
A Control-Flow-Sensitive Analysis and
Optimization Framework for the KESO

Multi-JVM

Diploma Thesis

submitted by

Christoph Erhardt

born November 14, 1984 in Kronach

Department of Computer Science 4
Distributed Systems and Operating Systems

Friedrich-Alexander University Erlangen-Nuremberg

Advisers:

Dipl.-Inf. Michael Stilkerich
Prof. Dr.-Ing. habil. Wolfgang Schröder-Preikschat

Beginning: October 01, 2010
Submission: March 31, 2011

Ein Kontrollfluss-sensitives Analyse- und
Optimierungs-Framework für die

KESO-Multi-JVM

Diplomarbeit im Fach Informatik

vorgelegt von

Christoph Erhardt

geboren am 14. November 1984 in Kronach

angefertigt am

Department Informatik
Lehrstuhl für Informatik 4 – Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer:

Dipl.-Inf. Michael Stilkerich
Prof. Dr.-Ing. habil. Wolfgang Schröder-Preikschat

Beginn der Arbeit: 01. Oktober 2010
Abgabe der Arbeit: 31. März 2011

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

Erlangen, den 31. März 2011

Abstract
The field of embedded systems is experiencing a trend towards an advancing degree of
integration. As microprocessors become increasingly powerful, more and more applications
are run as tasks on a single microcontroller instead of being deployed separately on different
chips. This development brings along new challenges in terms of safety, security, and
reliability.

The use of hardware memory protection to isolate tasks from each other is often either
not feasible or not desirable. A software-based mechanism can both compensate a missing
and supplement an existing MPU.

KESO is a Java Virtual Machine implementation for embedded systems that provides
constructive memory protection through the use of the strictly type-safe Java program-
ming language. It consists of an ahead-of-time compiler that translates Java bytecode
into C, inserting runtime checks where necessary, and a minimal runtime environment.
KESO applications are configured statically, allowing the compiler to make a number of
assumptions that can be utilized to make the resulting machine code more light-weight
and efficient.

In this thesis, a new analysis framework was developed in order to gather comprehensive
and accurate static information about a program. The analysis works in an inter-
procedural and control-flow-sensitive manner and provides value, type, and reachability
information, among others.
Based on the analysis, a set of optimization passes was implemented that exploit the

collected knowledge to eliminate dead code, statically evaluate predictable expressions,
and eliminate redundant runtime checks. Detailed evaluations of the enhancements made
to the compiler showed that considerable improvements could be achieved in many cases.

Überblick
Im Bereich der eingebetteten Systeme findet ein erkennbarer Trend hin zu einem größer
werdenden Grad an Integration statt. Mit der fortschreitenden Leistungsfähigkeit von
Mikroprozessoren werden in zunehmendem Maße mehrere Anwendungen als Tasks auf
einem einzelnen Mikrocontroller ausgeführt, anstatt jedes Programm auf einem eigenen
Mikrochip auszuliefern. Diese Entwicklung bringt neue Herausforderungen im Bezug auf
Sicherheit und Zuverlässigkeit mit sich.
Der Einsatz von Hardware-Speicherschutz, um Tasks voneinander zu isolieren, ist

oftmals entweder nicht möglich oder nicht wünschenswert. Ein Software-basierter Mechanismus
ist sowohl in der Lage eine fehlende MPU zu ersetzen als auch eine vorhandene zu ergänzen.

KESO ist eine Implementierung der Java Virtual Machine für eingebettete Systeme, die
konstruktiven Speicherschutz durch den Einsatz der strikt typsicheren Programmiersprache
Java bietet. Sie besteht aus einem Ahead-of-Time-Compiler, der Java-Bytecode in C
übersetzt und an den nötigen Stellen Laufzeitüberprüfungen einfügt, und einer minimalen
Laufzeitumgebung. KESO-Anwendungen werden statisch konfiguriert, wodurch es dem
Compiler möglich ist, eine Reihe von Annahmen zu treffen, die sich nutzen lassen, um
den resultierenden Maschinencode schlanker und effizienter zu machen.
Im Rahmen dieser Diplomarbeit wurde ein neues Analyse-Framework entwickelt, um

umfassende und akkurate statische Informationen über ein Programm zu ermitteln. Die
Analyse arbeitet interprozedural und Kontrollfluss-sensitiv und stellt unter anderem
Informationen über Werte, Typen und Erreichbarkeit zur Verfügung.
Aufsetzend auf der Analyse wurde eine Reihe von Optimierungen implementiert, die

das gesammelte Wissen ausnutzen, um toten Code zu entfernen, vorhersagbare Ausdrücke
statisch auszuwerten und überflüssige Laufzeitüberprüfungen zu entfernen. Die detaillierte
Evaluation der am Compiler vorgenommenen Erweiterungen hat gezeigt, dass in vielen
Fällen beträchtliche Verbesserungen erreicht werden konnten.

Contents

1 Introduction 1
1.1 The KESO Multi-JVM . 2

1.1.1 Code Compilation and Execution 2
1.1.2 Basic Architecture . 3
1.1.3 Summary . 4

1.2 Motivation and Goals . 5
1.3 Organization of this Thesis . 5

2 Architecture of the JINO Java-to-C Compiler 7
2.1 Overview . 7
2.2 Compiler Architecture . 8

2.2.1 Frontend . 9
2.2.2 Intermediate Code . 11
2.2.3 Backends . 13

2.3 Summary . 14

3 Design and Implementation of the Framework 15
3.1 Objectives . 15
3.2 Related Work . 16
3.3 Structural Changes . 16

3.3.1 Pass Model . 16
3.3.2 Debugging Facilities . 17

3.4 Liveness Analysis . 18
3.5 SSA Form . 20

3.5.1 SSA Construction . 21
3.5.2 SSA Deconstruction . 22
3.5.3 Coalescing of Variables . 27

3.6 Control-Flow-Sensitive Analysis . 29
3.6.1 Requirements . 29
3.6.2 Theoretical Basics . 30
3.6.3 Analysis Algorithm . 32
3.6.4 Inter-Procedural Analysis . 36

3.7 Code and Data Size Reduction . 37
3.7.1 Purging of Unreachable Methods 38
3.7.2 Elimination of Dead Basic Blocks 39
3.7.3 Removal of Unused Static Fields 39

3.8 Elimination of Redundant Runtime Checks 40
3.8.1 Validity of Object References . 40
3.8.2 Array Bounds Checks . 40
3.8.3 Memory Range Checks . 41

3.9 Static Computation of Runtime Information 42
3.9.1 Resource Lookup . 43
3.9.2 Symbol Prefixes for Statically Allocated Objects 43

3.10 Further Optimization Possibilities . 43
3.10.1 Path Sensitivity . 44
3.10.2 Stack and Data Memory Savings 44
3.10.3 Iterative Optimization . 44

3.11 Summary . 44

4 Evaluation 47
4.1 Benchmarks . 47

4.1.1 I4Copter . 47
4.1.2 CDx . 48

4.2 Measurements and Results . 48
4.2.1 Removal of Dead Code and Unused Static Fields 49
4.2.2 Elimination of Redundant Runtime Checks 51
4.2.3 Code Size . 54
4.2.4 Execution Performance . 58

4.3 Summary . 62

5 Conclusion 63
5.1 Outlook . 64

1 Introduction

Within the past few decades, computing technology has been invading and profoundly
changing our everyday lives. Computers have become an indispensable part of our work,
our administration, and our leisure. Yet the PC standing visibly on every desk and
the portable media player or smartphone resting in every pocket are just the tip of
the iceberg. Beneath the surface, embedded microprocessors monitor and control the
combustion of engines, the water temperature of coffee makers or the rotation speed
of washing machine drums. Although we often do not even recognize their existence,
these microcontrollers surround us wherever we are and constitute the lion’s share of all
processor chips produced worldwide [24].
Embedded systems impose great demands and challenges in terms of power and cost

efficiency as well as reliability. However, as the former two design goals often interfere with
the latter, compromises have to be made. It would be plain infeasible to equip embedded
microprocessors with all the features that can be found in their bigger non-embedded
brothers. Most prominently, hardware-based memory protection, for example through
paging – which is a vital part of every full-blown multi-tasking system – is either omitted
completely or limited to a fairly simple (mostly region-based) implementation.

On the other hand, due to the steady exponential increase in processing power and a
simultaneous decrease in feature sizes, a trend to integrate a set of tasks onto a single
chip instead of using dedicated chips for each task is visible. While this helps saving
space and power, as a result of insufficient protection mechanisms a failure in a single
software component might affect many other components running on the same chip. This
is a critical challenge that has to be met.

Also, with the ongoing integration of more and more functionality into a single system,
security plays an increasingly important role. A team of researchers of the University of
California, San Diego, and the University of Washington recently demonstrated that the
coexistence of security-relevant and non-security-relevant software on the same electronic
controller unit can allow sophisticated attacks on the car’s electronic system if the latter
software contains exploitable bugs: By inserting a specially crafted audio CD into the
CD player, they were able to take control over the car’s bus network and operate the
ignition, the lock system, and the brakes [13].

Even if the target microprocessor features a memory protection unit (MPU), it might not
always be possible or desirable to employ it – either because of missing support on the part
of the operating system or because of unwanted restrictions imposed on the application
programmer: Region-based protection “has a limited set of range registers which limits
flexibility” [19] and requires the adherence to certain memory layout constraints. Context
switches are afflicted with the overhead of permuting the range registers, rendering task
switches and inter-domain communication expensive. As a consequence, depending on

1

1 Introduction

the actual requirements, software-based memory protection – where integrity is ensured
by a combination of type safety within the source language and the injection of runtime
checks – is potentially a more suitable choice.
The most commonly used programming languages for embedded applications are C

and assembly language. Both are popular in this area because their low-level character
allows writing both memory- and runtime-efficient code. However, C as well as assembly
language offers no or only limited type safety, which makes them comparatively prone
to programming errors [15]. In addition, the pointer concept, while providing a great
deal of flexibility, inherently creates the possibility to read from or write to any memory
location within the physical address space unless some kind of hardware-based protection
mechanism is utilized. This makes it impossible to mutually isolate two tasks on a system
without hardware-based memory protection.

1.1 The KESO Multi-JVM

KESO takes an approach that is fundamentally different from the traditional programming
model for embedded systems. It combines a type-safe programing language with a
runtime environment that acts as an abstraction layer for an underlying OSEK/VDX or
AUTOSAR OS operating system. Applications are written in Java and compiled into
Java bytecode, which is executed on the target microprocessor by the KESO Multi-JVM.
The use of the Java programming language guarantees type safety in all programs, that
is, it is impossible by design to exceed the boundaries of arrays and objects, to access
arbitrary memory locations via pointers or to jump into haphazard pieces of code by
manipulating function pointers or return addresses.

1.1.1 Code Compilation and Execution

On regular Java Virtual Machine implementations for server, desktop and handheld
systems, the bytecode is either interpreted or just-in-time-compiled into native machine
code. For embedded systems with limited processing power and memory, neither way
would be generally feasible: Interpretation would be too slow and JIT compilation would
be too complex. For this reason, KESO’s building tool JINO translates the Java bytecode
into C code ahead-of-time, which in turn can be compiled into native machine code for
the target platform using a common C compiler.
Static compilation is facilitated by the fact that KESO is designed for statically

configured embedded systems. The system’s entire software configuration has to be
known a priori – it is not possible to dynamically load classes or to create new tasks
at runtime. This means that not the whole extent of the Java programming language
is supported. On the other hand, application scenarios where there is an actual need
for such complicated features are more than rare in reality – and their omission makes
it possible to achieve code sizes and execution times that are comparable to those of
applications written in plain C [23].

2

1.1 The KESO Multi-JVM

Peripheral
Device Access

(KNI)

Domain A

Static Fields

Heap

Microcontroller

OSEK / AUTOSAR OS

Domain B
ServicePortal

System Objects

TaskA1 TaskA2 Alarm1 Resource

OSEK API
(KNI)

Shared
Memory

Domain ZERO

GC Task

Control Flows

TaskA1 ISR1TaskA2

Figure 1.1: Architecture of an exemplary KESO system [23]. The application is divided
into domains with disjoint isolated memory heaps and flows of execution.
Inter-domain communication is possible via portals or shared memory.

1.1.2 Basic Architecture

Figure 1.1 visualizes the architecture of a KESO-based system. With portability being an
explicit design goal, KESO supports multiple processor architectures, ranging from tiny
8-bit AVR microcontrollers over 32-bit TriCore chips up to x86 desktop processors. On
top of the hardware, an OSEK/VDX-compliant operating system provides fundamental
system services such as task management, event signalling or timer mechanisms. The
KESO runtime environment acts as an abstraction layer and exposes these operating
system services to the user application.
Memory protection is achieved by splitting the application into a set of domains. In

principle, a KESO domain is roughly the equivalent of a Unix process, comprising an
isolated address space and hosting one or several threads of control (tasks, event handlers
or interrupt service routines). Only objects and methods within the own domain are
accessible. Static fields, which would normally be shared on a global scale, are replicated
for each domain. Memory management (including garbage collection) is configured on
a per-domain basis. From a conceptual point of view, this means that each domain is
executed within its own Java Virtual Machine – thus KESO can be referred to as a
Multi-JVM.

In some cases however, it is necessary to exchange data between two tasks from
separate domains. This can be achieved through a mechanism called portals. A portal is
a specially-marked class that provides a certain service. Access to such a service can be
obtained by other domains via a global name service, which creates an auto-generated
proxy object [22]. Method invocations and field accesses take place in the context of

3

1 Introduction

the domain providing the service. If a call has an object reference as a parameter, a
deep copy of the object is passed instead – otherwise the receiving domain would hold
a reference to an object located outside of its scope, which would violate the isolation
property.

While the entire application logic is supposed to be written in Java, it is not possible
to do the same thing for device drivers or the KESO runtime environment. A driver
may have to read from an I/O port mapped into the physical address space at a fixed
location. Likewise, the operating system abstraction layer needs a way to interface
with the underlying OSEK/VDX system. Both require a language like C that gives the
programmer full control over memory addresses and the exact memory layout of data
types. Java offers a concept called Java Native Interface (JNI) for such purposes. KESO
provides a similar, yet simpler, mechanism called KESO Native Interface (KNI). KNI
makes it possible to weave additional instructions into the existing code at compile-time,
for example in order to access raw memory – thus bearing slight resemblance to the
aspect-oriented programming (AOP) paradigm. These weavelets can affect methods in
three ways:

1. During the internal processing of the program, an invocation instruction can be
replaced with new intermediate code instructions.

2. Upon translating the intermediate representation into C, additional lines of C code
can be emitted as a substitute for a method invocation.

3. Alternatively, C code can be inserted into the body of a method stub.

It should be noted that KNI effectively makes it achievable to bypass all checks and
protection appliances, so excessive inconsiderate use could thwart the intended purpose
of KESO entirely [26].

1.1.3 Summary

With a growing trend towards complex multi-tasking applications even on small and tiny
embedded microprocessors, reliability and fault tolerance are becoming an increasingly
important issue, for which memory protection plays a vital role. The KESO project
aims at providing software-based memory protection where no hardware-based protection
is available. It does so by employing the Java programming language, offering type
safety and bounds checking by design. KESO applications are configured statically. The
so-called domains are the basic units of isolation.
Before deployment of the application, the Java code is compiled into native machine

code. Detailed analyses and aggressive optimizations within the compiler could signif-
icantly reduce the code size, memory utilization and runtime of the resulting binary –
yielding results quite comparable to those of an equivalent C application with no memory
protection at all.

4

1.2 Motivation and Goals

1.2 Motivation and Goals
With KESO applications being written in an object-oriented and type-safe programming
language, there are two primary points of concern in comparison to traditional C
applications for microcontrollers: size and speed. Polymorphism and encapsulation allow
a cleaner software design, but usually make the target code larger and slower. The use
of virtual methods can be problematic because the decision which of the candidates is
effectively called is usually deferred until runtime. This leads not only to an overhead
in execution time, but possibly also to an inflation of the target binary because many
methods may have to be included that are eventually never going to be invoked. Type
safety also has many benefits, but comes at the price of runtime checks that negatively
affect performance.
As the entire system is configured statically, it is however possible through profound

analyses to obtain extensive information about the application. This information can
be exploited to detect and remove unreachable pieces of code, to eliminate redundant
checks, and for various other improvements.

The goal of this thesis is to develop and implement such a data flow analysis for KESO
that collects comprehensive and accurate static information, and to build optimization
passes that utilize the knowledge gained to improve the efficiency of the program with
regard to both code size and execution performance.

1.3 Organization of this Thesis
The following chapter gives a brief overview of JINO, the building tool of the KESO Multi-
JVM. It describes JINO’s basic architecture, highlighting the compiler’s intermediate
representation of the source program and the analyses and transformations applied to it
and outlining a set of possible improvements.
Chapter 3 presents in detail the alterations and additions that were made to the

compiler in the scope of this thesis, implementing new passes and enhancing existing
ones. The results of these changes are then analyzed and discussed in Chapter 4.
Chapter 5 gives an outlook and concludes the thesis.

5

2 Architecture of the JINO Java-to-C
Compiler

Unlike customary JVM implementations for desktop and server systems, the KESO
Multi-JVM neither interprets nor JIT-compiles the application code from Java bytecode
on the target machine, but instead translates it into native machine code ahead-of-time.
While AOT compilation is a common thing where Java is used in the embedded sector,
the peculiarity of KESO is that it determines the needed JVM features from the static
application configuration and through code analysis, and uses that information to generate
a runtime environment that is tailored for the application. This makes it possible to run
simple programs even on very small embedded microcontrollers. The approach bears
similarities to that of many OSEK/VDX systems, which also generate a fitted operating
system variant based on the configuration of the application.
This chapter first briefly describes KESO’s translation process in general and subse-

quently outlines the architecture and functional principles of JINO, the KESO building
tool.

2.1 Overview
Figure 2.1 gives an overview of the compilation process in KESO. The application
is developed in the Java programming language within a central directory tree that
comprises a collection of source packages, so-called modules. A module contains either
application code or library classes and methods. It is described by a manifest file that
specifies, among other things, a list of other packages that are pulled in as dependencies.

KESO ships with a set of default library modules that provide a runtime environment
for application software, including:

• a stripped-down light-weight implementation of the most commonly used Java API
classes,

• drivers for hardware devices such as the A/D converter or the UART of AVR
microcontrollers,

• and programming interfaces for KESO system services, for example memory map-
ping or the portal name service.

As mentioned above, applications are configured statically. The entire composition
of the system has to be determined a priori – including the set of tasks, timers and
interrupt service routines, and their attribution to protection domains. The setting of

7

2 Architecture of the JINO Java-to-C Compiler

Standard Java Compiler

OSEK SG

KESO System

Configuration

Standard C−Compiler

Application

Java Sources

KESO

Application

Standard

Components

library

KESO class

Java Bytecode

KESO Builder (Bytecode−2−C)

OSEK Kernel Source

KESO Binary Image

OIL Configuration

KESO C−Source

KESO Autoclass

Generator

Figure 2.1: KESO compilation process [22]. The source code is first passed through the
stock Java compiler. The resulting Java bytecode is then processed by JINO
and translated into C code, which in turn is compiled for the target platform
using the appropriate toolchain.

each system is specified within a separate configuration file. When executed, the KESO
builder parses the desired configuration file, finds out which source modules are used,
and invokes the Java compiler to produce bytecode classes for all affected source files.
Additional Java source files may be auto-generated and compiled, for instance for proxy
classes in association with portal services.
After that, JINO processes the resulting Java bytecode as described below in this

chapter, eventually emitting a bundle of C files and an OSEK Implementation Language
(OIL) file, which can be passed to the OSEK/VDX system generator in order to build
a tailored operating system kernel that contains only “the parts of the OSEK system
required by the application” [22]. The kernel is then compiled, assembled and linked
along with the application’s C sources using the appropriate toolchain, yielding the
finished binary image that can be deployed on the target device.

2.2 Compiler Architecture

Like the majority of all modern compilers, JINO features a three-tier architecture as
shown in Figure 2.2, consisting of a frontend, a set of intermediate code analysis and
transformation passes, and a number of target-specific code generators. The three stages
are not as largely decoupled and strictly separated as it is common practice in modular
general-purpose compilers like LLVM and others, but JINO can nevertheless be considered

8

2.2 Compiler Architecture

Intermediate code passes

Analyses Transformations

Frontend

Bytecode
reading

Intermediate code
construction

Configuration
parsing

Backends

CiAO JOSEK ProOSEK RTAOSEK Trampoline

Figure 2.2: JINO architecture. Though not rigorously modular, it follows the classic
three-tier composition schema.

to be modular to a certain degree.

2.2.1 Frontend

The task of a compiler frontend is to translate the source code into an intermediate
representation [1]. In the case of JINO, the input comes in the form of Java bytecode
that was produced from the source modules by the Java compiler. As this code is not in
text form, neither a lexical nor a syntactic analysis (parsing) is necessary. Therefore the
frontend accounts for merely a relatively small part of the entire compiler.

The frontend’s chain of work is largely straightforward: First of all, the configuration
file containing the description of the software system is parsed. If necessary, the Java
compiler is invoked in order to build the .class files from the .java source files. Next
up, the class data is read in and put into the ClassStore, a central repository that holds
the information about all classes. Finally, the bytecode of all methods is inspected and
translated into an intermediate representation for further processing.
To give a better understanding of the transition from source code via bytecode to

intermediate representation by means of a concrete example, a simple Java function
along with the corresponding bytecode is introduced in Listing 1. The intermediate
representation of the same piece of code is depicted in Figure 2.3.

9

2 Architecture of the JINO Java-to-C Compiler

Listing 1 Recursive factorial function in Java (left) and compiled into bytecode (right).

public static int factorial(int x) {
if (x <= 1)

return 1;
return x * factorial(x - 1);

}

public static int factorial(int);
Code:
0: iload_0
1: iconst_1
2: if_icmpgt 7
5: iconst_1
6: ireturn
7: iload_0
8: iload_0
9: iconst_1
10: isub
11: invokestatic #2;
14: imul
15: ireturn

_B0:

read i0 const 1

if > goto _B7 else goto _B5

_B5:

store i1 goto _B17

const 1

_B17:

return i1

_B7:

read i0 const 1

-

store i2

read i2

call factorial

store i2

read i0 read i2

*

store i1 goto _B17

Figure 2.3: Control flow graph of the recursive factorial function. In the intermediate
representation, each basic block contains a sequence of instruction trees.

10

2.2 Compiler Architecture

2.2.2 Intermediate Code

Being based on a stack machine design, the JVM code can be perceived as a sequence of
flattened syntax trees, with each node representing an instruction and each edge denoting
the use of another instruction’s result as an operand. As Figure 2.3 illustrates, the
instruction stream is split into basic blocks. A basic block is a succession of instructions
that has exactly one entry and one exit point, that is, it will always be executed as a
whole [1]. Interconnected through control flow edges, all basic blocks of a function form
its control flow graph (CFG), which is one of the fundamental data structures for many
intermediate code analysis and transformation passes.

In order to simplify its analysis, it is beneficial to convert the control flow graph into a
form where it has exactly one entry and one exit block. This is achieved by constructing
a designated exit block and replacing all return statements with an unconditional branch
to that block. In the example at hand, _B0 is the entry block and _B17 is the newly
created exit block.
Function arguments, return values and operands that transgress the borders of basic

blocks are stored in stack slots, which are the equivalents of local variables.
Within the compiler, the nodes of the intermediate code syntax trees are represented by

objects. For each node type there exists a class describing its properties and operations.
Most node classes are auto-generated from a set of Perl scripts and modules that
produce the class bodies by concatenating a number of strings containing the respectively
appropriate methods. While this approach makes it easier, more efficient and less error-
prone to add or modify functionality that affects more than one node class, it has to be
considered more of a “quick-and-dirty” hack than an optimal solution because of the
following inherent drawbacks:

1. The use of Perl scripts processing and concatenating strings offers no real type safety
and does not permit the class information to be expressed in a truly structured
way. For such objectives, it would be advantageous to employ a domain-specific
language. For instance, the LLVM compiler infrastructure makes heavy use of its
internal TableGen utility to automatically generate huge quantities of compiler
code from command line option parsing in the frontend to instruction selection
in the backend [11]. Following this model would result in a cleaner design and
better extensibility, although it might be somewhat exaggerated for the the limited
purposes of KESO.

2. The code for some analysis and transformation passes (escape analysis, constant
folding and copy propagation, among others) as well as for the translation into C
code is attached directly to the classes as methods. This is not optimal from a
software engineering point of view because the algorithms would be clearer if they
were in one place instead of being scattered over more than a hundred classes. A set
of restructurings and improvements was made in the course of the implementation
work for this thesis.

11

2 Architecture of the JINO Java-to-C Compiler

Optimizing1 the program code plays an important role for KESO because it is a key
step towards competitiveness with approaches that do not employ software-based memory
protection. KESO profits from the fact that the bulk of modern C compilers implements
many advanced optimization techniques on both high and low levels of abstraction.
However, as much of the high-level information is available only in the intermediate
representation and is lost during the translation into C code, it is advisable to already
perform high-level transformations within JINO and leave the low-level and peephole
optimizations to the C compiler [23].
JINO contains a collection of analysis and transformation passes that are applied to

the intermediate code. The most important of them are listed below [26].

Method Inlining

Inlining is the process of replacing a method invocation with the body of the method. It
improves performance in two ways [1]:

1. The overhead of the function call and return is eliminated, including the saving
and restoring of the program counter and other registers as well as the copying
of arguments and return values to specified locations as defined by the calling
conventions of the target platform.

2. By inserting a copy of the function body at the original call site, that copy can
be specialized according to the respective circumstances. For example, one of the
arguments may always be a constant so that expressions using that value can be
simplified and conditional branches evaluating it are never taken and thus can be
removed.

Inlining is only possible if the callee method can be determined at compile-time to be
unique, which may not be the case for virtual methods in a non-trivial polymorphic class
hierarchy. Furthermore, when deciding whether to integrate a method, the compiler has
to consider a trade-off between performance gain and code inflation. JINO makes this
decision based on a heuristic cost estimation.

Copy Propagation

When a copy statement of the form y = x; is encountered, that statement can be erased
and x and y can be merged into a single variable provided that both variables are local
and the program is in SSA form2. This eliminates redundant copy instructions and
reduces the number of stack slots required by methods.

1Optimization is defined as the process of improving the efficiency of a program without changing its
semantics [1].

2The use of the SSA form in JINO is described in detail in Chapter 3.5.

12

2.2 Compiler Architecture

Constant Propagation and Folding

The occurrence of constants within the program offers various opportunities for optimiza-
tions. On the one hand, if a local variable holds an immediate value, it is possible to
replace its uses with that value. Expressions whose operands are all constant can be
evaluated (“folded”) at compile-time, making the code smaller and faster.
On the other hand, constants can also be handled on a global scale by propagating

the actual arguments of method invocations. If the compiler can prove that the actual
argument for a given formal argument has the same value at all call sites, that method
parameter can be omitted altogether, yielding a new constant local variable within the
called method. This variable can be propagated in turn, thus the algorithm is executed
iteratively until a fixed point has been reached.

Escape Analysis and Stack Allocation

Escape analysis determines for an object reference whether it leaves (“escapes”) the scope
of the function where the object is allocated. If this is not the case – that is, the lifespan
of the object is limited to a fixed code section – then its memory can be allocated on
the stack instead of the heap. For stack-allocated chunks of data, both creation and
destruction are more efficient than for objects allocated dynamically on the heap [6].

Removal of unused Methods and Fields

As microcontrollers in general have relatively tight constraints concerning the amount of
memory available, it is advisable to reduce the size of both application data and machine
code where possible. This is especially important when a program requires a library
module, but actually uses only a small portion of it.
If a static or non-static field of a class is never read, it can be dropped safely along

with all write accesses to it. Conversely, if a field is never written, the Java language
specification defines it to be implicitly initialized as zero (0, false or null depending on
its type), all read operations can be substituted with the corresponding constants.
Similarly, methods to which no calls exist – either because they are in fact unused

or because all of their invocations have been inlined – can be purged and need not be
included in the resulting binary. Inlining is particularly common for accessor methods
(so-called “getters” and “setters”) and constructors.

In particular, the detection of unneeded methods has a vast potential for improvement.
A more detailed and fine-grained, control-flow-sensitive reachability analysis that takes
into account the division of the system into domains can yield far better results. The
implementation of such an analysis was one of the main tasks of this thesis and is
described in Chapter 3.6.

2.2.3 Backends

The last two steps in JINO’s chain of work are the emission of C code for the application
system and the generation of a configuration file for building a custom tailored kernel.

13

2 Architecture of the JINO Java-to-C Compiler

Backends exist for a number of systems, namely CiAO, JOSEK, ProOSEK, RTAOSEK,
and Trampoline. As all target operating systems feature an OSEK/VDX programming
interface, a large quantity of common code is shared and each of the backends for the
main part merely specifies a set of target-specific definitions and properties.
The C code for each method is emitted by iterating over its basic blocks and visiting

all syntax trees. Validity checks are added to all object reference accesses unless the
static analysis of the intermediate representation has proved the operand object to be
valid at all times. The same goes for range validations, for example pertaining to array
accesses. As each additional check makes the executable code larger and slower, it is
desirable to eliminate as many of them as possible during compilation. This is the second
primary objective of this thesis and is discussed in Chapter 3.8.

2.3 Summary
JINO is an ahead-of-time compiler that translates Java programs for embedded systems
into C code. It employs a series of analyses and optimizations with the aim of making
the resulting binary smaller and more performant. However, there is still room for
further improvements that can be made through additional inter-procedural control-flow-
dependent passes that regard the peculiarities of the KESO system architecture.
For this reason, the existing analysis and optimization framework was extended in

the scope of this thesis. The design and implementation of the enhancements made is
presented in the following chapter.

14

3 Design and Implementation of the
Framework

The centrepiece of every compiler is its collection of analysis and transformation passes.
It usually accounts for a huge portion of the application and can make the difference
between a bad compiler that produces slow, bloated and inefficient executable binaries
and an excellent compiler that emits slim, highly optimized code. This thesis focuses on
the examination and processing of intermediate code with the intent of improving the
efficiency of the program in question in various ways. The following chapter details the
additions and modifications that were made to the existing framework in JINO, explains
the algorithms that were implemented to analyze and transform the code, and presents
the optimizations enabled through them.

3.1 Objectives

As KESO is geared to small and smallest embedded systems, the emphasis lies on
optimizations that reduce the size of the resulting machine code. The three primary
objectives of this thesis are:

1. To perform a whole-program reachability analysis in order to find basic blocks and
methods that are never executed, and purge them.

2. To examine the data flow through the application and eliminate or simplify the
injected runtime checks in places where they can be proved to be redundant.

3. To collect accurate static information that would normally have to be computed
dynamically at runtime. For example, this includes identifying the domain in whose
context the thread of control is currently running.

The end goal behind these aspirations is to further improve the efficiency of the
application, making programs written in Java for KESO competitive with their traditional
C and assembly counterparts. An essential basic prerequisite for this purpose is the fact
that KESO applications are configured statically – it enables the compiler to to make
assumptions that would be impossible if dynamic code loading, launching of additional
tasks, or reconfiguring of domains were allowed. The more detailed knowledge the
compiler has at its disposal ahead of time, the more aggressive optimizations it can
undertake.

15

3 Design and Implementation of the Framework

3.2 Related Work
In this section, some related external projects are listed that served as a guideline
and inspiration for the implementation of the analysis in JINO. Namely, these are the
following:

• The LLVM Compiler Infrastructure (http://llvm.org/) is a well-known modern
compiler construction kit that has a remarkably modular structure. While its
intermediate representation differs fundamentally from that of JINO, its pass model
inspired the structural changes that are described in the following section.

• COINS (http://coins-project.org/international/) is a component-based
compiler infrastructure project with an extensive SSA optimization framework.

• Soot (http://www.sable.mcgill.ca/soot/) is an optimization framework for
Java bytecode that has a variety of different intermediate representations for
different purposes.

3.3 Structural Changes
An initial assessment of JINO’s code base revealed minor design flaws that were somewhat
detrimental to clearness and impeded maintenance work and enhancements to the compiler.
The biggest problem was – and partly still is – the scattering of related functionality
over a huge number of files and classes, which causes many interdependences and a high
degree of coupling between components. Thus it was decided to employ code refactoring
at select places over the course of the implementation works to make the compiler more
modular and structured.

3.3.1 Pass Model

The most fundamental structural change that was introduced is the breakdown of the
compiler’s functionality from a mere sequence of method calls into individual passes.
Influenced by the design of the LLVM compiler infrastructure [12], every pass is located
in its own class and provides information about itself:

• The declaration whether it is enabled. Many passes are associated with a flag that
is passed on the command line.

• A list of dependencies – that is, other passes that produce results which are used
by this pass and consequently should be executed before it.

• A collection of anti-dependencies that should only be run after this pass, not before
it.

• A set of passes whose results are invalidated by the execution of this pass. If the
results of one of them are needed later on, it has to be run once again.

16

http://llvm.org/
http://coins-project.org/international/
http://www.sable.mcgill.ca/soot/

3.3 Structural Changes

Class type info
computation

Method
inlining

Field access
reset

Call graph
analysis

Liveness
analysis

Dominator tree
computation

Constant
folding

Field access
reset

Call graph
analysis

Reachability
analysis

VTable
reset

VTable
computation

Translation

Figure 3.1: Possible pass execution sequence. Analyses are displayed in green, trans-
formations in red, and passes that simply reset some information in blue.
Constant folding is an iterative pass and can be repeated several times along
with its dependencies.

• A flag that indicates whether the pass works iteratively and should be repeated
until it has reached a fixed point.

Passes are registered at the pass manager, whose task is to handle the relationships
between them. It builds a dependence graph, performs a topological sorting to determine
the execution sequence, and then runs the passes in the calculated order. A simple
example sequence is depicted in Figure 3.1.

3.3.2 Debugging Facilities

Another shortcoming of the original code base was the difficulty to obtain information
about the internal state of the compiler during the processing of a program. While it
was possible to emit the control flow graph, the call graph, the dominator tree, and
other graphs helpful for debugging, no adequate possibility existed to dump the current
processing stage of the intermediate code. To address this issue, a facility was implemented
to print a textual representation of the intermediate code to the hard disk after the
execution of particular passes, which proved to be an indispensable diagnostic tool for
troubleshooting during the later implementation stages.
In this chapter the new passes are presented that were designed and implemented on

the basis of the newly introduced pass structure with the objective of gathering and
exploiting as much and as accurate static knowledge about the application code as feasible.

17

3 Design and Implementation of the Framework

Section 3.4 and 3.5 address two basic infrastructural devices that form the foundation
for the control flow analysis itself, which is detailed in Section 3.6. The optimizations
that were accomplished with the use of the analysis results are described in Section 3.7
through 3.9. Finally, some ideas for further efficiency improvements are listed.

3.4 Liveness Analysis

It is often necessary to know whether a variable is live at a certain point in the program –
that is, whether that point lies on a path between a definition and a use of said variable.
The most prominent exploitation of liveness information in a regular compiler is register
allocation [1], where variables with non-intersecting lifespans can be placed in the same
physical register. JINO does not emit assembly code and thus does not need to perform
register allocation, but some of the implemented transformation passes – including the
SSA construction and deconstruction algorithms described in Section 3.5 – require data
about the liveness of program variables.
As the Java Virtual Machine is based on a stack-oriented design, JINO’s equivalent

for local variables are stack slots. Of special interest is the question which slots are
live at the beginning and end of a given basic block (in the following, a basic block is
denoted through its label, L). This information is represented by two sets: LiveIn[L]
and LiveOut[L]. Computing these sets is a well-known and well-researched problem that
is commonly solved with the aid of an iterative fixed-point algorithm.

As the flow of control takes a path within the program, two observations can be made
about the variables that are touched along that path:

1. A variable is dead unless it is used at some point – thus when encountering the use
of a variable, its liveness is generated. This means that the variable is live on all
paths to the currently visited use starting from the definitions that reach it.

2. The (re-)definition of a variable effectively kills its lifespan. The variable can be
presumed dead after the defining statement unless a subsequent use is found which
generates a new lifespan.

It should be stressed that this liveness information has to be viewed in backward
direction: A newly generated lifespan stretches back to the point of generation, not
starting from it.
As the analysis is primarily interested in liveness along the edges of the control flow

graph, slots whose lifespan does not cross any basic block boundaries – that is, slots that
are first defined and then used only within the same block – do not have to be considered.
Starting from these deliberations, we compute two sets of variables, Gen[L] and Kill[L],
for each basic block L:

• Gen[L] = {v : v is used in L before any assignment to v}
This is the set of variables for which a new lifespan is generated within L.

18

3.4 Liveness Analysis

• Kill[L] = {v : v is defined in L}1
This set contains all variables that are killed within L.

Based on these sets, liveness information can be promoted between basic blocks along
the edges of the control flow graph, in reverse direction:

• The live slots at the end of a basic block are the union of all slots that are live at
the beginning of any successor block:
LiveOut[L] =

⋃
S∈succ[L] LiveIn[S]

• The live variables at the beginning of a block comprise all variables generated in the
block as well as all variables that leave the block live without being killed within it:
LiveIn[L] = Gen[L] ∪ (LiveOut[L]−Kill[L])

The complete algorithm is listed as Algorithm 1. It initializes the LiveIn and LiveOut
as empty sets, computes the Gen and Kill sets for each basic block, and then promotes
the liveness information through the control flow graph until a fixed point has been
reached, that is, until an iteration did not yield any new results. In order to produce
correct results if the program is in SSA form and contains Φ-functions as described in
Section 3.5, the computation of the LiveOut set requires a few additional checks.

Algorithm 1 Iterative computation of the LiveIn and LiveOut sets for the basic blocks
of a function.

for all basic blocks L do
LiveIn[L]← ∅
LiveOut[L]← ∅
Gen[L]← {v : v is used in L before any assignment to v}
Kill[L]← {v : v is defined in L}

end for
repeat

for all basic blocks L do
LiveOut[L]←

⋃
S∈succ[L] LiveIn[S]

LiveIn[L]← Gen[L] ∪ (LiveOut[L]−Kill[L])
end for

until none of the LiveIn[L] sets has changed

The general algorithm schema explained above based on the Gen/Kill and In/Out
sets is relatively simple and intuitive, yet powerful, and can be specialized for a broad
range of data flow analyses. However, as shown in the next section, it is not always the
tool of choice due to certain inherent restrictions and shortcomings.

1Alternatively, Kill[L] may be constrained to be the set of set of variables defined “prior to any use” [1],
but that would have no effect on the end results due to the properties of the set operators.

19

3 Design and Implementation of the Framework

3.5 SSA Form
In order to track and analyze the flow of data within a program, two pieces of information
are essential:

1. Reaching definitions: For every use of a variable it must be known which
definitions “reach” that use – that is, which statements directly contribute to its
value. If the code contains any conditional branches, there may be more than one
reachable definition for some uses.

2. Reachable uses: The exact opposite of the above, reachable uses are the set of
variable uses that can be reached from a a particular definition.

As mentioned in the previous section, both problems can be solved by means of an
iterative fixed-point algorithm. The per-basic-block sets can be represented as bit vectors,
with each bit standing for a variable. Depending on the type of the analysis, the Gen and
Kill sets are defined accordingly and the direction in which the information is promoted
between basic blocks is either forward or backward [1].

While this algorithm schema is easy to grasp and to implement, it is stricken with some
problematic aspects that limit its viability in practical application scenarios. On the one
hand, storing a batch of bit vectors for each basic block (one vector per analysis) may
be considerably space-consuming, particularly for large functions with a lot of variables.
Most notably, however, many of the established optimizations and transformations would
necessitate either complex adjustments or a complete recomputation of many bit vectors
when applied to the intermediate code. For that reason, it is desirable to utilize data
structures that are easier to maintain and more suitable for frequent changes to the
program code.
One common approach is the introduction of so-called definition-use chains that

connect variable definitions with their reachable uses. The data dependences represented
by definition-use chains can be combined with control dependences into a single directed
graph, the program dependence graph (PDG) [5]. The PDG notation eliminates the
fixed instruction order and thereby facilitates optimizations that require the reordering of
instructions. Instead of definition-use chains it is also possible to implement use-definition
chains, which work exactly the other way round.

The most suitable mechanism however to provide information for data flow analyses
is the transformation of the intermediate program into static single assignment (SSA)
form. After the transformation, for every use of a variable there is exactly one reaching
definition and that definition dominates the use2. As soon as a variable is defined for the
second time, a new variable is introduced.

In a purely sequential program, this transformation is trivial. Problems arise as soon
as the code contains loops and conditional branches and a variable is defined on two or
more alternative paths from the CFG entry to a use – that is, there exists at least one
definition which does not dominate the use. To remedy this situation, pseudo-instructions

2A node d in the control flow graph dominates a node n if all paths from the entry node to n go through
d [1].

20

3.5 SSA Form

are inserted at the beginning of basic blocks where values from two or more paths flow
together. These so-called Φ-functions have one operand for every predecessor of the basic
block they are located in and are in the following form:

xi ← Φ(xj :Lj , xk:Lk, ...)
Similar in concept to a multiplexer, the Φ-function selects one of its input values depending
on the control flow edge that has been taken to reach it. For instance, if the thread of
control comes from the block Lj , the variable xj is chosen. The result is the definition of
a new variable xi. It has to be noted that Φ-functions can be materialized neither in C
nor in assembly code, so a reverse transformation out of SSA form is necessary before
the intermediate code is passed to the backend.

The primary advantage of every variable having a static single definition is the fact that
the relationship between definitions and uses is now trivial to determine: Every variable
has exactly one unique reaching definition, all of whose uses in turn are reachable. Also,
maintenance of this information is not an issue as long as every transformation guarantees
to sustain the SSA property. Today, the extensive use of an SSA-based intermediate
program representation is a de-facto standard in modern compilers, including the following
well-known and wide-spread projects:

• Since version 4, the GIMPLE intermediate representation of the GNU Compiler
Collection (GCC) is in SSA form [18].

• The Low-Level Virtual Machine (LLVM), a virtual instruction set and compiler
infrastructure resting thereon, is SSA-based from the ground up [10].

• The just-in-time compiler of the HotSpot Java Virtual Machine uses SSA in its
high-level intermediate representation [9].

JINO’s compilation process as well offered the possibility to temporarily convert
the program into static single assignment form and apply a number of SSA-based
optimizations. However, due to certain shortcomings in its then state, a fair amount of
work on the forward and especially on the reverse translation was necessary.

3.5.1 SSA Construction
As suggested above, the conversion of a function into SSA form by itself without taking
branchings into account is relatively straightforward: Every definition spawns a fresh
variable. If a slot is defined more than once, its liveness range is split accordingly, each
new interval being assigned to a subscripted copy of the variable.

Φ-functions are placed according to the dominance frontier3 criterion [4]: For every
definition of a variable, a Φ-function is added in all basic blocks that constitute the
dominance frontier of the block in which the definition takes place. As the Φ-function
themselves define new values, the algorithm has to be executed in an iterative manner.
An exemplary pre-post-comparison can be viewed in Figure 3.2.

3The dominance frontier of a basic block L is the set of blocks that are not dominated by L, but have
at least one immediate predecessor that is dominated by L [4]. Figuratively speaking, these are the
“earliest” basic blocks to which an alternative path from the entry node around L exists.

21

3 Design and Implementation of the Framework

x ← a x ← b

y ← x + 1

L
2
: L

3
:

L
4
:

(a) Original program excerpt

x
0
 ← a

0
x
1
 ← b

0

x
2
 ← Φ(x

0
:L

2
, x

1
:L

3
)

y
0
 ← x

2
 + 1

L
2
: L

3
:

L
4
:

(b) After SSA transformation

Figure 3.2: Transformation of a program snippet into SSA form. Every definition spawns
a new variable; Φ-functions are inserted at points where multiple values flow
together.

The SSA construction technique originally implemented in JINO follows this schema.
As it did not take liveness information into account, redundant Φ-functions were inserted
for slots that were actually dead. With the LiveIn sets for all basic blocks at hand, the
implementation was adapted to ignore variables that are not live upon entering the basic
block where a Φ-function is scheduled to be placed, leading to a significant reduction in
the number of Φ-functions produced.

3.5.2 SSA Deconstruction

As the C programming language knows no semantic equivalent for the Φ-construct,
JINO’s backends are unable to directly translate intermediate code that fulfils the SSA
condition into an equivalent C program. After all compiler passes that rely on SSA are
completed, the program hence has to be translated back into a form where all Φ-functions
are eliminated.

The naive procedure to replace a Φ-function that intuitively comes to mind is to add a
copy instruction at the end of each predecessor block. This is the way it was originally
implemented in JINO. Simple as it may be, this unfortunately comes along with two
major disadvantages:

1. Most of the inserted copies are redundant. The consequence is an unnecessary
increase in both code and stack size, because not only too many assignments are
produced, but also the number of local variables is needlessly high. It would be
advisable to coalesce variables where possible. While one could leave this step to
the C compiler, which, if reasonably modern, ought to be able to perform it at
least for slots with primitive data types, it will most probably struggle and fail to
do the same thing for arrays. As the backend may decide to put all local object

22

3.5 SSA Form

print(y)

y ← x
x ← x + 1

L
1
:

L
3
:

L
2
:

x ← 0

(a) Original program

x
0
 ← 0

print(x
1
)

x
1
 ← Φ(x

0
:L

1
, x

2
:L

2
)

x
2
 ← x

1
 + 1

L
1
:

L
3
:

L
2
:

(b) After SSA transformation and
copy propagation

x
0
 ← 0

x
1
 ← x

0

print(x
1
)

x
2
 ← x

1
 + 1

x
1
 ← x

2

L
1
:

L
3
:

L
2
:

(c) After naive insertion of
copy instructions

Figure 3.3: Example of the lost-copy problem. The copy at the end of L2 is inserted
without regard for the interference between the lifespans of x1 and x2. Thus
after leaving the loop, the printed number exceeds the expected value by one.

references into an array on the stack – which may be required by the selected
garbage collection mechanism – a more-than-slight amount of stack space may be
wasted.

2. Much worse than that, there are cases where the naive algorithm fails to yield
correct results, changing the semantics of the program. Two notable scenarios
discovered by Briggs et al. [3] are the “lost-copy” problem and the “swap” problem.
Both stem from optimizations like copy propagation that might change the source
or destination operands of Φ-functions. An example of the lost-copy problem is
depicted in Figure 3.3.

As JINO’s SSA deconstruction pass originally showed these deficits, partially managing
to work around them, it was decided to rewrite it from scratch to provide a proper
solution. A number of techniques to remedy aforementioned issue have been proposed in
literature. A particularly interesting approach is an algorithm by Sreedhar et al. [17] that
simultaneously aims at minimizing the number of copies emitted and has been shown to
yield good results [16].

Sreedhar introduces the concept of Φ-congruence classes, which rests on the notion
that Φ-functions define an equivalence relation such that all variables (“resources”) which
participate in the same Φ-function are assigned to the same equivalence class. This means
in practice that the “occurrences of all resources which belong to the same phi congruence

23

3 Design and Implementation of the Framework

class in a program can be replaced by a representative resource” [17]. This so-called
Φ-congruence property is satisfied if the program is in conventional SSA (CSSA) form,
yet not necessarily any longer after one or more optimization passes have transferred it
into transformed SSA (TSSA) form. The basic idea is to convert the intermediate code
back into CSSA form and then exploit the Φ-congruence property to merge all slots of
a Φ-function into a single representative. After this process has been completed, the
Φ-function has all its operands pointing to the the very same variable, so it can be erased
safely.

The critical factor that determines whether a program is in CSSA form is the existence
of interferences between the liveness intervals of two variables that are supposed to
be put into the same Φ-congruence class. This makes the problem somewhat similar
to the well-known register allocation problem, where two variables cannot be put into
the same physical register if they interfere with each other. The process of translating
TSSA form into CSSA form hence resolves the interferences between resources referenced
within a Φ-function by inserting copies at suitable locations, while being geared towards
minimizing the number of copies. Sreedhar et al. presented three methods with an
increasing degree of sophistication. Method III – the most complicated, but also the
most effective – was implemented in JINO and is listed below as Algorithm 2.
The algorithm takes the data flow information provided by the LiveIn and LiveOut

sets into account and makes use of the interference graph, an undirected graph with one
vertex per variable and edges between all pairs of vertices whose live intervals overlap. As
it assumes that all Φ-resources are stack slots – which may not be the case after constant
folding has taken place, for example the following form is possible: x0 ← Φ(0:L1, 1:L2) –
this property has to be ensured beforehand by pulling non-variable operands out of the
Φ-instruction into the respective predecessor blocks and adding corresponding copies.

The Φ-congruence classes are constructed step by step. Initially, every variable belongs
to its own equivalence class, but not to any other. The pass processes one Φ-function at a
time, attempting to merge the congruence classes of all operands. If this is prevented by an
interference between any two members of different classes, depending on the circumstances
one or two new variables have to be introduced to replace affected slots. The resolution
itself is not performed at once, but delayed until all interferences have been investigated.
The slots for which copies have to be emitted are entered into candidateResourceSet,
whose entries are subsequently processed one after another.

For the decision where to issue a copy instruction given two Φ-operands xi:Li and
xj :Lj , the algorithm differentiates between four cases. In the below enumeration it is
assumed that both xi and xj are source operands of the Φ-instruction. If one of them –
say, xi – is the destination resource, the intersection has to be performed with LiveIn[Li]
instead of LiveOut[Li].

1. The Φ-congruence class of xi interferes with a variable in Lj , but there is no conflict
between the Φ-congruence class of xj and the variables at the end of Li:

phiCongruenceClass[xi] ∩ LiveOut[Lj] 6= ∅ ∧
phiCongruenceClass[xj] ∩ LiveOut[Li] = ∅

24

3.5 SSA Form

Algorithm 2 Sreedhar’s algorithm [17] for eliminating Φ-resource interferences based
on data flow and interference graph updates.

Input: Instruction stream, CFG, LiveIn and LiveOut sets, interference graph
Output: Instruction stream, LiveIn and LiveOut sets, interference graph, Φ-
congruence classes

procedure eliminatePhiResourceInterferences
for all resources x participating in a Φ do

phiCongruenceClass[x]← {x}
end for
for all Φ-instructions phiInst in CFG do

. phiInst is in the form x0 = Φ(x1:L1, x2:L2, ..., xn:Ln)

. L0 is the basic block containing phiInst
for all xi, 0 ≤ i ≤ n in phiInst do

unresolvedNeighbourMap[xi]← ∅
end for
for all pairs of resources xi:Li, xj :Lj in phiInst, where 0 ≤ i, j ≤ n and xi 6= xj ,

such that ∃yi ∈ phiCongruenceClass[xi], ∃yj ∈ phiCongruenceClass[xj],
and yi and yj interfere with each other, do

Determine what copies are needed to break the interference between xi and
xj using the four cases described in Section 3.5.2

end for
Process the unresolved resources (case 4) as described in Section 3.5.2
for all xi ∈ candidateResourceSet do

insertCopy(xi, phiInst)
end for
. Merge phiCongruenceClasses for all resources in phiInst
for all resources xi in phiInst where 0 ≤ i ≤ n do

currentClass← currentClass ∪ phiCongruenceClass[xi]
Let phiCongruenceClass[xi] simply point to currentClass

end for
end for
Nullify Φ-congruence classes that contain only singleton resources

end procedure

25

3 Design and Implementation of the Framework

procedure insertCopy(xi, phiInst)
if xi is a source resource of phiInst then

for all Lk associated with xi in the source list of phiInst do
Insert a copy instruction: xnewi ← xi at the end of Lk

Replace xi with xnewi in phiInst
phiCongruenceClass[xnewi]← {xnewi}
LiveOut[Lk]← LiveOut[Lk] ∪ {xnewi}
if for Lj an immediate successor of Lk, xi /∈ LiveIn[Lj] and not used in a

Φ-instruction associated with Lk in Lj then
end if
Build interference edges between xnewi and LiveOut[Lk]

end for
else . xi is the Φ-target, x0

Insert a copy instruction: x0 ← xnew0 at the beginning of L0
Replace x0 with xnew0 as the target in phiInst
phiCongruenceClass[xnew0]← {xnew0}
LiveIn[L0]← LiveIn[L0]− {x0}
LiveIn[L0]← LiveIn[L0] ∪ {xnew0}
Build interference edges between xnew0 and LiveIn[L0]

end if
end procedure

If we added a copy x′
j ← xj at the end of Lj , x′

j would interfere with xi in the
same block, which is also an operand of the Φ-function, so the overall conflict
situation would persist. On the other hand, if we insert a copy x′

i ← xi in Li, no
new interference will arise. Thus we add xi to candidateResourceSet.

2. The Φ-congruence class of xj already interferes with a variable in Li, but there is
no conflict between the Φ-congruence class of xi and the variables at the end of Lj :

phiCongruenceClass[xi] ∩ LiveOut[Lj] = ∅ ∧
phiCongruenceClass[xj] ∩ LiveOut[Li] 6= ∅

This is the exact opposite of case 1, so we request inserting a copy of xj at the end
of Lj by adding xj to candidateResourceSet.

3. Both Φ-congruence classes interfere with a variable at the end of the respective
other predecessor block:

phiCongruenceClass[xi] ∩ LiveOut[Lj] 6= ∅ ∧
phiCongruenceClass[xj] ∩ LiveOut[Li] 6= ∅

In this case there are mutual interferences in both directions, so the only pos-
sible resolution is to insert two copies and consequently add both xi and xj to
candidateResourceSet.

26

3.5 SSA Form

4. There are no mutual interferences:

phiCongruenceClass[xi] ∩ LiveOut[Lj] = ∅ ∧
phiCongruenceClass[xj] ∩ LiveOut[Li] = ∅

When hitting this constellation, we need to insert one copy, but we have a de-
gree of freedom and can freely choose the resource. We defer the decision until
all interferences concerning this Φ-function have been analyzed and add xj to
unresolvedNeighbourMap[xi] and xi to unresolvedNeighbourMap[xj].

Boissinot et al. pointed out a flaw in the above case differentiation that is related to
conditional branches [2]. As copy instructions are always inserted before any branch
statements, it does not suffice to regard only the LiveOut set of a predecessor block
– instead, the union of the block’s LiveOut set and all variables used in a possible
conditional branch instruction must be examined.

After the Φ-function has been analyzed, the resources that have been entered into the
unresolvedNeighbourMap are revisited. The order in which the keys of the map are
processed is defined by the number of entries associated with them: Slots with a larger
number of unresolved neighbours are covered first. If all neighbours of a slot are already
resolved – that is, they are in candidateResourceSet – the slot itself does not have to be
copied and can be left out. Otherwise it is added to candidateResourceSet.
The algorithm then iterates over the candidates in the set, for each of them emits

a copy in the appropriate location and updates the liveness information as well as the
interference graph. At this point, all interferences between the resources of the Φ-function
have been resolved, so their Φ-congruence classes are merged into one big class.
As soon as all Φ-functions have been visited and the interferences between their

resources have been eliminated, the transformation from TSSA form into CSSA form is
finished. The remaining step is trivial: For each Φ-congruence class one of its members is
chosen as the representative element. All occurrences of other elements of the same class
are replaced with this representative slot. After that, all Φ-functions can be erased safely.

3.5.3 Coalescing of Variables
In addition to enabling the deconstruction of the SSA form with a reduced number
of copy instructions that have to be inserted, the Φ-congruence property can also be
exploited to remove existing copies and coalesce pairs of variables into single slots [17].
This is possible for two variables x and y if one of the following conditions is met:

• x and y are in the same congruence class.

• The congruence classes of both x and y are empty. This means that neither of
them is referenced in any Φ-instruction.

• Only one y is referenced in a Φ-function, and x does not interfere with any of
the resources in phiCongruenceClass[y] − {y}. The same holds if only x has a
non-empty Φ-congruence class and there is no interference between y and a resource
in phiCongruenceClass[x]− {x}.

27

3 Design and Implementation of the Framework

x
0
 ← Φ(x

i
:L

i
, x

j
:L

j
)

LiveOut: {x
i
, x

j
}

L
i
:

L
k
:

L
j
:

LiveOut: {x
i
}

(a) TSSA form

x
0
 ← Φ(x

i
:L

i
, x

j
':L

j
)

x
j
' ← x

j

LiveOut: {x
i
, x

j
'}

L
i
:

L
k
:

L
j
:

LiveOut: {x
i
}

(b) Invalid: inserting a copy in Lj

x
0
 ← Φ(x

i
':L

i
, x

j
:L

j
)

LiveOut: {x
i
, x

j
}

L
i
:

L
k
:

L
j
:

x
i
' ← x

i

LiveOut: {x
i
'}

(c) Valid: inserting a copy in Li

Figure 3.4: Resolution of an interference between xi and xj . Adding a copy at the end of
Lj would resolve the original conflict, but produce a new interference between
xi and x′

j . The insertion of a copy in Li instead would prove effective as x′
i

and xj would not interfere.

28

3.6 Control-Flow-Sensitive Analysis

• Both slots participate in a Φ-function, but there is neither a conflict between x and
phiCongruenceClass[y]− {y} nor between y and phiCongruenceClass[x]− {x}.

Removing copies and coalescing variables helps making the code smaller and more
efficient and saving possibly precious stack space.
In summary, the extra amount of work that is required to convert a program into

SSA form and back is greatly outweighed by the benefits it brings along. It basically
provides information for free that would otherwise be non-trivial to compute and especially
cumbersome to maintain. The data flow analysis presented in the next section as well
as several existing optimization techniques implemented in JINO rely heavily on the
possibilities created by the SSA transformation. For the way back, Sreedhar’s algorithm
preserves the correctness of the code even if variables have been moved or renamed while
both avoiding the placement and enabling the elimination of redundant copies.

3.6 Control-Flow-Sensitive Analysis
The analysis pass detailed below constitutes the heart of the framework and is the point
of origin for a number of advanced optimizations that contribute to fulfilling the three
objectives introduced in Section 3.1. It collects extensive knowledge about the contents
and types of operands, the reachability of methods and basic blocks, and the use of static
and non-static fields.

3.6.1 Requirements
A fully generic code analysis would not be sufficient to satisfy the needs imposed by the
architecture of the KESO platform. In order to yield serviceable results, it has to be
tailored to also take into account the peculiarities which characterize KESO. This leads
to a number of central requirements:

• First and foremost, the intermediate code has to be analyzed in a control-flow-
sensitive manner – that is, it should attempt to statically evaluate conditional
statements and follow only those control flow edges that are sure or have a chance
to be taken. This is important in two ways because the classes and methods within
software modules are empirically interwoven with each other: On the one hand, it
can be observed that many methods are in fact only invoked from a single point in
the program. If the compiler can prove that this point lies on a path that is never
going to be taken, the method – and potentially an entire subtree of callees – can
be marked as unreachable. On the other hand, reducing the number of call and
definition sites also increases the accuracy of the results as the number of possible
values is reduced for the affected variables – in extreme cases only a single constant
value remains.

• Since the application is configured statically, an inter-procedural whole-program
analysis is a must. The impossibility to dynamically load new code at runtime
prevents the need to brace oneself for bad surprises when making aggressive

29

3 Design and Implementation of the Framework

assumptions ahead of time4. Thus it can be very effective to examine the data flow
not only on a local scale, but also on a global scale from one method to another.

• In many scenarios, the breakdown into domains comes along with a split in function-
ality. This means that two different domains often share the same library modules,
but have disjoint application code and entry points (tasks, ISRs, et cetera). As
per-domain reachability information opens up further optimization possibilities, it
makes a lot of sense to examine the domains independently of each other.

• Lastly, special consideration of some of KESO’s unique mechanisms can open
the way to further profound efficiency improvements. Of special interest are raw
memory regions, named shared memory segments, and CiAO message ports because
all of them implicate bounds checks that can potentially be optimized away.

The data flow analysis was designed and built around these requirements. It works in
a control-flow-sensitive and inter-procedural manner, is aware of the properties entailed
by KESO’s domain concept, and has special built-in support for relevant features of the
KNI mechanism.

3.6.2 Theoretical Basics

The fundamental principle of the algorithm is the assignment of so-called lattice values to
all nodes in the program. Each node is characterized by a lattice element that represents
the gathered knowledge about its value, type, and others. In its simplest form, the lattice
looks as depicted in Figure 3.5 and an element can be one of three types:

• > is the top and indicates that no data flow information is available yet.

• ⊥, the bottom, purports that the node has a non-constant value that is not further
exploitable.

• Each element Ci represents a different constant value, with all constant lattice
elements having the same height.

Each node of the program is associated with a lattice cell that holds its lattice element
and is initially set to >. As the algorithm progresses, constant expressions are evaluated
and the related lattice cells are lowered. Given two lattice cells x, y a typical binary
expression node ⊕ is evaluated as follows5:

x⊕ y =
{
Ci ⊕ Cj if x = Ci ∧ y = Cj

⊥ if x = ⊥ ∨ y = ⊥

4For example, if only one callee candidate remains for the invocation of a non-final virtual method, the
lookup in the dispatch table is not required and can be optimized away. However, if it were possible
to dynamically load a subclass at runtime, this optimization would be fatal.

5As Java does not permit the use of uninitialized variables, neither x nor y can be > provided that the
algorithm processes the program nodes in the correct order.

30

3.6 Control-Flow-Sensitive Analysis

⊤

⊥

C
2

C
1

C
n

C
n1...

Figure 3.5: The three-level lattice used in Wegman and Zadeck’s constant propagation
algorithm [27]. The top element indicates that no data flow information
is available yet, the bottom element signifies a non-constant value. Every
element in between represents one of the possible constant values.

This means that if any of the operand lattice cells is ⊥, the result is ⊥ as well. When
the values of two nodes flow together in a Φ-function, the meet operator u is applied:

x u > = x

x u ⊥ = ⊥

Ci u Cj =
{
Ci if i = j
⊥ if i 6= j

In other words, the result is constant only if two elements with the same constant
value are met. In all other cases, except when both operands are uninitialized, it is ⊥.
Hence it is guaranteed that the result of the meet operation always has the same or a
lower height than the lowest operand, which is an important criterion for the convergence
of the algorithm [27]. The u operator is commutative and associative, thus when more
than two cells flow together, the meet can be computed pairwise iteratively.
While the three-level lattice is very suitable for simple purposes such as constant

propagation, a detailed data flow analysis needs a finer distinctive grade than merely
constant/non-constant. The newly implemented analysis in JINO extends the lattice
model in three ways:
• For integer nodes, two additional classes of intermediate levels are introduced: sets
(for more than one unique value) and intervals (for a fixed range with a maximum
and a minimum).

• Lattice cells for object references differentiate between object constants, non-null
(that is, valid) references, and possibly invalid references. Furthermore, static type
information is propagated and stored along with the cells.

31

3 Design and Implementation of the Framework

• Arrays, raw memory objects, shared memory segments and CiAO message port
data objects are annotated with supplementary information that can be exploited
by the backend.

3.6.3 Analysis Algorithm
The basic idea behind the analysis algorithm has been adopted from the sparse conditional
constant propagation (SCCP) method by Wegman and Zadeck [27], an SSA-based control-
flow-sensitive technique for the propagation of constant values through a program. It
utilizes the three-level lattice presented in the previous subsection and works in an
iterative fashion with the aid of two work lists – one for control flow edges and one for
data flow edges. The lattice cell information is used to evaluate conditional branches –
control flow edges that will not to be taken are not processed. After the analysis has
terminated, all basic blocks that were never visited can be considered dead because none
of their incoming edges has had to be examined.
JINO’s flow analysis pass seizes on this idea, however with several adjustments and

enhancements due to a shifted focus. As mentioned, an extended lattice model is used
in order to hold more fine-grained knowledge about the program data. Also, slight
structural modifications to the algorithm were necessary because JINO’s intermediate
representation is based on basic blocks and syntax tree lists whereas SCCP is originally
designed for a program dependence graph representation with explicit control and data
dependence edges between the instruction nodes.

Algorithm 3 contains an outline of the analysis procedure, which is run separately for
each domain of the system configuration. As Java bytecode does not know the concept
of statically initialized variables6, all flow lattice cells are incipiently set to >. The two
work lists are defined as follows:

• SSAWorkList contains the root nodes of syntax trees that have to be visited or
revisited because the lattice cell of a variable that is used by some node of the tree
has changed. In its original state it is empty.

• FlowWorkList holds control flow graph edges in the form of 2-tuples (Lfrom, Lto).
An edge is added to the list whenever a branch instruction or an implicit branch
is encountered and the analysis revealed that this edge will or may be taken. In
the case of conditional branches, this is determined by statically evaluating the
condition. Unconditional branches are always taken. Visited edges are marked as
executable – initially, all edges are non-executable.

The algorithm starts by adding the entry methods of the domain – to be precise, edges
leading to their respective entry blocks – to the FlowWorkList. They are determined
by the configuration of the domain and comprise the following methods:

• the default constructor and run() method of tasks,
6Static fields of a class are initialized by the implicit method <clinit>(), except for those implicitly set
to 0 or null, respectively. However, the analysis only covers fields that are declared final, which are
dictated to be initialized explicitly.

32

3.6 Control-Flow-Sensitive Analysis

Algorithm 3 The data flow analysis algorithm loosely based on Wegman and Zadeck’s
concept of sparse conditional constant propagation [27].

procedure AnalyzeDomain(D) . Performs the analysis for the domain D

for all program nodes n do
LatticeCell[n]← >

end for
SSAWorkList← []
FlowWorkList← []
Mark all CFG edges as not executable

for all methods M ∈ EntryPoints[D] do
add(FlowWorkList, (null, Lentry)) . Lentry is the entry block of M

end for

while SSAWorkList 6= [] ∨ FlowWorkList 6= [] do
if SSAWorkList 6= [] then . Process an item from the SSAWorkList

root← poll(SSAWorkList)
for all nodes n in the syntax tree of root do

visit(n, L) . L is the basic block that contains n
end for

else . Process an item from the FlowWorkList
(Lfrom, Lto)← poll(FlowWorkList)
if (Lfrom, Lto) is not marked as executable then

Mark (Lfrom, Lto) as executable
for all nodes n in Lto do

visit(n, Lto)
end for
if Lto contains no explicit branch instruction then

add(FlowWorkList, (Lto, Lsucc)) . Lsucc is Lto’s implicit successor
end if

end if
end if

end while

end procedure

33

3 Design and Implementation of the Framework

procedure visit(n, L) . Visits an instruction node n located in basic block L
if n is a method invocation then

for all candidate methods Mc do
add(FlowWorkList, (null, Lentry)) . Lentry is the entry block of Mc

for all formal arguments a of Mc do
Connect a with the corresponding actual argument . See Section 3.6.4
add(SSAWorkList, a)

end for
end for

end if
LatticeCell[n]← evaluate(n)
if LatticeCell[n] changed its value then

if n writes to a variable x then
for all root nodes root of syntax trees that contain uses of x do

add(SSAWorkList, root)
end for

else if n is a branch instruction then
for all branch targets Ltarget that can be reached do

add(FlowWorkList, (L, Ltarget))
end for

end if
end if

end procedure

function evaluate(n) . Evaluates the instruction node n
cell← static evaluation of n, given the lattice cells of all of its operands
return cell

end function

34

3.6 Control-Flow-Sensitive Analysis

• interrupt service routines,

• all methods of exported services,

• operating system hooks,

• and all methods explicitly requested by KNI weavelets.

The procedure then loops until both SSAWorkList and FlowWorkList are empty.
In every iteration one element is removed from either work list. If the element stems
from the former, it is the root of a syntax tree and all nodes within that tree are visited
as described below.

If an element is taken from the latter list, it is an edge connecting two basic blocks. In
case the edge is marked as executable, this control flow path through the program has
already been explored and the basic block does not have to be processed again. Otherwise
however a previously uncharted path to the destination block has been found, so the
instructions within it – in particular the Φ-functions, if existing, and all nodes depending
on their results – have to be revisited because new values may be flowing in via the edge.
When the instruction nodes have been visited and no explicit branch has been found, the
block falls through to its direct successor, hence the appropriate edge is added to the
FlowWorkList.

The visit(n, L) function that visits a given instruction node n within the basic block
L is defined as described in the following. First of all, if the instruction is a method
invocation, the list of possible callees is determined, their entry blocks are added to the
FlowWorkList, and their formal arguments are connected to the actual arguments at
the call site and added to the SSAWorkList. Details about this are given in the next
subsection.
The next step is the evaluation of the instruction node using the lattice cells of its

operands to compute the cell of the node itself. The exact way the instruction is evaluated
and the potential additional metadata that is annotated (type, size, et cetera) depends
strongly on the operation represented by the node. For instance, binary operations are
evaluated as hinted above, Φ-functions are processed with the meet operator, and so on.
The result of the evaluation is a lattice cell that is associated with the node.

If the cell has changed its value, it has to be examined whether that change has any
effect on other cells. This is true in two cases:

1. The instruction writes to a stack slot or to a (static or non-static) field. All
expression trees that use that variable have to be updated, so their root nodes are
added to the SSAWorkList.

2. The node is a branch. One or more new targets have become reachable, thus the
outgoing edges to each of them are added to the FlowWorkList.

In summary, the algorithm incrementally visits new basic blocks and propagates the
values of variables until a fixed point has been reached because no new executable edge
has been found and no value has changed any more. Convergence is ensured by the fact

35

3 Design and Implementation of the Framework

that every evaluation of a node is guaranteed to always lower or retain the lattice element
associated with it. In other words, the algorithm optimistically starts “with the possibly
incorrect assumption that everything may be constant and determine[s] the values that
may not be constant. If an optimistic algorithm is stopped before it terminates naturally,
the information gathered may be wrong” [27].

3.6.4 Inter-Procedural Analysis

Some details have to be highlighted about the inter-procedural component of the analysis,
in particular the mechanisms for the passing of arguments, the merging of return values,
and the handling of static and non-static member variables. As described, the analysis
starts with the set of the domain’s entry points and spreads to other functions in the
process. Every time an access to a method or a field of a previously unknown class is
visited, its static initializer <clinit>() is added automatically.

When a virtual method that is implemented in more than one class is invoked, the
compiler is by default not able to predict which of the candidates is effectively going to
be called. For such methods tables with function pointers, so-called vtables, are created
that select the correct callee at runtime according to the type of the object. However,
as the data flow analysis in JINO keeps track of the object types of reference variables,
it is possible in many cases to reduce the set of candidates – often enough even down
to a single candidate. Thus the analysis does not have to examine all candidates of an
invocation instruction, but only those whose execution is actually possible.
One very important aspect of inter-procedural analysis is the possibility to see the

program as a whole instead of a set of isolated functions with no real relation between
them. To achieve this, it is essential to examine not only the flow of data within the
functions, but also between them. A mechanism to connect the actual arguments at a
call site to the formal arguments of the callee is needed. The principle behind the passing
of parameters to a method from multiple call sites is very similar to the confluence of
values from multiple predecessors of a basic block. In Section 3.5 this problem was solved
by inserting Φ-instructions – and the exact same thing is possible for function arguments.
As Figure 3.6 visualizes, a temporary Φ-node and a downstream store instruction

that defines the formal argument slot are created. For every call site a source operand
is added to the Φ-instruction. The huge advantage of this approach is that it works
transparently with the existing data flow model: Changes in the lattice cell of an actual
argument result in the addition of the associated Φ-node to the SSAWorkList – which
when visited in turn pulls in all uses of the formal argument within the callee.

Collecting the return values from multiple candidate methods works in a very similar
fashion, however without the insertion of additional nodes – the invocation itself is
assumed to be an implicit Φ-function that merges the results coming from all of its
candidates.
Another way to exchange data between methods are object and class fields. Only

fields declared as final are considered because they are assigned a value exactly once
and consequently are guaranteed to be initialized. For non-static final fields there may
nevertheless be more than one reaching definition because an object can have multiple

36

3.7 Code and Data Size Reduction

Caller 1:

const 11

call foo ...

Caller 2:

call foo ...

read s

void foo(int x)

read x const 1

+

store y ...

Φ

store x

Figure 3.6: Passing of an argument to a function foo() with two call sites. The formal
argument x is connected to the actual arguments by inserting a temporary
Φ- and store instruction (in red).

constructors. This issue is again resolved with the aid of Φ-functions. Apart from that,
fields are handled just like stack slots and changes in their lattice cells lead to all their
users being added to the SSAWorkList.

Once the analysis procedure is finished, collected information is available per domain.
The overall data for all domains of the application can easily be obtained by applying the
meet operator to the individual collections. Made available to other passes, it allows a
broad range of improvements in both execution performance and code size of the resulting
application. The following sections explain the optimizations that were implemented in
the course of this thesis and outline some additional future possibilities to improve the
code even further. The effectiveness of the optimization passes is analyzed and discussed
in detail in Chapter 4.

3.7 Code and Data Size Reduction

As expounded at the outset of this thesis, one of the major challenges of KESO is to
produce binaries that are small enough to run even on tiny microprocessors with a
very limited amount of code and data memory. Especially when it comes to code size,
polymorphism can easily torpedo the efforts to keep the program small because virtual
method invocations require all candidate methods to be present, even if many of them
are likely never going to be called.

37

3 Design and Implementation of the Framework

keso/driver/avr/atmega128/ATMega128

keso/core/TaskService

trafficlight/TrafficLightTask

keso/core/AlarmService

keso/core/MT_U8

trafficlight/TrafficLightService

<clinit>()V

registersdm registers

<init>()V

terminate()I <clinit>()V

statessetBit(I)V

<init>()V

setLights(B)V _inst

getAlarmByName(Ljava/lang/String;)Lkeso/core/Alarm;

and(I)V

setRelAlarm(Lkeso/core/Alarm;II)I

or(I)V

run()V <init>()VsignalSwitch()Z

Figure 3.7: Reachability graph of the trafficLightControl domain in the TrafficLights
sample application. Solid and dotted arrows denote method calls and static
field accesses, respectively. There are four entry points: the run() method
and default constructor of a task, and the methods of an exported service.

The flow analysis pass detailed in the previous section provides a remedy for this
problem. It collects not only data flow knowledge about the values of instruction nodes,
but also accurate reachability information. For every domain it is recorded which classes,
methods, basic blocks, and static fields have been reached by the analysis starting from
its entry points. An example for the reachability graph of a domain in a sample program
can be seen in Figure 3.7.

The overall reachability data is computed by forming the union of the individual data
sets and is exploited by an optimization pass that is run between the flow analysis and
the deconstruction of the SSA form. The transformations performed by the pass are
described below.

3.7.1 Purging of Unreachable Methods
Methods that are not going to be invoked from anywhere in the code and are not an
entry point to any domain can be removed from the repository without a problem. As
the flow analysis evaluates the type information of the callee object at call sites and only
marks those candidates as reachable that may actually be executed, this also produces
hits for virtual methods. When a virtual method invocation is encountered that has only
one remaining candidate, it is converted into an invokespecial instruction, which saves
a vtable lookup at runtime.
After the unreachable methods have been purged, it is necessary to recompute the

38

3.7 Code and Data Size Reduction

dispatch tables to eliminate any remaining references to them.

3.7.2 Elimination of Dead Basic Blocks
When building an application on top of a library framework, the framework mostly
provides generic methods, but the program often only uses specific parts of the offered
functionality. As a consequence, only very specific paths through a library method may
be taken whereas many other paths may never be followed, resulting in numerous basic
blocks with dead code. Such dead basic blocks can easily be detected: They are the
blocks that have never been visited in the course of the flow analysis pass.
Simply erasing an unreachable basic block from a method is not sufficient by itself.

Three additional steps have to be taken to bring the intermediate code back into a
consistent state:

1. Branch instructions in all predecessor blocks have to be adjusted to no longer point
to the block. In most cases this means that a conditional branch is converted into
a goto statement. This way the evaluation of the condition drops out, resulting in
faster execution.

2. If an immediate successor block contains Φ-functions, their respective source
operands must be removed.

3. The definition-use chains of local variables accessed in the block have to be updated.

Depending on the actual circumstances, the elimination of dead basic blocks from a
method can significantly reduce its size and slightly improve its speed – the latter not
only because of the omission of condition evaluations, but also because of a better code
locality that puts less pressure on the instruction cache of the CPU.

3.7.3 Removal of Unused Static Fields
In a semantic sense, static fields in Java are the equivalent of global variables in C.
Similarly to basic blocks or entire methods, they can be removed if the static analysis has
revealed them to be accessed from no point within the reachable scope of the program.

KESO in its original implementation creates an area for all static fields in the descriptor
of a domain and calls the static initializers of all classes at startup. With the reachability
data at disposal, it can be seen that by far not all classes are used inside all domains – to
the contrary, many classes are only accessed from within a single domain. Therefore the
backend has been modified to emit for every domain only those calls to class constructors
that are really needed. This leads to reduced startup times and – because static initializers
may allocate objects – also to potential savings of heap memory.
While static fields that are not accessed from any domain are omitted, each domain

descriptor still holds a duplicate of all the remaining static fields, regardless of whether
they are actually needed in the domain itself. This is because the field access mechanism
expects all containers to have the exact same layout. If the layout varied from domain
to domain, an additional indirection would be obligatory, which is avoided for obvious

39

3 Design and Implementation of the Framework

performance reasons. An alternative solution that was however not implemented for this
thesis is suggested in Section 3.10.

3.8 Elimination of Redundant Runtime Checks
The cost of software-based memory protection is the overhead introduced through the
insertion of runtime checks into the target code. Strict type safety requires that all
operations on data in the program be validated – either statically during compilation or
dynamically during execution. Class types of object variables are altogether verified at
compile-time during the semantic analysis of the source code so that no dynamic checks
are necessary except for explicit type casts in the source. There are however two aspects
of type safety that cannot be covered by a mere semantic analysis: reference validity
– that is, whether a reference variable points to a valid object or to null – and the
correctness of indices related to array reads and writes. In addition to that, employing
one of KESO’s various ways to access raw memory via means of KNI weavelets also
results in the emission of runtime checks which make sure that no memory beyond the
managed area is read or written.

The existing version of the backend already made use of certain static knowledge about
the program with the objective of omitting checks where possible, yet the information
available was relatively limited. As a consequence, the existence of precise control-
flow-sensitive knowledge about the flow of data through the application offers vast
opportunities for improvements. The more checks can be evaluated ahead-of-time, the
smaller the runtime overhead gets when the program is executed.

3.8.1 Validity of Object References

By default JINO already skips null reference checks in two cases:

• The operand is an object constant, so the case is trivial: If it is a null constant,
the reference is invalid - otherwise it is valid.

• Another check of the operand node has already been emitted inside the same basic
block, hence the reference must be valid.

The newly introduced optimization of validity checks based on the implemented
data flow analysis is fairly simple, yet of considerable effectiveness: The gathered flow
information is passed to the backend, which looks up the appropriate lattice cell for the
node to be checked. The cell contains the immediate information whether the reference
is always valid or potentially invalid.

3.8.2 Array Bounds Checks

Reading from or writing to an array element is one of the most critical operations in
every programming language. Unchecked writes beyond the end of an array have a long
and infamous history of crashing applications, causing data loss and even being one of

40

3.8 Elimination of Redundant Runtime Checks

the most widely exploited gateways to attack a system. To prevent such mayhem, the
Java Language Specification states that “[a]ll array accesses are checked at run time; an
attempt to use an index that is less than zero or greater than or equal to the length of
the array causes an ArrayIndexOutOfBoundsException to be thrown” [7].
A check can however be dropped if it is proved that the index is always going to be

within the bounds of the array. For this purpose both the index and the length of the
array need to be known statically in advance. JINO again employs a simple mechanism
with limited effectiveness because it does not utilize control-flow-dependent information.
When the backend translates an array access into C code, it distinguishes between two
cases:

1. At least one of the two values in question is a known constant. A check expression
is printed that directly incorporates the constant(s). If either value is fixed, one
potential memory access is saved. If both index and length are constant, JINO
trusts the C compiler to be smart enough to optimize the comparison away.

2. Neither value is known to be constant, requiring a full check to be emitted.

With the new data flow information available, the backend finds a lot more array
accesses that can be executed without having to check the index. On the one hand,
more constant indices and array lengths are found. On the other hand, the check is also
performed at compile-time when any of the two lattice cells contains a set or an interval
of possible values and the following condition is fulfilled:

min(LatticeCell[index]) ≥ 0 ∧max(LatticeCell[index]) < min(LatticeCell[length])

If this is the case or if both operands are constant, the check is omitted completely.

3.8.3 Memory Range Checks

KESO allows directly accessing memory addresses from regular Java source code with
the aid of its MemoryService, which is internally implemented using the KNI mechanism.
The service offers several methods that can be called by an application to statically or
dynamically allocate memory blocks at fixed or arbitrary addresses. The result is a
Memory object that is characterized by the base address and size of the managed area and
whose accessor methods can be used to read or write in the block at arbitrary offsets. The
implementation is very similar to the RawMemory concept in the Real-Time Specification
for Java.

The methods of MemoryService and Memory objects are implemented as KNI weavelets.
Invocations of static allocation methods are replaced with constant Memory objects directly
in the intermediate code. Calls to accessor methods of Memory objects are handled later,
namely during the final translation phase. Instead of emitting a function call, an
appropriate sequence of C code is printed that performs the desired raw memory access.
Before the actual read or write operation, however, the emitted C code performs a check
whether it would stay within the address range of the block.

41

3 Design and Implementation of the Framework

The treatment of these checks by the backend is very similar to the bounds checks
of arrays, with the difference that offset and size are specified in bytes so the size of
the accessed word has to be taken into account. Again, JINO’s existing implementation
tries to find constant offsets and Memory objects and differentiates between checks with
partially or fully known operands and checks for which no applicable static knowledge
exists.

The optimization accomplished by passing the data flow information to the backend is
likewise due to an improved inter-procedural propagation of constant values and due to
the consideration of sets of constants and integer ranges. A runtime range check for a
Memory object can consequently be dropped if both offset and size are constant or if the
following holds:

min(LatticeCell[offset]) ≥ 0 ∧
max(LatticeCell[offset]) + wordSize ≤ min(LatticeCell[blockSize])

Checks for Memory objects are by far more likely to be optimized away than those for
arrays because experience shows that in practice virtually all offsets are fixed integers.
There are two other interesting cases related to raw memory accesses where range

validations can be partially eliminated. Both are KESO implementations of concepts of
the CiAO operating system for inter-process (or inter-task) communication:

• The SharedMemoryService allows looking up named areas of shared memory that
are defined in the CiAO configuration and imported through an according entry in
the KESO configuration.

• MemorySenderPorts and MemoryReceiverPorts are an interface to a message-based
communication mechanism. The sender allocates a message buffer, fills it with
data and passes the ownership of the message to the receiver, who is responsible
for releasing it once it is no longer needed [20].

Both mechanisms work with Memory objects of a fixed size. The problem is that the
JINO compiler itself has no way to determine the size because that information is not
included in KESO’s configuration file. However, it is possible to find out the name of the
C structure that represents the object in CiAO, and to get its size using the sizeof()
operator.

The flow analysis pass was enhanced to remember and propagate the names of Memory
objects that are obtained through a CiAO shared memory lookup or the allocation
or reception of a port message. When the backend emits the range check for such an
object, it inserts the appropriate sizeof() expression as the size of the object if it can
unambiguously determine the associated name. If the offset is constant as well, chances
are good that the C compiler is going to recognize this and optimize the check away.

3.9 Static Computation of Runtime Information
While all previously presented optimizations affect the application code, there are also
ways to exploit the reachability data for slimming down the KESO runtime system itself.

42

3.10 Further Optimization Possibilities

Again, this is achieved by statically evaluating information during the code generation
phase that would normally have to be computed while the program is executed.

3.9.1 Resource Lookup

System objects like tasks, alarms, shared memory, and others are declared in the appli-
cation configuration and can be looked up with the aid of a lightweight name service
as shown in Listing 2. Domains must explicitly declare the resources they wish to use,
otherwise a null reference is returned instead of the requested resource object. The
compiler usually generates a simple array lookup for this [23].

Listing 2 Lookup of a system object.
// Use the name service to retrieve the system object of the rcTask task
Thread rct = TaskService.getTaskByName("rcTask");

// Activate the rcTask task
TaskService.activate(rct);

With the reachability information, JINO can remove such an array lookup entirely if
either all or none of the domains in which the respective call to the lookup method is
reachable import the resource. In the former case, a reference to the resource is assigned;
in the latter, the result set to null.

3.9.2 Symbol Prefixes for Statically Allocated Objects

When KESO is used in combination with a CiAO operating system that enables hardware
memory protection, it is necessary that every statically allocated object can be assigned
to a domain. In CiAO this relation is based on the name of the symbol, which has to
contain a domain-specific prefix.
The MemoryService can map a Memory block to a static object. It needs to know in

which domain the object is mapped so it can create a symbol with the correct prefix.
Currently, it is required that the domain be unique for each mapping – if it were
ambiguous, one object would have to be created for each domain and the decision which
one to use from the current domain would have to happen dynamically at runtime.

3.10 Further Optimization Possibilities

As demonstrated in the above section, the implemented analysis pass opens up a wide
range of possibilities to improve the efficiency of the program in both code size and
execution speed. While the most effective of these optimizations have been added to
JINO, there is still enough space for even further enhancements. This section outlines a
few ideas for future improvements to the compiler.

43

3 Design and Implementation of the Framework

3.10.1 Path Sensitivity

One shortcoming of the analysis is the fact that it does not yet incorporate path-sensitive
information. For example, when a branch with the condition x > 0 is evaluated, then
the following holds:

• x > 0 in all basic blocks that are dominated by the true target of the branch.

• x ≤ 0 in all basic blocks that are dominated by the false target.

In combination with improved handling of expressions whose operands have lattice
cells containing value sets or intervals, this would yield more accurate results especially
for loop variables. As loop counters are often simultaneously used as indices for array
operations, even more bounds checks could be evaluated statically.

To limit the impact of iterated loop analysis on the running time of the algorithm, it
is possible to identify loop-carried expressions and treat them separately [14].

3.10.2 Stack and Data Memory Savings

Although the implemented SSA deconstruction and coalescing algorithm already reduces
the number of stack slots, it is still relatively high. As mentioned in Section 3.5, this is
not a big problem for slots that have primitive data types when C code is compiled with
optimizations in the C compiler enabled, but object references may be laid out into a big
array, which is hard to optimize. To resolve this, a colouring algorithm could be applied
to the existing interference graph, merging slots whose live ranges do not interfere.

Also, an interference graph could be built and coloured for static class fields. Interference
edges would have to be added between all fields that are accessed within the same domain.
This could in turn reduce the size of the data section.

3.10.3 Iterative Optimization

Last of all, the data flow analysis could be integrated better into the existing pass
infrastructure. Not all of the valuable results created by it are already used. For instance,
a subsequent constant folding pass could theoretically find many more constants than the
existing one, which is executed before the analysis. Moreover, after the newly implemented
optimization pass has removed dead basic blocks from the methods, potentially making
some of them much smaller, the function inlining pass could find new inlining candidates.
Consequently, it is a good idea to iterate select analysis and optimization passes

until either a fixed point has been reached or a given maximum number of iterations is
surpassed.

3.11 Summary
The static configuration of KESO applications enables the compiler to perform aggressive
optimizations in order to reduce the size and enhance the speed of the resulting machine

44

3.11 Summary

program. The basic requirement for such optimizations is the existence of an inter-
procedural and control-flow-sensitive analysis pass that collects comprehensive and
accurate data flow and reachability information.

Such an analysis was implemented within the scope of this thesis, along with a collection
of optimizations that exploit the collected knowledge about the program. The analysis
is applied to an SSA form of the intermediate representation and works by iteratively
tracking the control and data flow dependencies within the program, assigning a lattice
cell to each instruction node. Its results are put to use for a number of optimizations
that remove unreachable code and unused data, eliminate redundant runtime checks and
slim down the runtime system. The effectiveness of these improvements is discussed in
the next chapter.
Furthermore, a better algorithm was implemented for the deconstruction of the SSA

form and the coalescing of variables, the structure of the compiler was modularized to a
greater degree, and the debugging facilities were enhanced.
The development of JINO is by far not completed yet. While many significant

improvements to the compiler have already been achieved, the analysis and optimization
framework presented has opened up a wide range of new possibilities for even further
code speedup and size reduction.

45

4 Evaluation

In the previous sections, the enhancements that were made to the JINO compiler in order
to generate smaller and faster code were presented in detail. This chapter evaluates and
discusses the effectiveness of the newly introduced optimizations according to a number of
criteria on the basis of extensive measurements. The results are both presented visually
and analyzed textually in the following sections.

4.1 Benchmarks
When choosing a set of benchmarks for the evaluation of a system, it is important to
mind a number of aspects so as to receive meaningful outcomes. Overall, the tests should
cover an area of realistic use scenarios and be targeted towards real-world workloads
while at the same time producing simple numerical results that can easily be understood
and compared. For the analysis of the KESO compiler, it was decided to put a focus on
the correspondence to reality and thus select two major applications, each in different
variants, rather than deploying a bigger set of micro-benchmarks.

The two programs chosen are the I4Copter control software and the CDx real-time
Java benchmark. The former is directly derived from a real-world embedded controlling
application, whereas the latter is a relatively new open-source benchmark suite designed
for real-time Java environments.

4.1.1 I4Copter

The I4Copter is a research platform for safety-critical embedded software. It controls and
monitors a quadrotor helicopter with an arsenal of sensors, actuators and communication
ports [25]. The software, initially written in C++ and based on the PXROS operating
system, is modular and was ported to the CiAO operating system.

The regulation algorithm for the flight attitude and the SPI bus controller module were
also ported to KESO. The purpose of the regulation algorithm is to compute the thrust
values for the engines to get the quadrocopter into a certain angle relative to a reference
point. The algorithm receives its input data from gyroscopic sensors, accelerometers
and other devices as well as the remote control, and is executed in periodic intervals. It
performs many single-precision floating point operations, array accesses and accesses to
raw memory, but no virtual method calls or type checks [21].
Two variants of the I4Copter software were used for conducting measurements:

1. An “offline test” that feeds a recorded trace of sensor data to the flight control
algorithm and measures the time it takes to process each sample.

47

4 Evaluation

I4Copter CDx on-the-go CDx simulated

CPU Infineon TriCore TC1796 Intel Core 2 Quad Q9300
150 MHz CPU, 75 MHz system 2.50 GHz

Memory
2 MiB flash 2 MiB flash
64 KiB SRAM 1 MiB SRAM 4 GiB DDR2-800
1 MiB MRAM

OS CiAO r1419 Linux 2.6.38

Compiler GCC 3.4.6 GCC 4.5.2
Binutils 2.13 Binutils 2.21

Table 4.1: Configuration of the test systems.

2. The complete I4Copter software with the existing Java components enabled. This
variant was not used for time measurements, but only for collecting compiler
statistics about an exemplary real-world application.

4.1.2 CDx

CDx, which was chosen as an example of a larger test program, is “an open-source
real-time Java benchmark family that models a hard real-time aircraft collision detection
application” [8]. It consists of two components: an air traffic simulator that periodically
generates radar frames with the positions of aircraft, and a collision detector that
processes these frames to find possible clashes. The detection is split into two steps: First
the problem is divided into subsets of potentially colliding aircraft that are located in
the same two-dimensional grid cell without considering the altitude. After that, a full
three-dimensional collision detection is performed for each of the subsets.
Benchmarking was conducted with two different flavours of CDx on two different

systems:

1. The “on-the-go” variant generates the radar frames as the program progresses. It
was tested on a TriCore microprocessor running a CiAO system.

2. The “simulated” version has an additional concurrent task, optionally running in a
separate KESO domain, that simulates the radar station. The frames are passed
to the collision detector via a buffer and are dropped if an overflow occurs because
frames are generated faster than they are processed. As no TriCore port is available,
the benchmark was executed on a PC with Trampoline as an OSEK abstraction
layer, with the multi-domain feature enabled.

4.2 Measurements and Results
The configuration of the systems on which the measurements were performed is listed in
Table 4.1. The following section presents and discusses the realization and results of the
measurements.

48

4.2 Measurements and Results

 0

 200

 400

 600

 800

 1000

 1200

 1400

I4Copter test I4Copter CDx on-the-go CDx simulated

N
u
m

b
e
r

o
f

fu
n
ct

io
n
s

e
m

it
te

d

New optimizations disabled

206
295

559

1301
New optimizations enabled

83
129

318

801

Figure 4.1: Number of functions emitted by JINO. Thanks to the available reachability
data, between 38 and 60 % of the methods are removed in the test applications.

4.2.1 Removal of Dead Code and Unused Static Fields

The first focus of interest is the effectiveness of the reachability analysis. As explained in
Chapter 3.7, an application that uses classes and methods from a library framework may
initially require transitively pulling in large parts of the library, but a good control-flow-
aware analysis will detect that many of them are in fact unused, allowing the compiler to
drop them.
As Figure 4.1 demonstrates, an impressive number of methods is affected by this. In

the CDx applications over a third of the functions could be eliminated – in both I4Copter
configurations even far more than half of them, significantly reducing the amount of C
code emitted into the target directory. This is reflected in lower compile times when
translating the C code into machine code and also decreases the size of the global dispatch
table.

The optimization pass also converts virtual method invocations into non-virtual calls
if the data flow analysis reveals that the callee candidate is unique, removing the need to
perform a lookup in the dispatch table at runtime. Figure 4.2 shows that this can affect
a considerable number of call sites.

Another benefit of the reachability analysis is the possibility to omit static fields that
are not accessed from anywhere within the live parts of the program. Figure 4.3 exhibits
that the saving is not overwhelmingly significant in the test applications. Neither of
the CDx variants has any class fields that were found to be redundant. Nevertheless,

49

4 Evaluation

 0

 500

 1000

 1500

 2000

 2500

Optimization disabled Optimization enabled

N
u
m

b
e
r

o
f

m
e
th

o
d
 i
n
v
o
ca

ti
o
n
s

Non-virtual

1016

1840

Virtual
2410

1117

Figure 4.2: Method invocations in the CDx “simulated” benchmark. The optimization
removes dead call sites and converts virtual calls if the candidate is unique.

 0

 20

 40

 60

 80

 100

 120

I4Copter test I4Copter CDx on-the-go CDx simulated

N
u
m

b
e
r

o
f

u
se

d
 s

ta
ti

c
fi
e
ld

s

New optimizations disabled

12
17

84

105

New optimizations enabled

9
14

84

105

Figure 4.3: Number of static fields used. While the I4Copter software contains three
fields that are not accessed, CDx indeed uses all of its static fields.

50

4.2 Measurements and Results

the I4Copter code contains three fields that are not needed. While this is not a bad
percentage, the actual amount of memory saved thereby could be regarded as almost
negligible, except for smallest embedded systems where literally every byte matters.

4.2.2 Elimination of Redundant Runtime Checks

The second big array of new optimizations concerns the deletion of runtime checks whose
outcome can be determined statically at compile-time. It is differentiated between two
classes of checks: validity checks and bounds checks – the latter comprising both array
bounds memory range validations.
As for the former class, it can be observed in Figures 4.4 and 4.5 that JINO in its

original implementation already found a quite remarkable number of redundant checks,
even with only simple flow information at hand. The high number of statically predicted
non-null references can probably be attributed to objects created locally and used directly
after their initialization. Nonetheless, the inter-procedural and control-flow-sensitive
analysis yields an additional 8–40 % of validity testings that are executed ahead-of-time,
depending on the application in question.

It is noticeable that among the many predictable references there is a single case of a
null dereferencing in the CDx benchmarks. If this piece of code were ever executed, a
NullPointerException would be thrown. The snippet of source code that causes the
false positive is presented in Listing 3. This example shows that the system configuration
lookup is evaluated statically at compile-time and yields a null reference because the
property ALLOCATION_RATE is not defined. The constant is correctly propagated to the
instruction nodes using it, but the branch condition (null != null) is not recognized by
the analysis to be immutably false. This is trivial to fix, which can improve the accuracy
of the reachability information, but the bugfix was not regarded in the remainder of this
chapter in order to keep the results consistent with each other.

Listing 3 The piece of code causing the erroneous detection of a null reference access.
String alloc = System.getProperty("ALLOCATION_RATE");
if (alloc != null && alloc.length() > 0) {

// ...
}

The bounds checks are particularly interesting. The statistics collected about them by
the compiler distinguishes between five different cases:

• Full checks are the most expensive because they actually consist of two tests – a
validity check and a subsequent bounds check.

• Different from what the name suggests, known index covers the situations where
either the index or the length is constant.

• Non-null indicates that the array reference is known to be valid.

51

4 Evaluation

 0

 200

 400

 600

 800

 1000

 1200

Optimization disabled Optimization enabled

N
u
m

b
e
r

o
f

n
u
ll

ch
e
ck

s

Unsure

125
75

Always non-null

968
1018

Always null

0 0

(a) I4Copter offline test

 0

 200

 400

 600

 800

 1000

Optimization disabled Optimization enabled

N
u
m

b
e
r

o
f

n
u
ll

ch
e
ck

s

Unsure

179

111

Always non-null

706

774
Always null

0 0

(b) I4Copter application

Figure 4.4: Distribution of null checks in the I4Copter application and offline test.
Although the original backend implementation already statically evaluates a
huge number of validations, the new optimization saves an additional 38–40 %.

52

4.2 Measurements and Results

 0

 200

 400

 600

 800

 1000

 1200

 1400

Optimization disabled Optimization enabled

N
u
m

b
e
r

o
f

n
u
ll

ch
e
ck

s

Unsure

503

395

Always non-null

1052

1160
Always null

1 1

(a) CDx on-the-go (TriCore)

 0

 1000

 2000

 3000

 4000

 5000

Optimization disabled Optimization enabled

N
u
m

b
e
r

o
f

n
u
ll

ch
e
ck

s

Unsure

1787
1638

Always non-null

4521
4670

Always null

1 1

(b) CDx simulated (Trampoline)

Figure 4.5: Validity checks in the CDx on-the-go and CDx simulated benchmarks. Com-
pared to the previous version of the backend, between 8 and 21 % more null
checks are evaluated at compile-time.

53

4 Evaluation

• Constant array checks cannot be evaluated by JINO, but will most probably be
folded by the C compiler.

• Omitted checks are removed entirely.

Array bounds and memory range checks are treated equally and not listed separately.
The results of the optimization are visualized in Figure 4.6 for the I4Copter tests and in
Figure 4.7 for the CDx benchmarks.
When looking at the I4Copter statistics, it strikes that the optimization is extremely

effective. 87 and 61 % of the bounds checks, respectively, are omitted completely – another
7–17 % contain constant values on both sides of the comparison and are very likely to be
removed by the C compiler. In total, the number of checks emitted is reduced by over
three quarters in the quadcopter control application and almost completely eradicated in
the offline test. The very high numbers can be explained by the fact that many array
accesses are done with a constant index and nearly all memory reads and writes use
an immediate offset. As the raw memory objects are not wildly passed around in the
program, the analysis is able to keep track of the allocated memory chunks, the shared
memory segments, and the message data blocks along with their special properties.

In the CDx benchmarks, the picture is more diverse. The graphs illustrate that these
applications make no use of raw memory objects and exhibit by far more complex and
less predictable access patterns with respect to arrays. In the “simulated” variant a
considerable number of checks is omitted, but the bulk of them is located in initialization
functions that fill tables with pre-computed values and are executed only once. This
explains why the yellow bar with 272 known-index checks is almost in its entirety pushed
to the right in the lower diagram. Apart from that, a number of checks are converted
into less expensive ones in both applications.

4.2.3 Code Size
After it has been examined in numbers how many optimizations were made, it is relevant
to analyze the actual effect these optimizations have in practice. The two areas of interest
discussed in the following are space consumption and runtime performance. As the
I4Copter control application is not suited for time measurements and the size of the
binary would have been largely dominated by the parts of the code that are not written
in Java, only the offline test and the two CDx variants were regarded.
The text segment size of the built ELF binaries was determined with the aid of the

size utility. The results are listed and visualized in Figure 4.8. For comparison, it was
also measured how much space would be saved in addition if the runtime checks were
disabled completely.
The first observation that can be made is that the newly implemented optimizations

indeed lead to the generation of more compact code – however not to a degree that might
have been expected when looking at the impressive number of functions omitted during
compilation as depicted in Figure 4.1. This is because the linker is somewhat clever
and does not include functions that are obviously referenced nowhere in the program.
The JINO backend initiates this by specifying the -ffunction-sections flag for the

54

4.2 Measurements and Results

 0

 100

 200

 300

 400

 500

 600

 700

Optimization disabled Optimization enabled

N
u
m

b
e
r

o
f

b
o
u
n
d
s

ch
e
ck

s

Full check

48
8

Known index

38
15

Non-null

473

9

Constant

0
39

Omitted

8

496

(a) I4Copter offline test

 0

 20

 40

 60

 80

 100

 120

 140

Optimization disabled Optimization enabled

N
u
m

b
e
r

o
f

b
o
u
n
d
s

ch
e
ck

s

Full check

61

9

Known index

23 25

Non-null

65

0

Constant

0

27

Omitted

9

97

(b) I4Copter application

Figure 4.6: Distribution of array and memory bounds checks before and after optimization
using the available data flow information. The number of checks that have to
be made at runtime is reduced by an enormous 77–94 %.

55

4 Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

Optimization disabled Optimization enabled

N
u
m

b
e
r

o
f

b
o
u
n
d
s

ch
e
ck

s

Full check

57

41

Known index

5

25

Non-null

68

62
Constant

0 0

Omitted

0
2

(a) CDx on-the-go (CiAO TriCore)

 0

 50

 100

 150

 200

 250

 300

 350

 400

Optimization disabled Optimization enabled

N
u
m

b
e
r

o
f

b
o
u
n
d
s

ch
e
ck

s

Full check

161

132

Known index

272

24

Non-null

124 131

Constant

0 0

Omitted

0

270

(b) CDx simulated (Trampoline x86)

Figure 4.7: Bounds checks in the CDx benchmarks. In the “simulated” variant, about
half of the runtime checks are eliminated. The “on-the-go” version is less
predictable, yet sees some checks converted to less expensive ones.

56

4.2 Measurements and Results

New optimiza-
tions disabled

Dead code re-
moval enabled

All optimiza-
tions enabled

Runtime checks
disabled

I4Copter
offline test

81666 81682 73482 65282

CDx on-
the-go

86694 78566 70390 70374

CDx simu-
lated

224027 193011 190483 148787

 0

 50

 100

 150

 200

 250

I4Copter offline test CDx on-the-go CDx simulated

S
iz

e
 o

f
th

e
 t

e
x
t

se
g
m

e
n
t

(K
iB

)

New optimizations disabled
Dead code removal enabled

All optimizations enabled
Runtime checks disabled

Figure 4.8: Size of the text segment measured for three different applications. The
optimizations shrink the segment by about 10–19 %. For comparison, the
green bars visualize the result of additionally removing all runtime checks.

57

4 Evaluation

compiler, telling it to place each function into a separate section, and --gc-sections
for the linker to make it ignore unused sections. Another reason why the code size is not
proportional to the number of functions is that the text segment additionally contains
runtime system, operating system and library code that was not generated by JINO.
Despite this, a clear improvement is visible in all three test applications: Between

10 and 19 % were saved. Interestingly, the dead code removal pass appears to have a
minimally adverse effect on the I4Copter offline test albeit a number of functions and
basic blocks were removed. The exact cause of this phenomenon is unclear. On the other
hand, the omission of redundant runtime checks pays off.
The opposite behaviour emerges in the “simulated” variant of the CDx benchmark,

where the dead code elimination brings a profound reduction whereas the optimization
of checks takes effect only to a relatively minor degree. This can be explained by the fact
that the aforementioned compiler and linker flags are not active on the PC by default.

4.2.4 Execution Performance

The final and most important aspect of the evaluation is the discussion of the runtime
efficiency of the generated code. In the following paragraphs, it is examined and visualized
in which ways the newly implemented optimizations affect the performance of the program.
For comparison, the graphs also display how the optimized code would perform if runtime
checks were disabled altogether.
Both benchmarks that were used for the measurements execute an algorithm or a

procedure in a loop for several hundred times with different input data, taking the time
before and after each iteration. The resulting timestamps are stored during the execution
of the application and printed out to the serial port or the screen after the program has
finished its work.

The I4Copter offline test was run on an Infineon TriCore TC1796 microprocessor with
a CPU clock of 150 MHz and a system clock of 75 MHz. An iteration of the test is
divided into three phases for which the times are taken separately:

1. During the Input phase, the sensor data and the commands from the remote
control are each deserialized from a shared memory segment. This step is very
short and vastly dominated by raw memory accesses. Figure 4.9 shows that the
optimization of range checks pays off heavily – the time it takes to copy the input
data is reduced by a whole third.

2. The controller phase performs the bulk of the work and is computationally
intensive. It processes the values that were received from the input sources and
calculates the command data that will be sent to the actuators. As it can be seen
in Figure 4.10, the fully optimized program is about 10 % faster than the original
code. Again, the biggest effect is owed to the elimination of redundant runtime
checks.

3. Finally, in the actuation phase the values computed by the attitude controller are
sent to the engines (which are only virtually present in the test) over the SPI bus.

58

4.2 Measurements and Results

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350

E
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

Data set

New optimizations disabled
New SSA deconstruction

Flow-based optimization enabled
All optimizations enabled
Runtime checks disabled

Figure 4.9: Execution times for the input phase. The optimizations yield an advantage
of almost 33 %.

The achieved speedup is quite similar to that of the controller stage, also amounting
to 10 % at the highest level of optimization, primarily due to the omission of checks.

The test application also records and prints the timespans it needed to perform an
entire iteration. These overall execution times are presented in Figure 4.12. In summary,
the new SSA deconstruction in combination with variable coalescing and the flow-based
optimization (which eliminates dead code and converts predictable conditional branches
and virtual method calls) reduces the execution time of an iteration by 3 %. By far more
effective is the removal of unneeded validity and bounds checks – when it is combined
with the other optimizations, the program in total runs a whole 12 % faster.

The first CDx benchmark was also conducted on a TriCore TC1796 microcontroller
clocked at 150 MHz. The CDx test measures for each radar frame the time that is
required to process it and detect the possible collisions. As expected, the margin is much
closer than it is in the I4Copter offline test. Figure 4.13 illustrates that the combination
of all optimizations pushes the execution time down to 96 % of the original time. It
is apparent that the I4Copter benchmark is by far more convenient for the data flow
analysis because it contains a lot of array and raw memory accesses with a predictable
index, thus making it easy to optimize the associated checks away. The CDx benchmark
may benefit to a greater degree from the further enhancements proposed in Chapter 3.10.
The “simulated” variant of the collision detector was run with the Trampoline

OSEK/VDX layer on top of a Linux operating system kernel. The processor was
an Intel Core 2 Quad Q9300 running at 2.50 GHz. As it can be seen in Figure 4.14, the

59

4 Evaluation

 340

 350

 360

 370

 380

 390

 400

 410

 420

 430

 440

 450

 0 50 100 150 200 250 300 350

E
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

Data set

New optimizations disabled
New SSA deconstruction

Flow-based optimization enabled
All optimizations enabled
Runtime checks disabled

Figure 4.10: Duration of the controller phase for various levels of optimization. With all
improvements enabled, the gain is a bit higher than 10 %.

 55

 60

 65

 70

 75

 80

 0 50 100 150 200 250 300 350

E
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

Data set

New optimizations disabled
New SSA deconstruction

Flow-based optimization enabled
All optimizations enabled
Runtime checks disabled

Figure 4.11: Times measured for the execution of the actuator phase. The code again
runs approximately 10 % faster when all optimizations are active.

60

4.2 Measurements and Results

 440

 460

 480

 500

 520

 540

 560

 580

 0 50 100 150 200 250 300 350

E
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

Data set

New optimizations disabled
New SSA deconstruction

Flow-based optimization enabled
All optimizations enabled
Runtime checks disabled

Figure 4.12: Overall execution times of a complete copter control iteration. In total, the
optimizations make the process about 12 % more time-efficient.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 100 200 300 400 500 600 700 800 900 1000

R
e
la

ti
v
e
 e

xe
cu

ti
o
n
 t

im
e

Iteration

All optimizations enabled
Runtime checks disabled

Figure 4.13: Relative runtimes of the “on-the-go” CDx test compared to the same code
without the new optimizations. In average, the speed was improved by 4 %.

61

4 Evaluation

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

R
e
la

ti
v
e
 e

xe
cu

ti
o
n
 t

im
e

Iteration

All optimizations enabled
Runtime checks disabled

Figure 4.14: Execution time comparison for the “simulated” variant of CDx. The opti-
mizations improve the performance by 1 %.

optimizations cause an average improvement of exactly 1 %, so there are still obvious
possibilities for enhancements.

4.3 Summary
All in all, the evaluation shows that the analysis framework functions reliably and provides
good results. In particular, the reachability analysis turned out to detect a huge amount
of unused code, and the extensive and accurate data flow information for raw memory
objects was found to permit omitting a significant number of runtime checks shown to be
redundant when raw memory was used in the program.

In average, the size of the applications that were examined was reduced by a tenth and
more. The gains in execution performance varied greatly from benchmark to benchmark.
In the worst case, the optimizations brought no measurable benefit or disadvantage when
compared to the previous version of the compiler. However, under the right circumstances
the speedup was considerable: up to 33 % for very memory-intensive program parts and
still a respectable 10 % for the rest of the same application.
CDx as an example of a more computationally intensive program experienced an

average reduction of execution times by 4 % on the TriCore and by 1 % on the PC,
leaving space for future improvements – especially to the analysis of array indices used in
loops. The end of possibilities to refine the analysis and to build advanced optimizations
on the basis of the implemented framework has definitely not yet been reached.

62

5 Conclusion

In the scope of this thesis, the design and implementation of a framework for the inter-
procedural control-flow-sensitive analysis of Java bytecode and a set of optimizations
based on it were presented, evaluated, and discussed. The framework was built as a
part of JINO, the Java-to-C compiler of the KESO Multi-JVM, a Java Virtual Machine
designed for statically configured applications in small and smallest embedded systems.
The primary goal of the analysis was to collect as much static knowledge as possible

about the source program that can be exploited to reduce the size of the code, to
improve execution performance, and to slim down the runtime environment where
possible. The algorithm is based on an SSA form of the internal representation, which
requires transforming the code forth and back, but in exchange gives the analysis a lot of
information for free.

As the existing implementation of the SSA deconstruction in JINO proved to be flawed,
it was rewritten from scratch using an advanced algorithm by Sreedhar et al. that
attempts to minimize the number of copies emitted. It works by assigning the SSA
variables to Φ-congruence classes and resolving liveness interferences between variables
belonging to the same congruence class. It simultaneously provides a proper way to
coalesce variables.
The analysis pass itself is built upon a heavily modified iterative work list algorithm

by Wegman and Zadeck proposed originally for the control-flow-sensitive propagation
of constants in a program. Enhancements include making the analysis inter-procedural,
collecting type and reachability information, and gathering advanced knowledge about
special mechanisms within KESO such as raw memory objects.
A number of optimization passes were written that exploit the obtained information.

The reachability data is utilized to remove unreachable methods, unused static fields and
dead basic blocks, to convert predictable conditional branches into simple jumps, and
to statically bind the callee of virtual method invocations if it has been revealed to be
unique. The knowledge about the data flow through the program constitutes the basis
for the omission of runtime checks which can be evaluated ahead-of-time such as null
checks, array bounds checks, and memory range checks.

The modifications and enhancements that were applied to the compiler were evaluated
in detail and turned out to yield suitable results that make the resulting machine code
both smaller and faster. They also showed that there is still potential for refining the
analysis in order to provide more accurate information, and for more optimizations which
draw upon that information.

63

5 Conclusion

5.1 Outlook
Another possible use for the framework is the detection of certain programming bugs
in applications at compile-time. For instance, null dereferencings or array accesses out
of range may be recognized statically and reported before the program is ever executed.
The full potential of this interesting approach has yet to be explored.

The development of KESO is making continuous progress. While the main contribution
of this thesis is the further improvement of application performance and size up to a
point where it is comparable to that of traditional microcontroller software written in C,
work is also being done in various other fields. The use of hardware- and software-based
memory protection in combination is a worthwhile and promising research topic that is
going to impact the way embedded systems will be developed in the future.

64

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Compilers:
Principles, techniques, and tools (2nd edition), Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

[2] Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin, and
Christophe Guillon, Revisiting out-of-SSA translation for correctness, code quality
and efficiency, Proceedings of the 7th annual IEEE/ACM International Symposium
on Code Generation and Optimization (Washington, DC, USA), CGO ’09, IEEE
Computer Society, 2009, pp. 114–125.

[3] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson,
Practical improvements to the construction and destruction of static single assignment
form, Softw. Pract. Exper. 28 (1998), 859–881.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck, Efficiently computing static single assignment form and the control
dependence graph, ACM Trans. Program. Lang. Syst. 13 (1991), 451–490.

[5] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren, The program dependence
graph and its use in optimization, ACM Trans. Program. Lang. Syst. 9 (1987),
319–349.

[6] B. Goldberg and Y. G. Park, Higher order escape analysis: optimizing stack allo-
cation in functional program implementations, Proceedings of the third European
symposium on programming on ESOP ’90 (New York, NY, USA), Springer-Verlag
New York, Inc., 1990, pp. 152–160.

[7] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java language specifica-
tion, third edition, Addison-Wesley Professional, 2005.

[8] Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales Plsek, Ben Titzer, and Jan Vitek,
CDx: a family of real-time Java benchmarks, Proceedings of the 7th International
Workshop on Java Technologies for Real-Time and Embedded Systems (New York,
NY, USA), JTRES ’09, ACM, 2009, pp. 41–50.

[9] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez,
Kenneth Russell, and David Cox, Design of the Java HotSpotTM client compiler for
Java 6, ACM Trans. Archit. Code Optim. 5 (2008), 7:1–7:32.

65

Bibliography

[10] Chris Lattner, LLVM: An Infrastructure for Multi-Stage Optimization, Master’s
thesis, Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana,
IL, Dec 2002, See http://llvm.cs.uiuc.edu.

[11] , TableGen fundamentals, January 2011, http://llvm.org/docs/
TableGenFundamentals.html, visited 2011-03-23.

[12] , Writing an LLVM pass, February 2011, http://llvm.org/docs/
WritingAnLLVMPass.html, visited 2011-03-25.

[13] Robert McMillan, With hacking, music can take control of your
car, itworld.com (2011), http://www.itworld.com/security/139794/
with-hacking-music-can-take-control-your-car, visited 2011-03-22.

[14] Jason R. C. Patterson, Accurate static branch prediction by value range propagation,
SIGPLAN Not. 30 (1995), 67–78.

[15] Geoffrey Phipps, Comparing observed bug and productivity rates for Java and C++,
Softw. Pract. Exper. 29 (1999), 345–358.

[16] Masataka Sassa, Yo Ito, and Masaki Kohama, Comparison and evaluation of back-
translation algorithms for static single assignment forms, Comput. Lang. Syst. Struct.
35 (2009), 173–195.

[17] Vugranam C. Sreedhar, Roy Dz-Ching Ju, David M. Gillies, and Vatsa Santhanam,
Translating out of static single assignment form, Proceedings of the 6th International
Symposium on Static Analysis (London, UK), SAS ’99, Springer-Verlag, 1999,
pp. 194–210.

[18] Richard M. Stallman and the GCC Developer Community, GNU Compiler Collection
internals, 2011, http://gcc.gnu.org/onlinedocs/gccint.pdf.

[19] Michael Stilkerich, Daniel Lohmann, and Wolfgang Schröder-Preikschat, Memory
protection at option, Proceedings of the 1st Workshop on Critical Automotive
Applications: Robustness & Safety, 2010, pp. 17–20.

[20] Michael Stilkerich, Jens Schedel, Peter Ulbrich, Wolfgang Schröder-Preikschat, and
Daniel Lohmann, Escaping the bonds of the legacy: Step-wise migration to a type-
safe language in safety-critical embedded systems, 14th (ISORC ’11) (Gabor Karsai,
Andreas Polze, Doo-Hyun Kim, and Wilfried Steiner, eds.), March 2011, pp. 163–170.

[21] Michael Stilkerich, Isabella Thomm, Christian Wawersich, and Wolfgang Schröder-
Preikschat, Tailor-made JVMs for statically-configured embedded systems, Concur-
rency Computat.: Pract. Exper. 00 (2010).

[22] Michael Stilkerich, Christian Wawersich, Wolfgang Schröder-Preikschat, Andreas
Gal, and Michael Franz, OSEK/VDX API for Java, Linguistic Support for Modern
Operating Systems ASPLOS XII Workshop (PLOS ’06), October 2006, pp. 13–17.

66

http://llvm.cs.uiuc.edu
http://llvm.org/docs/TableGenFundamentals.html
http://llvm.org/docs/TableGenFundamentals.html
http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html
http://www.itworld.com/security/139794/with-hacking-music-can-take-control-your-car
http://www.itworld.com/security/139794/with-hacking-music-can-take-control-your-car
http://gcc.gnu.org/onlinedocs/gccint.pdf

Bibliography

[23] Isabella Thomm, Michael Stilkerich, Christian Wawersich, and Wolfgang Schröder-
Preikschat, KESO: An open-source Multi-JVM for deeply embedded systems, JTRES
’10: 8th, 2010, pp. 109–119.

[24] Jim Turley, The two percent solution, embedded.com (2002), http://www.embedded.
com/story/OEG20021217S0039, visited 2011-04-08.

[25] Peter Ulbrich, Rüdiger Kapitza, Christian Harkort, Reiner Schmid, and Wolfgang
Schröder-Preikschat, I4Copter: An adaptable and modular quadrotor platform, 26th
(SAC ’11), 2011, pp. 380–396.

[26] Christian Wawersich, KESO: Konstruktiver Speicherschutz für Eingebettete Systeme,
Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, October 2008.

[27] Mark N. Wegman and F. Kenneth Zadeck, Constant propagation with conditional
branches, ACM Trans. Program. Lang. Syst. 13 (1991), 181–210.

67

http://www.embedded.com/story/OEG20021217S0039
http://www.embedded.com/story/OEG20021217S0039

	Introduction
	The KESO Multi-JVM
	Code Compilation and Execution
	Basic Architecture
	Summary

	Motivation and Goals
	Organization of this Thesis

	Architecture of the JINO Java-to-C Compiler
	Overview
	Compiler Architecture
	Frontend
	Intermediate Code
	Backends

	Summary

	Design and Implementation of the Framework
	Objectives
	Related Work
	Structural Changes
	Pass Model
	Debugging Facilities

	Liveness Analysis
	SSA Form
	SSA Construction
	SSA Deconstruction
	Coalescing of Variables

	Control-Flow-Sensitive Analysis
	Requirements
	Theoretical Basics
	Analysis Algorithm
	Inter-Procedural Analysis

	Code and Data Size Reduction
	Purging of Unreachable Methods
	Elimination of Dead Basic Blocks
	Removal of Unused Static Fields

	Elimination of Redundant Runtime Checks
	Validity of Object References
	Array Bounds Checks
	Memory Range Checks

	Static Computation of Runtime Information
	Resource Lookup
	Symbol Prefixes for Statically Allocated Objects

	Further Optimization Possibilities
	Path Sensitivity
	Stack and Data Memory Savings
	Iterative Optimization

	Summary

	Evaluation
	Benchmarks
	I4Copter
	CDx

	Measurements and Results
	Removal of Dead Code and Unused Static Fields
	Elimination of Redundant Runtime Checks
	Code Size
	Execution Performance

	Summary

	Conclusion
	Outlook

