Cooperative Memory Management
iINn Embedded Systems

FRIEDRICH-ALEXANDER
UNIVERSITAT _
&= === ERLANGEN-NURNBERG

Department of Computer Science 4
Distributed Systems and Operating Systems 1

10/13/2014 - CASES ’14 Isabella Stilkerich

Motivation

Automated memory management
Safety-critical systems

Challenge: Resource-efficiency

10/13/2014 - CASES ’14 Isabella Stilkerich

Motivation

Embedded microcontrollers are heterogeneous, for example:
Memories (e.g. ROM, RAM)
Memory layout

Occurrence of random soft errors (bit flips)

10/13/2014 - CASES ’14 Isabella Stilkerich

Motivation

Static knowledge about the employed operating |
'system and hardware characteristics is useful for |
‘ application-tailored automated memory ;

management! |

O

10/13/2014 - CASES ’14 Isabella Stilkerich

Agenda

How can static knowledge about the application, operating system
and hardware-specifics be used to create an automated memory
management in embedded systems?

Can automated and safe memory management efficiently be
applied in resource-constraint embedded systems?

Case study with the embedded KESO Java Virtual Machine

« Cooperative Memory Management

« Compiler Support
- Safe and Latency-Aware Garbage Collection

« Evaluation

10/13/2014 - CASES 14 Isabella Stilkerich

The KESO JVM

Java-to-C ahead-of-time compiler

VM tailoring, static configuration

. Portal !
Domain A - = Domain B R 12011

Resources A
Alarms
ISRs

= '
|

KESO Runtime Environment

Mem-Mapped I/O
OSEK / AUTOSAR OS Device Drivers

Microcontroller

10/13/2014 - CASES 14 Isabella Stilkerich

Memory Safety

public class Average {
protected int sum, count;

public synchronized void addValues(int values[]) {
for(int 1=0; 1 < values.length; i++) {
sum += values[i];

}

count += values.length;

}

public synchronized int average() {
return (sum / count);

}
}

“Memory safety ensures the validity of memory references by
preventing null pointer references, references outside an array’s
0 bounds, or references to deallocated memory.”
Aiken et. al (Microsoft Research)

10/13/2014 - CASES 14 Isabella Stilkerich

Memory Safety

public class Average {

protected int sum, count;

p 'lues(int values[]) {
(it - vates) o e Viength; ivt
}
count += values.length;

}

public synchronized int average() {
return (sum /_ count);

}
}

“Memory safety ensures the validity of memory references by
preventing null pointer references, references outside an array’s
O bounds, or references to deallocated memory.”
Aiken et. al (Microsoft Research)

10/13/2014 - CASES 14 Isabella Stilkerich

Type Safety

“Type safety ensures that the only operations applied to a value are
0 those defined for instances of its type.”
Aiken et. al (Microsoft Research)

10/13/2014 - CASES 14 Isabella Stilkerich

Type Safety

public class Average {

protected int sum, count; Value of an instance of Average |

public synchronized void addValues(int values[]) {
for(int 1=0; 1 < values.length; i++) {
sum += values[i];

}

count += values.length;

}

public synchronized int average() {
return (sum / count);

}

} Operations on type Average

“Type safety ensures that the only operations applied to a value are
0 those defined for instances of its type.”
Aiken et. al (Microsoft Research)

O

10/13/2014 - CASES ’14 Isabella Stilkerich

Agenda

How can static knowledge about the application, operating system
and hardware-specifics be used to create an automated memory
management in embedded systems?

Can automated and safe memory management efficiently be
applied in resource-constraint embedded systems?

Case study with the embedded KESO Java Virtual Machine

« Cooperative Memory Management

« Compiler Support
- Safe and Latency-Aware Garbage Collection

« Evaluation

10/13/2014 - CASES ’14 Isabella Stilkerich

Cooperative Memory Management

y N
Application System
Configuration
P . A\ 4 P .
Operating System Threads Application
Model Bytecode
y ISRs < 4
Static Config Domains Class Hierarchy
Blocking Syscalls SE Rate Call Graph
\J

0 N
y- N

Data Flow Analysis

Compller Dead Code Elim.

Devirtualization

Data Flow Info

Check Removal

10/13/2014 - CASES ’14 Isabella Stilkerich

Cooperative Memory Management

Application System

Configuration
é DO\ o y N
Operating System 3 Threads Application
Model | Bytecode
ISRs < 4
Static Config / Domains Class Hierarchy
Blocking Syscalls SE Rate Call Graph
y

N

4 A

Data Flow Analysis

Compller Dead Code Elim.

Devirtualization

Data Flow Info

Check Removal

10/13/2014 - CASES ’14 Isabella Stilkerich

— =

Y
N N

Application System
Configuration

a N N
Operating System Threads Application
Model Bytecode
Q 4 ISRs 4
Static Config Domains Class Hierarchy
Blocking Syscalls SE ‘ 7 Call Graph

r N

Data Flow Analysis

Compller Dead Code Elim.

Devirtualization

Data Flow Info

Check Removal

10/13/2014 - CASES ’14 Isabella Stilkerich

Cooperative Memory Management

y N
Application System
Configuration

P \ \ 4

Operating System Threads Application

Model Bytecode
Q 4 ISRs
Static Config Domains Class Hierarchy
Blocking Syscalls SE Rate Call Graph
\J

r N

Data Flow Analysis

Compller Dead Code Elim.

Devirtualization

Data Flow Info

Check Removal

10/13/2014 - CASES 14

Isabella Stilkerich

Cooperative Memory Management

| Operating System
Model

Static Config

Blocking Syscalls

N
N
4

Application System

Configuration |
Threads
ISRs
Domains
SE Rate
\J

Compiler

Data Flow Info

Dead Code Elim.

Devirtualization

Check Removal

Data Flow Analysis

/ Application
Bytecode

Class Hierarchy

Call Graph

and runtime environment |

O

10/13/2014 - CASES ’14 Isabella Stilkerich

Agenda

How can static knowledge about the application, operating system
and hardware-specifics be used to create an automated memory
management in embedded systems?

Can automated and safe memory management efficiently be
applied in resource-constraint embedded systems?

Case study with the embedded KESO Java Virtual Machine
« Cooperative Memory Management

« Compiler Support

- Safe and Latency-Aware Garbage Collection

« Evaluation

10/13/2014 - CASES ’14 Isabella Stilkerich

Escape Analysis

Escape analysis is used to determine the escape state of an object
By using information from alias analysis and reachability of references
Analysis results prove useful in the context of cooperative approach
Stack allocation and region inference
Allocation and deallocation is very efficient
Estimation of GC effort (real-time systems)
In the context of soft errors
Reduction of replication sphere

Efficient protection of type system via reference checking

O

10/13/2014 - CASES ’14 Isabella Stilkerich

Reference Integrity Checks

Bit flips can break the soundness of the type system!

Preserve software-based isolation via integrity checks of references

A controlflow-sensitive analysis determines the insertion of checks

Dereference check (DRC)

Bie et
Integrity check is two-fold : 'F;[')n P2

Validity of address

Heap
Obiect B

Heade%’g/

type

Virtual Method Table

setValue (B)

\ setValue (X)

Check of header information (e.g. dynamic type)

No wild references!

Protection information can be incorporated in the reference

Attack surface of the program is not increased

Protection information size is depended on the used hardware device

10/13/2014 - CASES ’14 Isabella Stilkerich

Immortal Data / Runtime-Final Analyses

Automatic inference of constant and runtime-final data (alias info)

Determination of constant data is essential
Data can automatically be placed in read-only memory (ROM) e.g. flash
Flash memory is much less susceptible to soft errors
Garbage collection overhead can be reduced
Runtime-final analysis
Constant folding

Null checks on effectively-final data can be eliminated

O

10/13/2014 - CASES ’14 Isabella Stilkerich

Agenda

How can static knowledge about the application, operating system
and hardware-specifics be used to create an automated memory
management in embedded systems?

Can automated and safe memory management efficiently be
applied in resource-constraint embedded systems?

Case study with the embedded KESO Java Virtual Machine
« Cooperative Memory Management
« Compiler Support

- Safe and Latency-Aware Garbage Collection

« Evaluation

10/13/2014 - CASES ’14 Isabella Stilkerich

Latency-Aware Garbage Collection (LAGC)

ncremental and slack-based mark-and-sweep GC algorithm

Restrict each critical section to constant complexity

Dedicated (low-priority) thread for garbage collection

Scan-and-mark:
Traditional tricolor scheme for marking (white, grey, black)
Reference scanning: start at root set
Static references: global array
Local references: linked stack frames
Object layout: grouping of references

Sweep:

O

Memory of unreachable (white) objects is inserted into free memory list

10/13/2014 - CASES 14

Isabella Stilkerich

Synchronization Needed

O . Scanned Reachable object

root | [A
set —> B ,/v
root _>I
set — /V
B d
root '_>I\A
set —
B
root '_>I
set — B .

Unvisited/unreachable object

Unscanned reachable object

10/13/2014 - CASES ’14 Isabella Stilkerich

Synchronization Needed

oot | —lA . Objects A, B and C are reachable via root set
set | —p -7 <y Garbage Collector (GC) starts marking
root —PI
/V C

set —

B >
root '_>I\ C
set >

B
oo | A -
set —

B .

0 . Scanned Reachable object Unvisited/unreachable object Unscanned reachable object

10/13/2014 - CASES ’14 Isabella Stilkerich

Synchronization Needed

root — A C
set BT v

B '
root _>I C
set | —>rg - ﬁ A is marked reachable (black)
root '_>I\ C
set —

B
root _>I
set | {—p

B .

0 . Scanned Reachable object Unvisited/unreachable object Unscanned reachable object

10/13/2014 - CASES 14

Isabella Stilkerich

Synchronization Needed

After marking A reachable, the GCis
preempted by the higher-priority application,

which sets a reference from A to C.The

0 . Scanned Reachable object

interrupted GC marking is resumed

root | [A
set —> B ,/v
root _>I
set — /V
B d
root '_>I\
set —
B
root '_>I
set — B .

Unvisited/unreachable object Unscanned reachable object

10/13/2014 - CASES 14

Isabella Stilkerich

Synchronization Needed

0 . Scanned Reachable object

'C is not marked reachable by the GC, though
it is used by the application. A dangling

root A
set —> B ,/v
root _>I
set E— /V
B o
root '_>IA ~\A
set —
B
root _>I
set — B .

<] reference has been forged

Unvisited/unreachable object Unscanned reachable object

10/13/2014 - CASES ’14 Isabella Stilkerich

Write Barriers

Whenever a reference to a white object is overwritten, no matter if
the reference field was already scanned or not, the object referenced
by the overwritten reference is colored gray

AR +—
B

root
set

‘

N +—,
B

root
set

:

0 . Scanned Reachable object Unvisited/Unreachable object Unscanned reachable object

10/13/2014 - CASES ’14 Isabella Stilkerich

Write Barriers

Whenever a reference to a white object is overwritten, no matter if
the reference field was already scanned or not, the object referenced
by the overwritten reference is colored gray

A. Object B’s reference shall be overwritten
root | [— \: = - with null, but currently it refers to object C.
set | T} C is colored gray by the barrier
root | [A. T C
set — B

0 . Scanned Reachable object Unvisited/Unreachable object Unscanned reachable object

10/13/2014 - CASES ’14 Isabella Stilkerich

Write Barriers

Whenever a reference to a white object is overwritten, no matter if
the reference field was already scanned or not, the object referenced
by the overwritten reference is colored gray

AR +—
B

root
set

‘

root
set

A. T~ The GC is able to mark object C reachable
B

:

0 . Scanned Reachable object Unvisited/Unreachable object Unscanned reachable object

10/13/2014 - CASES ’14 Isabella Stilkerich

Latency-Aware Scan-and-Mark

Write barriers are activated by the GC

Write barriers are expensive, inserted by the compiler only for
Static references
Reference fields
Field writes to references of object array

Atomic scanning of task stacks

Blocked tasks
Complexity linear in its stack size
The task currently being scanned is delayed

Discovered references are colored gray (reachable, unscanned)

O

10/13/2014 - CASES ’14 Isabella Stilkerich

Agenda

How can static knowledge about the application, operating system
and hardware-specifics be used to create an automated memory
management in embedded systems?

Can automated and safe memory management efficiently be
applied in resource-constraint embedded systems?

Case study with the embedded KESO Java Virtual Machine
« Cooperative Memory Management
« Compiler Support
- Safe and Latency-Aware Garbage Collection

« Evaluation

10/13/2014 - CASES ’14 Isabella Stilkerich

Evaluation

Real-time Java application benchmark Collision Detector (CDx)

Built KESO CD;j variants
Incremental LAGC
Incremental Safe-LAGC (Protection against soft errors)
Influence of compiler-assisted memory management
Effectiveness of integrity checks
Measured overhead of Safe-LAGC in contrast to LAGC
TriCore TC1796 (32-bit, 1 MiB SRAM, 2 MiB ROM)

Heap usage at runtime

Runtime

10/13/2014 - CASES ’14 Isabella Stilkerich

Compiler-Assisted Memory Management

Escape analysis
30% of all allocations are eligible for stack allocation
Reduces heap usage by 45%
Application runtime is boosted by 9.5%

Immortal and runtime final analyses
Reduces segment sizes: .text (-14%), .data (-41%)
Reduces runtime of application by 12%

Placing immortal data in flash: runtime increases by 8%

10/13/2014 - CASES 14 Isabella Stilkerich

Runtime

w 45

I
40 '
N |

30 N Q

25

20

s VAR SVARVZI RSN h

10

5

—LAGC —Non-incremental GC —RDS

0
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

10/13/2014 - CASES 14 Isabella Stilkerich

Runtime

w 45
E4o * '

35

30 N Q

25

20

s VAR SVARVZI RSN h

10

5

—LAGC —Non-incremental GC —RDS

0
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

10/13/2014 - CASES 14 Isabella Stilkerich

Runtime

w 45
E4o * '

35
30

25

20
N NG AR VAR SVAR VI RN WA

10

—LAGC —Non-incremental GC —RDS

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

10/13/2014 - CASES 14 Isabella Stilkerich

Runtime
w 45
a0 |
" |
30
25
20 | Remo.ve. i
. SYnc?_zc?Sn;/:;ltlon | W W m M
10
5 NO GC
) (-15.4%) —LAGC —Non-incremental GC —RDS

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

10/13/2014 - CASES 14

Runtime

wn 45

h
35
30 A A

Isabella Stilkerich

2 LAGC still provides good throughput:
2 CDj configuration is 0.8% slower than CDc

IS (-6.8%)

10
5 NO GC
(-15.4%)

0

-

v\'/\l

VvV \V/ v V\]

V3

AR RENA'A

—LAGC —Non-incremental GC —RDS

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

10/13/2014 - CASES ’14 Isabella Stilkerich

Effectiveness of Integrity Checks

FAIL*: Fault injection tool, application of fault space pruning
Injected bit flips into each position of a memory word

Application data is physically grouped by KESQO'’s reachability analysis

Safe-LAGC

DRC
Detected Errors
K Traps

& [llegal Memory Access

DRC (object references only) E

No Integrity Checks F
0

O

50,000 100,000 150,000 200,000 250,000 300,000

10/13/2014 - CASES ’14 Isabella Stilkerich

Effectiveness of Integrity Checks

FAIL*: Fault injection tool, application of fault space pruning
Injected bit flips into each position of a memory word

Application data is physically grouped by KESQO'’s reachability analysis

Safe-LAGC | (6 5%

DRC
Detected Errors

K Traps

& [llegal Memory Access

DRC (object references only) E

No Integrity Checks F
0

O

50,000 100,000 150,000 200,000 250,000 300,000

10/13/2014 - CASES ’14 Isabella Stilkerich

Effectiveness of Integrity Checks

FAIL*: Fault injection tool, application of fault space pruning
Injected bit flips into each position of a memory word

Application data is physically grouped by KESQO'’s reachability analysis

DRC
_ O : O 8% - - 1I?:;t;::ted Errors
N~ —

DRC (object references only) E & [llegal Memory Access

No Integrity Checks F
0

O

50,000 100,000 150,000 200,000 250,000 300,000

10/13/2014 - CASES ’14 Isabella Stilkerich

Effectiveness of Integrity Checks _

|
‘ ‘\

Establishment of software-based memory ‘

protection: Foundation to built replication ‘
for the protection of application data *~

Safe-LAGC ' ' ' ' '
DRC ‘ 1 1 1 1 1

O : O 8%) ?:::ted Errors

DRC (object references only) |

No Integrity Checks ||

O

0 50,000 100,000 150,000 200,000 250,000 300,000

& [llegal Memory Access

10/13/2014 - CASES ’14 Isabella Stilkerich

Overhead of Protection

Runtime:
Safe-LAGC
55%(DRC)-95%(full protection) for one GC execution instance
GC's execution time is short in contrast to application's
Application
449 Increase

Memory needed at runtime: no increase

10/13/2014 - CASES ’14 Isabella Stilkerich

Conclusion

How can static knowledge about the application, operating system
and hardware-specifics be used to create an automated memory
management in embedded systems?

Cooperative approach
Type-safe language and compiler assistance
Assistance of the application developer during the integration
Incorporation of application, OS model and hardware specifics

Latency-aware and safe garbage collection

Can automated and safe memory management efficiently be
applied in resource-constraint embedded systems?

Evaluation results show that generated system can compete with
unsafe and manual approaches

10/13/2014 - CASES ’14 Isabella Stilkerich

Questions?

http://www4.cs.fau.de/Research/KESO/
KESO: distributed under the terms of the GNU LGPL, version 3

http://www4.cs.fau.de/Research/KESO/

