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Abstract

Fault tolerance is getting an important field due to the increasing soft error rate of circuits.
In the operating system context, the data integrity and the correctness of data structures
need to be protected to guarantee a properly running system, if errors occur in the main
memory. Simple solutions, such as straightforward checksum algorithms and basic double-
linked lists, can give fault tolerance to data, but if a more robust system is required, more
complex mechanism with as little overhead as possible must be developed. Therefore, fault
tolerance techniques such as an additional pointer and mechanisms to detect and correct
errors are added to a double-linked list, which is employed in an embedded configurable
operating system for any list operation, which are used, for example, in the scheduling
process. That implies a data structure, which is able to detect and correct two changes
in its structure caused by errors and, however, has just a minor overhead in operating
system case of application like the scheduling process. In the end, the overhead to make
operating systems fault tolerant in the scope of this work is very small, so that fault
tolerance mechanisms and data structures are a good choice to use in operating systems
to be ready for the upcoming problems with transient faults.
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Zusammenfassung

Da die Häufigkeit von transienten Fehlern in Schaltungen steigt, wird Fehlertoleranz ein
immer wichtigeres Forschungsfeld. Im Kontext von Betriebssystemen muss die Daten-
integrität sowie die Korrektheit der Datenstrukturen sichergestellt werden, um einen
ordnungsgemäßen Ablauf des Systems beim Eintreten von Fehlern im Hauptspeicher
zu garantieren. Fehlertoleranz kann mit einfachen Mitteln, wie einem unkomplizierten
Prüfsummen-Algorithmus oder grundlegenden doppelt verketteten Listen, für Daten
sichergestellt werden, sobald jedoch ein robusteres System benötigt wird, müssen kom-
plexere Mechanismen, welche aber möglichst wenig Mehraufwand verursachen, entwickelt
werden. Aus diesem Grund wurden Fehlertoleranztechniken, wie ein zusätzlicher Zeiger,
und Mechanismen um Fehler zu erkennen und zu korrigieren, zur doppelt verketteten
Liste hinzugefügt, welche in einem eingebetteten konfigurierbaren Betriebssystem für jede
Listenoperation, die zum Beispiel für den Einplanungsprozess verwendet werden, integriert
sind. Dies impliziert eine Datenstruktur, die imstande ist, zwei durch Fehler verursachte
Änderungen in ihrer Struktur zu erkennen und zu korrigieren, jedoch nur, abhängig vom
Anwendungsfall, wie dem Einplanungsprozess, einen geringen Mehraufwand im Betrieb-
ssystem verursacht. Letztendlich ist der Mehraufwand für Fehlertoleranz, in dem Rahmen,
wie sie in dieser Arbeit entwickelt wurde, in Betriebssystemen, sehr gering. Daher ist
es eine gute Wahl solche Fehlertoleranzverfahren und fehlertolerante Datenstrukturen in
Betriebssystemen zu verwenden, um auf die kommenden Probleme durch transiente Fehler
vorbereitet zu sein.
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CHAPTER 1
Introduction

Every day we are surrounded by technology that affects our lives. Examples are enter-
tainment systems like TVs and cell phones, or "invisible" techniques, which ensure our
safety such as the air-bag computer in our cars or embedded medical systems like a pace
maker. Especially safety-related technologies are important to be reliable, because if a
system fails there may be damage or danger of life, which must definitely be prevented.
But electronic systems are vulnerable to environmental conditions such as electronic noise,
changes in temperature, and, in particular, radiation. These conditions influence the
physical circuits that modern systems consist of. Those are so called single event effects
which are "undesired effects caused by single energetic particles passing through a given
medium." [Che] That means that an energetic particle hits a transistor, which subsequently
changes its state. Years ago this topic barely mattered, but with device scaling and
super-pipelining as the two major trends of microprocessor technology, the soft error rate
increases due to the susceptibility to physical influences [Shi02]. This is also drafted in
figure 1.1. Failures in time (FIT) describe the rate of soft errors with measuring the
number of failures per 109 hours of operation. While the soft error rate for SRAMs has
always been high, it has been increasing of the order of nine since the last twenty years for
circuit logic. Accordingly this affects the number of transient errors the system has to
handle.
Such for hardware non-detrimental, unpredictable physical influences can lead to a

transient hardware fault, which is a change of the state of a single bit (so called bit flips)
in the affected electronic component. In this thesis the focus is on bit flips in the system
memory and the question how to guarantee that the system will work properly. So there
are two cases of possible errors:

On the one hand, it is important to ensure data integrity. Memory can hold important
interim results which can, in case of an error, lead to undefined behaviour or even system
failure, if the system uses wrong data. The context switching process in an operating
system is an excellent example for the necessity of data integrity. If something goes wrong
here, the system may crash.
On the other hand, it is important to assure the correctness of data structures which

means that the organization structure which is stored in the main memory must be
protected. This includes the pointers to nodes in the data structure. If they are changed
by a bit flip, this can destroy the correctness of the data structure. One case in which it is
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12 1 Introduction

Figure 1.1: Soft error rate per chip for different technology generations [Shi02]

inevitable to have a correct and error-free data structure is the scheduling process in an
operating system. If, for instance, an important process gets lost, the system cannot run
properly or essential functions will not be executed again until the system is restarted.
The error model applied in this thesis comprises transient hardware faults in memory.

Their effects, however, are two-fold: In the data integrity part one or more bit flips can
occur and change the data value in just one bit. Yet in the data structure part the point
of view changes, as with having the organization address pointers to stay correct, the
modification of a pointer is of current interest, independent how many bit are flipped
within the pointer address.

Therefore, fault-tolerance methods for data integrity and data structures will be re-
searched based on a real-time operating system. So for a case study fault tolerance
techniques are applied to context switching and scheduling process of the embedded
configurable operating system (eCos).



CHAPTER 2
Development Environment

Developing fault-tolerance mechanisms for embedded systems, there is the need to design,
test, and evaluate on a special purpose operating system. In this thesis, the embedded
configurable real-time operating system (RTOS) eCos is used on a special purpose system,
based on Intel’s Atom architecture. The field of application is the click soft-router, which
should be provided with the fault-tolerance property. Click is a modular software router,
which puts emphasis on being extensible and highly configurable. Further information is
given in [Koh00].

The developed strategies to ensure data integrity and the correctness of data structures
are compared in micro-benchmarks. Appropriate testing environments are the context
switch and scheduling process of an operating system, in this work the threads of eCos.
The operating system will be described in the following section including the operating
mode of the context switching and scheduling process.

2.1 The Embedded Configurable Operating System (eCos)
Embedded devices are often limited in their hardware components, particularly the main
memory. In this case they need special operating systems such as eCos [Mas03]. A lot
of RTOSes, however, bring a full support of different features along, which may not be
required depending on the application. This makes the software more complex and even
bigger than it has to be, which may require larger and more expensive devices than
necessary. With eCos, an open source RTOS for embedded systems, the developer can
control run-time components and remove unnecessary ones easily by using the system
configuration tool. Required components can be bound from the component repository.
So the software’s size can be scaled this way from a few hundred bytes up to hundreds of
kilobytes depending on the developer’s needs.
eCos uses the Component Definition Language (CDL), which is an extension of the

existing Tool Command Language (Tcl) scripting language, to make the components
configurable. Each section of the repository (hal, kernel, etc.) has at least one CDL script
file, describing the package. By editing the script files, it is easy to add own modules,
which were included to the repository by the developer, to the configuration tool. The
result of the configuration is stored in a file with an .ecc extension. Depending on this file
the eCos-tree is built. Furthermore, it is not only possible to pick different packages, but
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14 2 Development Environment

also to choose between various implementations. The kernel scheduler, for example, can
be selected as multilevel queue or bitmap scheduler. There are also a lot of adjustments
to make such as the number of clock ticks between time slices for the scheduler.
In this way, the developer has full control about the components to use from the

repository and their options. Additionally, it is possible to easily add own configuration
options for own modules using the CDL scripting language. These are great advantages of
eCos towards other RTOSes. This is the reason why it is used in this work and so there is
the demand to take a closer look at the context switching and scheduling process in eCos.

2.1.1 Context switching - The significance of data integrity
The ability to run more than one process is a must in modern operating systems. Examples
for important use cases are the feature to handle interrupts and the power to let processes
wait for an event without occupying the processor uselessly, as the process needs the result
of the event to continue. If there are enough processors for all the processes and interrupts,
there won’t be any problem as every process can run in parallel. But nowadays there are
more processes than processors. Especially in embedded systems there is the need for
economical components. The manufacturers try to use hardware just as good as really
necessary to produce cheaply. Due to the fact that it must be possible to be able to handle
as much processes as needed, there is the necessity to change between processes which are
interruptible and continuable. Because of this they have to store their current state when
interrupted to resume on the intermitted position with the correct condition. The state
which needs to be saved contains at the minimum the program counter. If this is all being
stored only cooperative processes on the same stack are working correctly. Preemptive
systems, in which every process has its own stack, have to save the stack pointer and the
working registers as well. One possibility to do this is to push the register values to the
stack, save the stack pointer in the thread structure, and switch the context by setting the
stack pointer of the processor to the loaded address of the next thread which is about to
run. After the switch the state of the next thread must be restored. So the registers are
popped from its stack and stored in the processor’s registers.
This process of being outsourced and loaded again is transparent for the processes.

They keep on working on the values which were buffered in the main memory during their
outsourced period. But this is completely built on the correctness of data integrity. If an
error occurs to the data on the main memory, the process gets this wrong value and tries to
execute the next instruction as it does not know about the interruption. The consequence
can be fatal in different ways. If a value changed in a register holding interim results,
the final outcome may get wrong during the next computations. The magnitude of this
mistake depends on the case of application. It is annoying if a hand-held calculator gives
the wrong result, but this is not as serious as if for instance the automatic pilot system on
a plain is faulty. But at least the system is still running (assumed there was no division
by zero which would end up in an exception) and has the chance to recognize the error on
his own its following execution. Nevertheless, there are absolutely essential register values
which in case of an error lead to a system crash. The instruction pointer for example holds
either the address of the next or currently executed instruction, depending on the type of
system. A change of this pointer results in a wrong instruction or to something anywhere
in the memory. If this happens the system is not able to continue its work.
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With both cases (wrong results and system crashes) being undesirable and must be
prevented, methods to ensure data integrity are required and will be considered in the
following chapter.

2.1.2 Scheduling - Dependence of correct data structure
Before the system can switch the context, it has to know which process will be next.
Generally all threads which are not running at the moment are stored in a list and the
head of this list is picked to be the next thread. The strategy of the sort order of the list
is determined by the scheduler. It decides what process is next by controlling the threads’
positions in the list. Furthermore it provides mechanisms for synchronization during the
scheduling and context switching process. In eCos there is a bitmap and multilevel queue
scheduler. The last one was used in this thesis, so it will be described in the following
paragraph.
Multilevel queue means the ability to have a certain number of priority levels. The

number of levels is configurable from 1 to 32 with level 0 being the highest and level 31
the lowest priority. For each level there is one queue stored in an array of all scheduling
queues. So threads get their priority and are hold in the appropriate list. If preemption
is allowed a thread with lower priority can be displaced by one of a higher level. Within
a priority level the scheduler allows timeslicing. That means that a thread can execute
for a special amount of time, which is also configurable by the developer. In figure 2.1 an
execution process of three threads (one with low (Thread C ) and two with high priority
(Thread A and Thread B)) is shown. The current executing process Thread C is displaced
by Thread A, which runs until its timeslice ends. After that the process within the highest
prioritized not-empty queue is chosen to run next, which is Thread B in this case. After
descheduling Thread B, Thread A is the highest prioritized process to run because it was
rescheduled after its timeslice ended. When Thread A is also descheduled Thread C is
going to be next. Although it is the process with the lowest priority, it is the only thread
which can be scheduled at the moment as no other thread is in any queue.

Double linked circular lists are used for the scheduler’s queue implementation. As it
will be shown in the following chapter this is already a fault-tolerant data structure. But
there is the need for more robust data structures as soft error rate will increase in future
as seen in the introduction part.
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Figure 2.1: Thread executions with multilevel queue scheduling [Mas03]



CHAPTER 3
Fault-tolerant data integrity and data structures

Fault-tolerance mechanisms ensuring data integrity and the correctness of data structures
are compared and analysed against newly developed and already existing implementations.
First, data content is to be protected against transient errors using various methods, and,
secondly, a comparison between these mechanisms applying the eCos context switching is
made. Afterwards the main subject of this thesis, the fault-tolerance of data structures, is
researched. The question, how an additional pointer can improve fault-tolerance and how
this influences the overhead, will be resolved.

3.1 Data integrity
The focus in this section is on the integrity of data content. The aim is to get a transparent
fault checking and, if necessary, correcting, which has as little overhead as possible.
Therefore, different checksum implementations are compared against each other and also
against an error correcting code.

3.1.1 Checksums
One possibility to detect errors is checksums. These are no correcting codes meaning the
redundant data must include the entire content, because if an error occurs there is no way
to identify, neither in which word the error occurred nor which bit flipped. After checking
the data, there is only the guarantee if an error arose or not. Faulty data implies the
whole replacement of the concerned section by the redundant data. Consequently this
means that the storage overhead is at least 100%. With the result of the checksum has to
be stored as well, the overhead is even higher.

In this work two kinds of checksums are discussed: On the one side one straight forward
implementation of a simple checksum and on the other side cyclic redundancy codes.

Add up - a simple checksum

The algorithm generates a sum over the stored content in scope. To say for sure that there
was an error only one bit error over the whole context is acceptable, because if in one word
a bit changes from 0 to 1 and in another word the same bit flips vice versa, the result is
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18 3 Fault-tolerant data integrity and data structures

the same checksum and, by implication, the error remains undetected. But in best case all
bit flips occur in different bits. In this case the algorithm can detect thirty-two bit errors.

Cyclic Redundancy Check

Using cyclic redundancy codes is a common method to detect errors. As many chipsets
have no special CRC generation circuits, software-based CRC generation is important. A
lot of work has been done in the past to accelerate the CRC generation process. [Kou]
Today the most frequently used algorithm is the implementation by Sarwate [Sar88]. Intel
developed a faster implementation called slicing-by-8 [Kou]. In Intel’s Nehalem-based Intel
Core i7 the SSE4.2 instruction set was first implemented. It includes a CRC32 instruction
that speeds up the checksum generation by using hardware support. These three different
implementations are compared to each other.

Basics

"CRC algorithms treat each bit stream as a binary polynomial B(x) and calculate the
remainder R(x) from the division of B(x) with a standard ’generator’ polynomial G(x)."
[Kou] This calculation is done in module-2 arithmetic. In other words the additions and
subtractions are equal to the exclusive OR (XOR). The calculations are free of carries
which simplifies the technical realization as only XOR gates are necessary. Additionally
this increases the speed of the computation. [Her06] "The remainder that results from
such long division process is often called CRC or CRC ’checksum’" [Kou]. The receiver1

verifies the remainder by calculating it using the bit stream and performing an exclusive
OR against the transferred remainder. If the result is null, the bit stream is valid.

Working on one bit of the dividend at the same time is very slow. So, effective methods
to perform the long division were developed: The current remainder that results from a
group of bits is pre-calculated and stored in a table. At run time all possible remainders
are already pre-computed. So one table lookup step can replace several long division steps
[Kou].

The Sarwate Algorithm

First the CRC value is initialized to a given value depending on the implementation.
For instance for CRC32c this number is 0xFFFFFFFF. In listing 3.1 the initial value is
INIT_VALUE. Before performing the CRC algorithm a 256 entry lookup table with the
results in it was pre-calculated. The algorithm now walks through every single byte of the
input and XOR-s the read byte from the input stream with the least significant byte of
the CRC value. The result is 8 bits which give the index of the lookup table to get the
result. After that a XOR operation between this value and 24 most significant bits of the
CRC value, after shifting them 8 bits to the right, is accomplished. The outcome is the
CRC value which will be used for the next step of the loop. The calculation is finished
when all bytes of the input have been taken into account [Kou]. At the end the calculated
CRC value is XOR-ed with a final value.

1 In our case the receiver is the same system, even the same class. The content has to be checked against
soft errors occurred while outsourced.
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Listing 3.1: The Sarwate Algorithm [Kou]

crc = INIT_VALUE;
while(p_buf < p_end)

crc = table(crc ^ *p_buf++) & 0x000000FF) ^ (crc >> 8);
return crc ^ FINAL_VALUE;

[Sar88] contains detailed information about the developing of this CRC algorithm.

Intel’s slicing-by-8

Intel developed a faster implementation of a CRC algorithm and presented it in 2005.
It takes 2.2 cycles/byte [Jog05] instead of Sarwate algorithm’s 7 cycles per byte[Kou].
The algorithm works on 64 bits at a time, while standard implementation only takes
eight bits, by using eight lookup tables. With modern processors having larger cache
units they are able to handle moderate size tables. The slicing-by-8 algorithm has a total
space requirement of eight kilobytes. So it fits into the processor cache and results into
faster query results, especially by having eight queries per loop which is the reason for the
increase of speed.

The algorithm starts like the Sarwate algorithm with a 32-bits initial value. This value
is XOR-ed with 32 bits of the input stream and the two least significant bytes of this
result are both indexes for two different tables, of these two values are picked and an XOR
operation is performed between them. This is done again with the two most significant
bytes but in turn with different tables. So, four different tables are used by now. At this
moment there are two results which must be XOR-ed again. After that another XOR
operation must be executed. But at first the second value of this XOR operation must be
calculated. To do this the next 32 bits of the input stream are used without XOR-ing them
with the initial value. Same story as above: all four bytes are looked up in a table, but this
time yet other four tables than used for the first four bytes, and then XOR-ed. Following
that, an XOR operation is performed between this interim result and the outcome of the
first four bytes.
This is done in a loop until all bytes are read and calculated into the interim CRC

value. After the loop this number is again XOR-ed with a final value. After all the CRC
computation is done.

SSE4 instruction crc32

The streaming SIMD extension (SSE) is an extension of the x86 instruction set. SSE in
version 4.2 was first implemented on Intel’s Nehalem architecture and with this a crc32
instruction [Sin].

3.1.2 Comparing redundant data
A very fast solution is the direct comparison between original and redundant data. The
actual data is stored redundantly without any checksum or correction bits. When checking
if an error occurred the algorithm passes every word and compares them. In the case of
inequality an error is detected. But the big disadvantage and killing stroke is the lack of
knowledge which of the two words is incorrect. So this proceeding is useless.
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3.1.3 Hamming code - an error-correcting code
The hamming code is an error-correcting code developed by Richard Hamming. With a
hamming distance1 of three it can detect two bit errors and correct single bit errors. The
(7,4)-Code is the simplest hamming code. It is a length of seven, of which three bits are
correction information, the so called parity bits.

Implementation

In case of guaranteeing data integrity of a scope of 32 bit words, a hamming code for
every word in this range needs to be generated. With having 32 bit words, six parity bits
are needed to get a hamming distance of three to be able to correct single bit errors per
word. It is also possible to recognize two bit errors, which leads the system to throw an
exception, which can be handled by the user.

The output is a 38 bit word. Therefore, the memory has to be restructured after building
the hamming code to store the generated word. The reason is that the system is 32 bit
aligned2. The consequence would be high effort on restructuring associated with a waste
of memory, as 28 filling bits must be stored per word because of the alignment. As a
solution the calculated parity bits are stored separately from the data words.

To build the parity bits, the ’1’s at special positions in a word must be counted. This is
done by performing a bitwise AND with the associated mask (e.g. p[0] = (v & 0x56aaad5b)
for the first parity bit). In figure 3.1 the source of the associated mask is illustrated.

Figure 3.1: Building parity bits

1 The hamming distance is the smallest number of binary digits which sets one word apart from another.
2 Every n bit system has the same problem because the resultant words are of n + p > n length.
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Optimizing the population count

The population count of a word is the number of one bits in the value. The simplest type
to perform this is a loop checking every bit successively. And this ones count slows the
hamming code strongly down. This is shown in table 3.4: Just changing the population
count function affects the runtime. Therefore, additional optimizations on this instruction
were implemented and tested.

SWAR population count algorithm

The following algorithm was developed by The Aggregate, a group of researchers based at
the University of Kentucky. The algorithm executes a tree reduction adding the bits in a
32 bit value. Further information is given in [Die].

Listing 3.2: Population Count using a variable-precision SWAR algorithm[Die]

unsigned int ones32(register unsigned int x)
{

x -= ((x >> 1) & 0x55555555);
x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
x = (((x >> 4) + x) & 0x0f0f0f0f);
x += (x >> 8);
x += (x >> 16);
return(x & 0x0000003f);

}

Array with precomputed count of ones

Another possibility is the pre-computation of ones in a word. The word is separated in 8
bits. Getting the population count for 8 bits is done in O(1).

Listing 3.3: Precomputed ones for 8 bits words in a table.

unsigned int ones32(register unsigned int x)
{

unsigned int count = 0;
for(int q = 0; q < 32; q += 8) {

count += __popcount_tab[(x >> q) & 0xFF];
}
return count;

}

Sparse Ones

This algorithm lasts the number of ones in the word loops.

Listing 3.4: Spares Ones algorithm.

unsigned int ones32(register unsigned int x)
{

unsigned int count = 0;
while (n) {
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count++;
n &= (n - 1);

}
return count;

}

SSE4.2 instruction popcnt

The SSE4.2 instruction set, first implemented in Intel’s Nehalem architecture, includes the
popcnt instruction which counts the number of ones in a word.

3.1.4 Micro-benchmarking fault tolerant eCos context switching
Including fault-tolerance mechanisms slows systems down, because additional checks have
to be made and extra memory is used for redundant data and checksums or parity bits,
depending on the fault-tolerance strategy. The question is, what about the time and
memory overhead, if it is necessary to use fault-tolerance to ensure data integrity. This
will be figured out in the following.

Using an Intel Atom system, Intel’s read time-stamp counter instruction (RDTSC)
can be used for time measurements for evaluations. The basics and implementation is
described in [Coo97]. A very important thing to know is that Intel’s RDTSC measures
cycles and not time. This is working with Intel processors as it is possible to access their
time-stamp counter, which is a 64-bit model specific register incrementing every clock
cycle. To calculate the time in seconds the measured process took is the number of cycles
divided by the frequency of the processor in Hz.

Applying this technology, it is not possible to use the SSE4.2 instructions. Nevertheless,
these instructions were also measured on an Intel i7 870 CPU with SSE4.2 support to
get to know what is potential when using hardware supported commands. After the
scheduler made the decision which thread is next, the context is going to be switched.
For the test case of one bit errors, fault injection was done statically after the checksum
generating process by flipping a bit of the instruction pointer stored in the main memory.
The context switching process is to be measured using the RDTSC instruction. Average is
the mean value over a thousand measurements. To calculate the overhead the reference is
the average value of without FT with O3 optimizing. The results are shown in the tables
3.2 to 3.5 and will be discussed now.
First of all the additional overhead for storing and restoring data redundancy was

measured. It is listed in the table 3.1. The results without optimization are not worth
mentioning. As the hamming code was developed without the optimization to store the
parity bits consecutively instead of the six parity bits per storage location of four bytes, it
is the same overhead as the checksum algorithms.
The simple checksum (in the tables called FTChecksum) benefits from its simple

algorithm. This makes it the fastest one in the tests. While having only 38% overhead
in running time when no error occurs, it increases slightly to 47% when a bit flipped.
But this algorithm has disadvantages. The one thing is, that, and this is a problem of
all checksum algorithms, the memory overhead is more than 100%. With checksums
not being correcting codes, it is necessary to make the whole context, which must be
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System Operation Optimization Average

i7 store O0 282
O3 71

restore O0 264
O3 71

hamming-repair O0 79
O3 51

Atom store O0 401
O3 136

restore O0 317
O3 124

hamming-repair O0 127
O3 103

Table 3.1: Overhead of storing and restoring redundant data and for the repairing process
of the hamming code.

Algortihm Compiler Minimum Maximum Average Overhead

without FT -O0 400 960 412 0%
-O3 400 540 412 0%

FTChecksum -O0 970 1100 984 139%
-O3 550 680 570 38%

FTCompare -O0 1070 1270 1086 164%
-O3 580 1570 616 50%

FTHamming

-O0 98610 99570 99057 23943%
-O3 36170 36800 36307 8712%
-O3 -DHAMMOPT 11480 12340 11553 2704%
-O3 -DHAMMOPT1 26630 27750 26767 6397%
-O3 -DHAMMOPT2 15110 17850 15257 3603%

FTSarwate -O0 3120 3320 3138 662%
-O3 1360 1640 1385 236%

FTsb8 -O0 2200 3240 2229 441%
-O3 1120 2010 1149 179%

Table 3.2: Switching context without errors on Intel Atom - performance test.
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Algortihm Compiler Minimum Maximum Average Overhead

FTChecksum -O0 1250 1900 1264 207%
-O3 590 1150 605 47%

FTCompare -O0 1060 1310 1077 161%
-O3 580 1240 609 48%

FTHamming

-O0 98850 99810 99131 23961%
-O3 36210 36950 36336 8719%
-O3 -DHAMMOPT 11550 12530 11625 2722%
-O3 -DHAMMOPT1 26710 27890 26839 6414%
-O3 -DHAMMOPT2 15130 18010 15324 3619%

FTSarwate -O0 3420 3780 3448 737%
-O3 1390 1690 1418 244%

FTsb8 -O0 2480 3260 2505 508%
-O3 1160 2270 1205 192%

Table 3.3: Switching context with 1 bit errors on Intel Atom - performance test.

protected, redundant. Additional to this the calculated checksum has to be stored as well.
In this thesis a special purpose system is used which has no problem with making a lot of
redundant data due to the fact that it has enough memory. But the memory overhead
can get a disqualifier in small embedded systems. The other one, as already shown, is that
only one bit of the entire area, which must be checked, may change to say for sure that an
error occurred.
In more complex checksum algorithms like the Sarwate Checksum the last problem is

solved by generating a checksum for every word and using this one again for the next
checksum value. But this algorithm is slower, having a runtime overhead of 236% in case
of no error and even worse when an error occurs. That is why another try was made, to
speed up a better checksum algorithm than the simple add up. Therefore, the slicing-by-8
algorithm was measured. Indeed it is much faster than Sarwate’s version, but with 179%
overhead still much slower than the simple checksum algorithm.

Finally there is the question whether to use a very fast implementation with the known
disadvantages or a more robust one with the consequence of a slower system. The advance
towards the fast implementation is justified by the knowledge of transient errors being
very rare and most of the time the system does not need any fault-tolerance mechanisms.
So it is required to get fast through the generating and checking process. Another reason
for the add up implementation is that two errors occurring is even less frequently.
To get rid of the memory overhead problem, an error correcting hamming code can be

used. Only six bits per word must be stored which means an 18.75% memory overhead. But
in result table 3.2 shows hamming codes to be very slow. The problem is the population
count, which was already mentioned in subsection 3.1.3, and also table 3.1 shows that the
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Algortihm Compiler Minimum Maximum Average Overhead

without FT -O0 128 528 396 2%
-O3 120 544 388 0%

FTChecksum -O0 476 812 743 91%
-O3 208 552 480 24%

FTCompare -O0 528 920 805 107%
-O3 188 668 458 18%

FTHamming

-O0 58720 61424 60353 15455%
-O3 18788 19712 19274 4868%
-O3 -msse4.2 796 1180 1074 176%
-O3 -DHAMMOPT 5648 6252 5950 1434%
-O3 -DHAMMOPT1 11236 12236 11566 2881%
-O3 -DHAMMOPT2 7656 9896 8059 1977%

FTSarwate -O0 1692 2044 1955 403%
-O3 896 1236 1166 201%

FTsb8 -O0 1088 1804 1344 246%
-O3 452 1152 715 84%

FTcrcSSE -O0 -msse4.2 760 1080 1012 161%
-O3 -msse4.2 220 620 484 25%

Table 3.4: Switching context without errors on Intel i7 - performance test.

correction process is very fast. Even software optimizations for the population count do
not result in acceptable overhead.
Measuring the error correcting hamming code with different population count opti-

mizations is given in the tables as compiler flags -DHAMMOPT. The HAMMOPT flag
leads to variable precision SWAR algorithm, the HAMMOPT1 flag to algorithm with
the precomputed array of counted ones, and finally the HAMMOPT2 flag to spare ones
algorithm.

It is necessary to use hardware based instruction in terms of the SSE4.2 popcnt command
to get a runtime which is comparable to the one of the Sarwate checksum. The measure-
ments for this instruction were made on an Intel i7 architecture and as table 3.4 shows, it
is possible to get an error correcting code with only 176% overhead. Unfortunately this
instruction is not usable on smaller CPUs like the Atom architecture, so own hardware
support of the population count for optimization can be considered.

A second hardware based instruction in the SSE4.2 instruction set is the CRC command
to build a checksum. More complex checksum algorithms are quite slow as indicated
above, but when the SSE instruction is used, the same speed can be reached as the simple
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Algortihm Compiler Minimum Maximum Average Overhead

FTChecksum -O0 696 1036 976 152%
-O3 256 548 501 29%

FTCompare -O0 540 884 830 114%
-O3 192 636 462 19%

FTHamming

-O0 593336 61744 60650 15531%
-O3 19028 20280 19595 4950%
-O3 -msse4.2 808 1260 1078 178%
-O3 -DHAMMOPT 5760 6360 6002 1447%
-O3 -DHAMMOPT1 11532 12560 11882 2962%
-O3 -DHAMMOPT2 7984 9776 8291 2037%

FTSarwate -O0 1904 2244 2174 460%
-O3 916 1256 1188 206%

FTsb8 -O0 1316 2404 1564 303%
-O3 468 1244 732 89%

FTcrcSSE -O0 -msse4.2 996 1300 1234 218%
-O3 -msse4.2 268 1364 843 117%

Table 3.5: Switching context with 1 bit error on Intel i7 - performance test.

checksum. Only when a bit flips and correction must be done, the algorithm using the
SSE CRC command is very slow (117% overhead). Mostly, however, no error occurs, so
this instruction is an alternative solution to the simple checksum with fewer disadvantages.
Regrettably this instruction is also not available on Atom CPUs.

Finally, for the goal to ensure data integrity while being robust against single bit flips, a
very simple checksum implementation is sufficient as this is a very fast solution. Utilizing
more robust implementations or even an error correction code slows down the system so
much that it gets impractical. Hardware based implementations give a solution to this
problem, but are not available on all processors, which may lead to the consideration of
building own hardware support. This may be a topic of future work to optimize the data
integrity process.

3.2 Correctness of data structure
With the view to making data structure more robust against soft errors, the first idea is to
increase the number of pointers. Indeed, this results in a more detectable and correctable
data structure. The question, however, is on the overhead, which will be examined in
this section. Furthermore, it will be considered if just adding pointers is the best solution
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to get more fault tolerance or if it gets too unprofitable and if other solutions might be
better.

3.2.1 Types of errors
The focus is on the pointers and identifier fields of a data structure and not on its content.
With changing a pointer due to single event upsets, different types of errors can occur.

Changing the identifier field is causing the system not to recognize a valid instance
and may mislead to the assumption that a pointer was modified to a memory address
no instance is stored. If it is possible to detect the identifier field as wrong, it is easily
repaired by setting the correct value.
If a pointer is changed, two possible occurrences can arise. On the one hand, the

modified pointer can lead to a valid, but different instance. In this case there must be
enough redundant data to reconstruct the real structure. Otherwise one or more nodes
can get lost like it is shown in figure 3.2. On the other hand, the memory address does not
contain valid instances or the pointer even leads to an invalid address. This can provoke a
trap if there is a memory protection unit (MPU) in the system. If so the reconstruction
activity has to be done in the exception handler, as the same instruction is executed again
once the handler returns. Another possible trap is thrown if the system requires aligned
addresses and the pointer’s last bits are changed to an unaligned address. If the system is
not throwing any traps, an undefined word has been dereferenced and the data structure
needs to be recovered.

3.2.2 Detectability and correctability
To determine the theoretical detectability and correctability of data structures some
propositions are necessary.
"A k-determined storage structure is (at least) (k-1)-detectable"[Tay80b]. To use this

theorem it is important to define that "a data structure is k-determined if the pointers in
each instance of the storage structure can be portioned into k disjoint sets, such that each
set of pointers can be used to reconstruct all counts, identifier fields, and other pointers"
[Tay80b].

In theorem 7, the general correction theorem, it is said: "If a storage structure employing
identifier fields is 2r-detectable and there are at least r + 1 edge-disjoint paths to each
node of the structure, then the storage structure is r-correctable" [Tay80b].

3.2.3 Basic double-linked list
A simple linear list, in which each node has a pointer to its next node, is 0-detectable and
0-correctable [Tay80a]. The detectability can be incremented by adding an identifier field
to each node and replacing the null pointer at the end of the list by a pointer to the head.
Additionally a count field, which contains the number of nodes in the list, can be added.
But adding this features has no effect on the correctability, which is still nought [Tay80a].
In double-linked list each node has an additional pointer to its predecessor. Now we

have a 2-detectable and 1-correctable data structure, which has (as a disadvantage of
adding organization structure to the list) an increased number of changes for manipulating
the list. So inserting costs six changes (two forward pointers, two backward pointers, an
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identifier field, and the count) instead of two (the pointer of the inserted and the previous
node), the simple linear list has to proceed [Tay80a].

3.2.4 DanceList - A triple-linked list
The comparison for our DanceList is a double-linked list as described in section 3.2.3.
With the need to handle single event upsets, it is necessary to check the data structure
every time we change it, e.g. inserting a node, because an error can occur any time and so
a cyclic validation is insufficient, as an error may arise right after the validation. Therefore,
it is very important that the time required for the checking process and manipulation is
kept minor, while increasing fault tolerance.
The first step is the removal of the count field. To validate the count means running

through the whole list and compare the number of nodes against the count. This is very
costly when it’s done every time the data structure is changed; additionally with regard to
the fact that mostly no error occurred between two changes. The result is the decrement
of the detectability by one. This fact is simply proven in figure 3.2. If two pointers change
so that a node is not linked anymore, and the changes lead to a correct data structure,
the fault is not recognizable. But, furthermore, it decreases the number of changes to five.

Figure 3.2: Double-linked list with two pointers (red ones) are changed to the green ones.
The node in the middle is unrecognisably lost

In [Shi02] it is shown that the soft error rate increases with smaller chip designs. With
adding an additional pointer to every node that points to the node after next, we want to
get better results in detectability and correctability.

Detectability

In the DanceList the forward, the backward, and the pointer to the after-next node may
be used to reconstruct an instance. Figure 3.3 shows the three disjoint sets that can be
used to reconstruct the list. Therefore, it is 3-determined and with no stored count the
DanceList is 2-detectable.
With the admission of more than one simultaneous error, detecting and correcting

the data structure becomes more complex. A small example is the checking of the next
pointer: To verify that the previous node of the next instance is the starting node again is
insufficient as both pointers can be changed as in figure 3.2. More tests are necessary to
encircle the correct broken pointers.
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Figure 3.3: Portioning the DanceList in three disjoint sets of pointers. The green, red,
and blue ones can be used to reconstruct the entire data structure. So the DanceList is
3-determined.

Detecting a broken pointer

When a broken pointer is leading to undefined memory1 it is simple to detect as checking
the identifier field will show up that the pointer doesn’t point to an instance of the data
structure. On the other side the next pointer can lead to another node. It cannot be said
for sure if it is really the following one. Furthermore it is uncertain if one or two errors
have occurred. There is the need to check all possible error constellations.
To do this there is the opportunity to go through a complex path of if and else

instructions to enclose the erroneous pointers. The idea of the beginning of the detecting
procedure as one example for the many possibilities is described in the following:
At first it is checked if the previous pointer of the following node is pointing back to

the node checked. If the test is true, it is still possible that both pointers changed as in
figure 3.2. Therefore, an additional check is needed: Is the after-next node’s previous
pointer leading to the observed instance’s next one? In case yes, the four checked pointers
are correct, but the previous pointer of the watched node, however, is uncertain. If not
it is to be clarified which pointers were faulty. So, in case of an error, it is known now
that there has been an error, but it is neither clear which pointer is broken nor if there
were two pointers changed. The other possibility is that the check above (previous pointer
of following node pointing back) returns false. There are a lot more options of error
constellations. Unsure if the next pointer, the previous pointer of the following node, or
even both are broken, it is indeed possible that another pointer than that mentioned were
changed. Finally, there is a great number of comparisons to find out which pointer was or
which pointers were changed.

This will end up in a lot of compare and jump instructions on assembly level. As a
consequence a different kind of proceeding is to be used. Including three pointers per
node, the number of possible errors is bounded above. The main idea is to check the data
structure within several comparisons and get the changed pointers as the result. Optimally
all errors are reliably predictable with as few tests as possible.
Not all combinations of faulty pointers are of interest. Specific pointers are needed to

correct the data structure while others are irrelevant, because firstly they are not used
for correction and secondly it doesn’t matter if they are wrong as they will be set - if a
new node is inserted - to another node. So the old (wrong) value of the node is negligible.
After all it depends on the strategy of the correcting function what fault combinations are

1 Still on the assumption there are no traps when touching undefined memory.
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relevant.

Correctability

As shown above the DanceList is 3-determined, and so the correctability is one consequently.
This is the general correction theorem’s result, which was introduced in section 3.2.2. But
the following drafts will prove that the DanceList is indeed 2-correctable. To get rid of
one of the two errors is covered below. After that step there is just a single error, which
can be corrected in a next step.

Correcting the next pointer If the next pointer is faulty, there are two ways to correct it,
depending on the second incorrect pointer. The two cases are visualized in figures 3.4 and
3.5. The red solid arrow demonstrates the broken next pointer. Pointers, which can also
be corrupted, are red dotted. Finally, the correction of the next pointer is done by the
green path.

Figure 3.4: Way to correct the next pointer (red solid arrow) with the after next and the
previous pointer of the after next node are faultless.

Figure 3.5: Way to correct the next pointer (red solid arrow) if the after next or the
previous pointer of the after next node is faulty.

So in the detecting procedure it is important to figure out if in addition to the next
pointer the after-next or the previous pointer of the after-next node is broken. In this
case the next pointer has to be corrected like in figure 3.5. As the after-next node’s
previous pointer is irrelevant for the list’s manipulation process at the observed node’s
location, it does not have to be corrected. But not all pointers can be left unappreciated.
Specific pointers are important for the insertion and removal process. So the previous
node’s after-next pointer has to be set correctly when processing the list. That is why an
error-free reference to the previous node is needed. A faultless pointer to the next node
is necessary, because, first of all when inserting nodes, the next node’s pointers will be
changed and this node is also a reference for pointers of the inserted node. This is also
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the reason why the after-next pointer must be correct. In figure 3.8 the nodes, which
pointers, and how they are changed, are drafted. If the after-next and after-next node’s
previous pointer are faultless, they are used to correct the next pointer. The fact that not
all pointers are demanded to be corrected apart from the next pointer also applies here.
When two errors occur and neither the previous nor the after-next pointer is the second
fault it is not necessary to distinguish which of the pointers were changed in addition to
the next pointer.

Correcting the after-next pointer In the preceding paragraph it was ensured that the next
pointer is faultless or corrected, so it is not necessary to bother about this pointer any more.
Furthermore, there are two cases again but this time only depending on the correctness of
the next pointer of the next node. This is outlined in figures 3.6 and 3.7.

Figure 3.6: Way to correct the afternext pointer (red solid arrow) with the next and the
next pointer of the next node are faultless.

Figure 3.7: Way to correct the afternext pointer (red solid arrow) if the next pointer of
the next node is faulty.

Just in case the next node’s next pointer is broken the list has to be corrected like shown
in figure 3.7. In all remaining cases the correction is done with the first option in figure
3.6. As a special case the previous pointer is faulty in addition to the after-next pointer.
This alternative must be detected so as to have the possibility to correct the previous
pointer after rectifying the after-next pointer without another test. With this knowledge
the number of error constellations which need to be distinguished decreases. Because of
this it is the duty to find appropriate comparison functions which was also shown in the
paragraph about correcting the next point above.

Correcting the previous pointer On the one hand, the next or after-next pointer can
be corrupted in addition to the previous pointer. This was already handled in the two
paragraphs above. After correcting the concerned pointer there is only the previous pointer
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left. With this pointer being the only way to go backwards through the list, it is needful
to walk forwards until reaching the correct reference of the previous pointer to set it right.
Going through the complete list is inevitable because the previous node is unknown when
the pointer is broken. As more than one change can occur to the data structure, we are
forced to make sure with every step, that the instances and pointers passing through
are not faulty. Of course this increases the costs and time running through the data
structure by the overhead of the checking and as the case may be correcting procedures.
But as an advantage the list is checked completely and possible errors were reduced in the
entire data structure. As an optimization the list can be passed through by the after-next
pointer. Now it is not necessary to pass n but n

2 nodes. On the other hand, other error
constellations than previous plus next or after-next pointer are not of any interest. The
only thing that is important is to detect the broken previous pointer. The reason is that
the other pointers are not needed for the correction. The after-next pointer was already
checked and with every step through the list the following after-next pointer is checked
again.

Results

Not all error constellations are important for the correcting process. So the number of
different options which have to be distinguished decreases. The goal is to find perfect
fitting comparison functions. This is the opportunity for optimization to get detection
done in as little as possible steps and consequently as fast as possible. After construction
of the n functions there is a bit mask with n bits. To call the correction function in O(1)
an array of references of the fitting correction functions were structured. The correction
function is located in the array field with the number of the resulting bit mask.

Listing 3.5: Error detection using comparison functions

void DanceList::ft(Node *node) {
int errcode = 0;

node->afternext == node->next->next ? errcode = errcode | 1 : errcode;
node->next == node->afternext->prev ? errcode = errcode | 1 << 1 :

errcode;
node == node->next->prev ? errcode = errcode | 1 << 2 : errcode;
node == node->prev->next ? errcode = errcode | 1 << 3 : errcode;
node == node->prev->afternext->prev ? errcode = errcode | 1 << 4 :

errcode;
node == node->afternext->prev->prev ? errcode = errcode | 1 << 5 :

errcode;
node->afternext == node->prev->afternext->next ? errcode = errcode;

if(errcode == MAXERROR) return; // Everything's fine

// call correction function
function[errcode](this, node);

}

In listing 3.5 the functions used in this research are drafted. But they are not perfect: It is
not possible to decide which correction mode (figure 3.6 or 3.7) to use when the after-next
pointer is broken. The problem is that all pointers which are involved are needed to check
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against the others, meaning the next node’s after-next pointer must be used to check
the next node’s next pointer and vice versa. So it is only possible to detect that one
of the three pointers (the next node’s next, after-next, and the next node’s after-next
node’s previous pointer) is broken. That is the reason why this case is handled as one
and has no extra comparison function. To solve this issue the next node is checked first.
Changing the point of view the broken pointer can be detected and corrected as described
above, because now it is the node’s own next or after-next pointer or the after-next node’s
previous pointer. And this error is detectable and correctable. After fixing this problem
the actually checked node respectively its after-next pointer can be repaired. Of course
this method has more overhead with a second node to be checked. This is something to
be optimized in future works.

Summarized using triple linked list and comparison functions gives following advantages:

• 2-correctable data structure which implies more robustness against transient errors.

• Detection of a second error, if any, while detecting the first one in a fast way.

• Correction of a forward pointer is done in O(const.) and not O(n) like in double-linked
lists.

But there is also more overhead because of the additional pointer, which increases the
number of changes when the list is manipulated. Inserting a node results in eight changes:
the three pointers of the inserting node and its identifier field, the next and after next
pointer of the node before the inserted one, the previous pointer of the node after the
inserter one, and the after-next pointer of the node before the previous one. This is drafted
in figure 3.8.

Figure 3.8: Modifications on DanceList when inserting a node in different tones of green
for new pointer settings and red dotted pointers for removed references. The lighter green
arrows shows the after-next pointers, the dark green ones the next and previous pointers.
Missing in this draft: the identifier field of the inserting node.

3.2.5 Micro-benchmark
With the will to get more robust data structures higher costs come for every manipulation
made to the list. Different measurements were made to check the speed of DanceList
compared to a double- and single-linked list when no errors occur. Furthermore, the times
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of DanceList detecting and correcting single errors against the ones of a double-linked
list is of interest in this work. Following this, the costs of correcting two changes will be
determined.

Mostly no error occurs. That’s why it is important to know how much overhead a fault
tolerant data structure causes in case of no error. When no fault detection functions
are enabled measuring with the time stamp counter delivers no result. So the number
of instructions were analysed to get a representative outcome. While the default list
needs nine instructions for a node’s insertion, the double-linked list already takes fourteen
steps. At last the DanceList needs more than twice as much instructions than the simple
list. Enabling fault detection function means an additional function call and additional
instructions checking the data structure. In terms of figures, this means that the DanceList
takes about 50% more cycles to finish an insertion of a node than both the single-linked
list and a not fault-tolerant double-linked list, like it is included in eCos. If this makes
the DanceList just partially the speed of the double-linked list or less is clarified in the
evaluation in chapter 4, as this is highly depending on the case of application.
It was clear from the outset that more robust data structures are slower than simple

ones. So the next step is to examine the behaviour when errors occur. As double-linked
lists are 1-correctable single errors were measured first. To do this error injection was also
done static in the test cases by setting the specific pointer to another node. After this a
certain number of nodes were inserted and the average number of cycles the insertions last
was taken. To compare the DanceList against a double-linked list a simple detection and
correction function for the double-linked list was implemented. This is shown in listing
A.1.

First of all the next pointer was manipulated. To correct this error in double-linked list
there is the need to go through the entire list. This makes the results depending on the
number of nodes in the list. With an extra pointer to the after-next node the DanceList
however is free of these effects when correcting the next pointer. So the DanceList has
stable cycle values independent from the number of nodes, while the double-linked list’s
results increase with the quantity of nodes. But even on low count of nodes the DanceList
is faster. Inserting ten nodes the double-linked list is about 70% slower on average, if this
error occurs.
But considering the previous pointer of the DanceList it comes out that it is the same

problem here. As there is no additional previous pointer to the second last node it is
also necessary to go through the whole list. Therefore, the time needed for correction is
also depending on the number of nodes. In figure 3.9 the overhead in relation to the next
pointer correction is drafted.
There is high potential for optimizations to get better results. One idea is to add an

extra pointer to the penultimate node. But this is not in scope of this work and may be of
interest for future research on this topic.
Using the comparison function visualized in listing 3.5 the correction of the after-next

pointer is the same problem as the previous pointer’s one. This is because in the current
implementation the after-next pointer correction depends on the strategy of previous
pointer correction. The reason is that the detection of the next node (as a reminder: the
after-next node’s correction is done by checking the next node as well) results mistakenly
in an error of its previous pointer. Here is also a starting point for optimization: generating
better comparison functions may solve the problem.
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Figure 3.9: Overhead of correcting the previous pointer depends on the number of nodes
in the list. This plot is showing difference between the correcting the next pointer and
previous pointer in percent. The red line denotes 100%.

With the next, previous, and after-next pointer the complete organization structure
of node in the DanceList is checked and, if necessary, corrected, if just one error occurs.
But the DanceList is 2-correctable and, therefore, the question is what overhead is to be
expected if two errors arise. Like having just one error, it depends on the type of error
and on the comparison functions. A broken previous pointer results in the same problems
as described above no matter what other pointer was changed. Things are different with a
defect after-next pointer. If two errors are detected the after-next pointer can be corrected
very fast due to the fact that it is known which correction mode (figure 3.6 or 3.7) must be
used. If the previous pointer is broken additionally to the after-next pointer for example,
this pointer can be corrected by taking on the reference of the next node’s next pointer,
as the next pointer is not damaged. After the correction of the after-next pointer, the
previous pointer can be handled as the only error with the known issues. So the correction
of two errors, which are discovered in one detection round, is a one by one correction of
the two single errors. That is why the overhead depends, in case of one broken pointer
being the after-next pointer, on the other one. If this for instance is the next pointer,
there is little overhead, because first of all the next pointer is corrected by the previous
node’s after-next pointer and subsequently the damaged after-next pointer is corrected by
next node’s next pointer, as the after-next pointer is the only broken one after the next
pointer was fixed. This example is drafted in figure 3.10. Finally, if two errors occur, the
problem with the correction of the previous pointer remains, but the after-next pointer
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can be corrected fast, since the other broken pointer is known and consequently the way
to correct this after-next pointer.

Figure 3.10: The correction starts with step 1 as it it is known that this previous pointer
is not faulty. After step 2 the next pointer is fixed. Consequently it can be used for the
correction of the after-next pointer as step 3 and finally complete the correction using step
4.

In the current status the inner structure of the DanceList is guarded. The thing to get
access to the nodes, the head pointer, however, has never been mentioned yet. If there is
no way to get to the nodes in the list any more, the entire data structure is useless. As
shown in the data integrity part redundancy can protect such things as the head pointer.
In the DanceList this is done automatically as there is an additional tail pointer to the
end of the list. Using this pointer the head pointer can be re-constructed as its reference
is the tail’s next node.
In conclusion, the DanceList can be a great method to realize fault tolerance to data

structures. Optimizations are necessary to get powerful data structures with the ability
to be robust against more than one error. In the current version there are lacks in the
detection and correction process. So the goal in future works must be to find better fitting
comparison functions. If so, data structures are prepared for future tasks to be more fault
tolerant.



CHAPTER 4
Evaluation

Two different methods to prevent operating systems faults caused by transient hardware
faults were shown in the last chapter. Protecting data integrity was already evaluated
in operating system context as described in subsection 3.1.4. The result was, that with
higher demands more complex protection mechanisms are necessary, but this is associated
with more overhead regarding the runtime. Adapted and fast implementations need
hardware support embedded processors mostly do not supply. So the idea was to create
own hardware to assist the processor, which might be a topic of future research. If the
goal is to get a very fast implementation and this is not a false belief as soft errors are rare,
a simple checksum with a few disadvantages can be taken instead of developing tricky
mechanisms.
Data structure correctness was treated in a different way. The DanceList, a more

fault-tolerant data structure, was developed and evaluated outside the operating system
context. Resulting from the DanceList taking more than one and half times the cycles to
insert a node when no error occurs the question was if the runtime is also one and a half
times the amount of the not fault-tolerant double-linked list. To give an answer to this
the DanceList was included into eCos so much that the scheduling queue was replaced by
the fault-tolerant data structure, which got wrapper functions to fit into the eCos context.
With a few threads suspending and resuming the entire test the scheduling procedure
was called all along including the measuring of the time needed for adding the current
thread to the scheduling queue, selecting a new thread from the queue, and switching
to the next thread. The result is the average value of one thousand measurements done
again with Intel’s RDTSC. It became clear that the DanceList is not in the slightest
half the speed of the double-linked list in this context. On the contrary the resulting
overhead of runtime is just about 5% when no errors occur, which makes the fault-tolerant
data structure profitable and to an acceptable choice to the standard scheduling queue
implementation. One reason for this low overhead is that the access on the data structure
during the scheduling process is very short. So the additional instructions for checking the
correctness of the data structure are practically negligible. But this does not depreciate
the DanceList in any way. Accesses on lists are a common procedure in operating systems
during other processes like scheduling or organizing locks (threads may be suspended and,
therefore, stored to a list, which arranges these threads). Lists respectively queues are
supporting structures for the operating system and as a consequence the entire procedure
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must be considered and not only the overhead of fault tolerant mechanisms merely during
the data structure’s proceedings.

In case of an error the overhead depends on the kind of the error occurred, as mentioned
in 3.2.5. If there are broken pointers, which can be fast repaired, the overhead increases
barely perceptible. In the current configuration the next pointer is an example in return.
Following the comparison functions the type of error is clarified and it is possible to jump
to the correction function directly, which rectifies the data structure in a few steps. If it is
possible to manage to achieve better results in the correction process for all errors, those
can be corrected very fast and with extraneous overhead. Currently a broken previous
pointer for example gives higher overhead depending on the number of threads in the list.
So a goal in future studies can be to eliminate this disadvantage. But it must be kept in
mind that the double-linked list has the same problems and furthermore the correction of
the next pointer is also the same issue.



CHAPTER 5
Conclusion

In this thesis data in main memory were made fault tolerant. At first a very quick way to
ensure data integrity was examined. The result is that very simple implementations are
acceptable as the overhead is very slight and it is still 1-correctable. But if there is the
need for more correctability, because soft error rate increases too much, better mechanism
must be included, which results in more overhead. Therefore, hardware support for specific
algorithms like the population count in a hamming code could reduce the runtime and
make this error correcting code a reasonable possibility, and is a topic for future work.
Having more robust data structure was the second goal of this work. The DanceList

is a 2-correctable data structure with several advantages. Adding an extra pointer was
the basic idea which resulted in a better fault tolerance and a faster strategy for error
detection was created. Because of this it is possible to say which pointer is broken and
correct it in a quick way. Nevertheless, there is need for improvement, less the idea by
itself, but the special comparison functions it is using, which is also giving space for
enhancement. So with better and maybe less comparisons it is possible to speed up the
detection and above all the correction of broken pointers. There is the idea to make an
additional previous pointer to the node before the previous one to solve the problem with
correcting the previous pointer. But then there is the question of the disadvantages like
additional overhead. With all these thoughts it must kept in mind that the type of errors
we try to detect and correct are very infrequent. Even so they must not be underestimated,
as "the protection from radiation induced transient faults has become as important as
other product characteristics such as performance or power consumption" [MZ08].
In this work simple and static test cases were used. Fault injection was done by

manipulating values directly in the implementation to simulate errors. In future work fault
injection must be done on real hardware and the tests have to be repeated. Therefore, real
conditions can be emulated. Another point for future work is the handling of traps which
has not been treated in this thesis. If a pointer of a data structure references not valid
memory the trap, which is thrown, must be handled by correcting the broken pointer in
the handling function. Additionally the two parts of this work (data integrity and correct
data structure) must be combined in an efficient way with the result that not only the
data structure but also its content is protected against transient hardware faults.

Finally, this field gives space for enhancement in future works which may result in more
robust and efficient fault tolerance for operating system data structures.
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APPENDIX A
Appendix

Detecting and correcting changes in a double-linked list

Listing A.1: Not optimized error detection and correction in a double-linked-list

void DList::ft(Node *node) {
if(node->next->prev == node) return;

// Next ptr broken
if(node->next->id != listid) {

// pointing to invalid memory
Node *tmp = node;
Node *schlepp;

// prev until we point on node again. schlepp is next now
while(node != (tmp = tmp->prev)) schlepp = tmp;

node->next = schlepp;
return;

}

// next->prev ptr broken
if(node->next->prev->id != listid) {

node->next->prev = node;
return;

}

// next OR next->prev ptr broken; one is pointing to a wrong node in list
// => count number of nodes while going forward and backward through the

list
// the one with less nodes lost some and is the broken ptr
int i = 0, j = 0;
Node *tmp = node;

while(node != (tmp = tmp->next)) i++;

tmp = node->next;

while(node->next != (tmp = tmp->prev)) j++;
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if(i < j) { // next ptr broken
Node *tmp = node;
Node *schlepp;

// prev until we point on node again. schlepp is next now
while(node != (tmp = tmp->prev)) schlepp = tmp;

node->next = schlepp;
return;

} else if (i > j) { // next->prev ptr broken
node->next->prev = node;
return;

} else { // something went wrong, but should not happen!
printf("ERROR while correcting DList\n");

}
}
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