
Department	
 of	
 Computer	
 Science	
 4	

Distributed	
 Systems	
 and	
 Opera7ng	
 Systems

Applications of Escape Analysis
in Embedded Real-Time Systems

Isabella	
 S7lkerich,	
 Clemens	
 Lang,	
 Christoph	
 Erhardt,	

Michael	
 S7lkerich

1

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Motivation

• Type-safe languages such as Java are beneficial
• Enhanced productivity

• Safety benefits attributed to memory safety

• To ensure memory safety, memory management is implicit

• Heap management (via e.g. garbage collectors (GC))

• Compiler-assisted management (e.g. region inference, escape analysis)

• Escape analysis

• Automated stack allocation

• Lock elision

• Other applications?

2

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Agenda

How can the information collected by escape analysis help to
support the use of Java in the domain of embedded systems?

Are the alternative applications of escape analysis beneficial for
the non-functional properties of an application?

Case study with the embedded KESO Java Virtual Machine
• Alternative applications of escape analysis
• Evaluation

3

Isabella	
 S7lkerich10/13/2014	
 -­‐	
 CASES	
 ’14

The KESO JVM

4

• Java-to-C ahead-of-time compiler

• VM tailoring, static configuration

Microcontroller

OSEK / AUTOSAR OS

KESO Runtime Environment
Mem-Mapped I/O

Device Drivers

Domain C

Domain B Portal
Portal

GC/Heap Resources
Alarms
ISRs

5 2 3
Tasks

Domain A

+ +

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

KESO’s Compiler

5

System-aware C code

Operating-system
model
Static

configuration
Blocking system

calls
Scheduling
strategies

Synchronisation
mechanisms

…

Application
configuration

Threads/ISRs

Detection rate of
transient errors

Isolation domains
Real-time
capability

…

KESO Compiler
Dead code elimination

Escape analysis

Check removal

…

Type-safe
Application
Class hierarchy

Call graph

(De-)Allocation
behavior

…

Communication

Hardware model

Memory

Memory Layout

Memory
Protection

Transient error
rate
…

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Escape Analysis (EA) in Java

• From a conceptual point of view, all Java object are heap-allocated

• No dedicated language support

• Preservation of the soundness of Java’s type system

• EA is a static analysis to determine an object's escape state

• By using information from alias analysis and reachability of references

• Automated and safe stack allocation

• (De-)allocation is very efficient and predictable

• No fragmentation

• Garbage collection effort is reduced

• Synchronization lock optimization

6

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Applications of Escape Analysis

 We use EA to provide more support for embedded systems
1. Fast remote-procedure-call support for software-isolated components
2. Scope extension and stack allocation
3. Scope extension and thread-local heaps
4. Automated inference of immutable data
5. Determine survivability for real-time heap management
6. Explicit, safe manual memory management
7. Resource-efficient mitigation of transient errors
8. Object inlining

7

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Applications of Escape Analysis

We use EA to provide more support for embedded systems
1. Fast remote-procedure-call support for software-isolated components
2. Scope extension and stack allocation
3. Scope extension and thread-local heaps
4. Automated inference of immutable data
5. Determine survivability for real-time heap management
6. Explicit, safe manual memory management
7. Resource-efficient mitigation of transient errors
8. Object inlining

8

In	
 the	
 paper!

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Escape Analysis in a Nutshell

• Our escape analysis is based on Choi et al., TOPLAS ’03: „Stack
allocation and synchronization optimizations for Java using escape
analysis“
• Control-flow sensitive analysis

• Focus is on preciseness of analysis results

• Ahead-of time compilation

• Compile times are reasonable (perform graph compression inspired by
Steensgard’s “Points-To Analysis in Almost Linear Time")

• Alias information is gathered from the application
• Method-local analysis

• Global analysis

• Connection graphs (CG) hold alias information

9

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Applications of Escape Analysis

We use EA to provide more support for embedded systems
1. Fast remote-procedure-call support for software-isolated components

2. Scope extension and stack allocation
3. Scope extension and thread-local heaps
4. Automated inference of immutable data
5. Determine survivability for real-time heap management
6. Explicit, safe manual memory management
7. Resource-efficient mitigation of transient errors
8. Object inlining

10

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Remote Procedure Calls via Portals

• Software-isolated applications may need to communicate

• Usually, reference values must never be propagated

• Deep copy of parameters can affect the program’s runtime
• Similar to Exotask model (Auerbach et al., TOPLAS ’09)

• Execution time / memory consumption

• In the service domain, a GC is needed to get rid of copies

11

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Remote-Procedure-Call Support

• Escape analysis can determine, if deep copy is needed
1. Global escape state in callee’s connection graph
2. Modification by the callee

• Provides copy-on-write and copy-on-escape semantics

• Time and memory consumption is significantly improved for particular
communication scenarios

12

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Remote-Procedure-Call Support

13

Deep copy can be omitted

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Remote-Procedure-Call Support

1. No global escape state in callee’s connection graph

• Portal parameter has a complement in callee’s domain

• The complement and its members do not have a global escape state

• Computed via worklist algorithm

13

Deep copy can be omitted

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Remote-Procedure-Call Support

1. No global escape state in callee’s connection graph

• Portal parameter has a complement in callee’s domain

• The complement and its members do not have a global escape state

• Computed via worklist algorithm

13

2. No modification by the callee

• Construct mapping between CG representation of objects and index of
portal parameter

• Code reachable from portal handler is searched write operations whose
operands feature this mapping

• If mapping does not exist, the deep copy can be omitted

Deep copy can be omitted

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Applications of Escape Analysis

We use EA to provide more support for embedded systems
1. Fast remote-procedure-call support for software-isolated components

2. Scope extension and stack allocation
3. Scope extension and thread-local heaps
4. Automated inference of immutable data
5. Determine survivability for real-time heap management
6. Explicit, safe manual memory management
7. Resource-efficient mitigation of transient errors
8. Object inlining

14

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Scope Extension (SE)

15

01 public class Factory {
02 class Builder {
03 // ...
04 }
05 protected Builder getBuilder() {
06 return new Builder();
07 }
08 }
09 class Simulation implements Runnable {
10 public void run() {
11 Factory f=new Factory();
12 while (true) {
13 Builder b=f.getBuilder();
14 for (Aircraft a : getAircraft()) {
15 b.addPosition(a, getPositionForAircraft(a));
16 }
17 // b's last reference
18 SimFrame frame=b.makeFrame();
19 simulate(frame);
20 }
21 }
22 // …
23 }

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Scope Extension (SE)

15

01 public class Factory {
02 class Builder {
03 // ...
04 }
05 protected Builder getBuilder() {
06 return new Builder();
07 }
08 }
09 class Simulation implements Runnable {
10 public void run() {
11 Factory f=new Factory();
12 while (true) {
13 Builder b=f.getBuilder();
14 for (Aircraft a : getAircraft()) {
15 b.addPosition(a, getPositionForAircraft(a));
16 }
17 // b's last reference
18 SimFrame frame=b.makeFrame();
19 simulate(frame);
20 }
21 }
22 // …
23 }

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

SE and Stack Allocation
(Stack) scope extension in a nutshell

• Method-escaping objects

• Non-virtual methods (supported by devirtualization)

• Copy of the allocation into all callers

• Pass a reference at the invocation of the source method

• Allocation is substituted by a read of the parameter values

16

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

SE and Stack Allocation
(Stack) scope extension in a nutshell

• Method-escaping objects

• Non-virtual methods (supported by devirtualization)

• Copy of the allocation into all callers

• Pass a reference at the invocation of the source method

• Allocation is substituted by a read of the parameter values

16

Problems imposed by extended stack scopes

• Virtual methods (e.g. adapt all method signatures)

• Objects allocated by mutually exclusive control flows

• Increased footprint

• Overhead imposed by parameter passing

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Applications of Escape Analysis

We use EA to provide more support for embedded systems
1. Fast remote-procedure-call support for software-isolated components

2. Scope extension and stack allocation
3. Scope extension and thread-local heaps
4. Automated inference of immutable data
5. Determine survivability for real-time heap management
6. Explicit, safe manual memory management
7. Resource-efficient mitigation of transient errors
8. Object inlining

17

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

SE + Thread-Local Heaps (TLH)

• Stack allocation might not be a viable solution
• E.g., increased worst-case stack usage

• Variables with overlapping liveness regions

• Use of a special heap region that is managed by the compiler

• Region is not subject to GC sweeps, but co-exists with the GC

• Logical region for each method

• Regions are organized in a stack-like manner

• Each thread has its own heap

18

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

SE + Thread-Local Heaps (TLH)

• Each TLH has a fill marker and a maximum fill level
• Fill marker is saved upon method entry (static analysis can avoid that)

• Objects are allocated by moving the fill marker

• Deallocation is done by resetting the fill marker

• Synchronization upon allocations is no longer needed

• Checks are inserted to prevent heap overflows

• Liveness-interference avoidance can be disabled
• Reduces GC load

19

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Evaluation
• Microbenchmark for Remote-Procedure-Call Support

• Real-time Java application benchmark Collision Detector (CDj)

• Built KESO CDj variants (including stop-the-world GC, 600kB heap)
• Scope Extension and Stack Allocation

• Scope Extension and Thread-Local Heaps

• Influence of Escape Analysis measured on real-world setup
• CiAO AUTOSAR OS version 4c19874

• TriCore TC1796 (32-bit processor)

• 1 MiB external SRAM, 2 MiB internal flash

• CPU clocked at 150MHz, 75 MHz Bus

• Compiled with GCC 4.5.2

• Heap / execution time usage at runtime

20

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Remote-Procedure-Call Support

• In case parameters are not modified and do not escape, the
execution time is reduced significantly

• Memory needed for deep copy is saved

21

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Remote-Procedure-Call Support

• In case parameters are not modified and do not escape, the
execution time is reduced significantly

• Memory needed for deep copy is saved

21

22%

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Remote-Procedure-Call Support

• In case parameters are not modified and do not escape, the
execution time is reduced significantly

• Memory needed for deep copy is saved

21

HW-based protection

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Remote-Procedure-Call Support

• In case parameters are not modified and do not escape, the
execution time is reduced significantly

• Memory needed for deep copy is saved

21

Primitive Values

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Remote-Procedure-Call Support

• In case parameters are not modified and do not escape, the
execution time is reduced significantly

• Memory needed for deep copy is saved

21

Deep Copy

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Remote-Procedure-Call Support

• In case parameters are not modified and do not escape, the
execution time is reduced significantly

• Memory needed for deep copy is saved

21

Omitted Copy

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Runtime for CDj (SE / THL)

22

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Runtime for CDj (SE / THL)

22

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Runtime for CDj (SE / THL)

22

18.7%

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Runtime for CDj (SE / THL)

22

17.7%

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Runtime for CDj (SE / THL)

22

13.7%

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Runtime for CDj (SE / THL)

22

14.7%

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Runtime for CDj (SE / THL)

22

14.7%

• Combining ordinary stack allocation and TLHs is beneficial

• Incremental GCs save synchronisation overhead
• No barriers needed

• No fragmentation caused by short-living objects

• Speed up for real-time garbage collection
• Accesses to non-fragmented objects is faster

• 49-51% heap usage for all variants

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Conclusion

23

How can the information collected by escape analysis help to
support the use of Java in the domain of embedded systems?
• Global, whole-system escape analysis

• Static, type-safe programs
• Consideration of the system configuration

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Conclusion

Are the alternative applications of escape analysis beneficial for
the non-functional properties of an application?
• Light-weight RPC support encourages application isolation
• EA for memory handling solves the same problem as region inference

• The effects of extended stack scopes are application-specific
• Task-local bump pointer heaps as alternative memory management

strategy using scope extension (reduces allocator and GC effort)

23

How can the information collected by escape analysis help to
support the use of Java in the domain of embedded systems?
• Global, whole-system escape analysis

• Static, type-safe programs
• Consideration of the system configuration

Isabella	
 S7lkerich06/19/2015	
 -­‐	
 LCTES	
 ’15

Questions?

• http://www4.cs.fau.de/Research/KESO/

• KESO: distributed under the terms of the GNU LGPL, version 3

24

http://www4.cs.fau.de/Research/KESO/

