexing

	Execution Budgeting
	Synchronization
	Summary

	Implementation
	TriCore TC1796
	Timer Cell Implementation
	Coherent Cell Control
	Summary

	Evaluation
	Evaluation Setup
	Quantitative Evaluation
	Time-Triggered Operation
	Mixed Operation
	Deadline Monitoring
	Execution Budgeting
	System Services

	Qualitative Evaluation
	Avoiding Unnecessary IRQs
	Avoiding Priority Inversion

	Discussion

	Related Work
	Conclusion
	Bibliography
	List of Figures

