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Überblick

C ist die Programmiersprache, die den Bereich der eingebetteten Systeme do-
miniert, da sie sehr ressourceneffizient und hardwarenah ist. In sicherheitskritis-
chen Systemen ist Geschwindigkeit nicht das einzige Kriterium. Eine typsichere
Programmiersprache mit Sicherheitsüberprüfungen zur Laufzeit, die Fehlzugriffe
im Speicher verhindert, wäre von Vorteil. Inbesondere auf Systemen, die keinen
Hardware-Speicherschutz besitzen.

KESO ist eine Java Virtual Machine für eingebette Systeme, die C nach Java
Ahead-of-Time übersetzt und dadurch die Sicherheitsfeatures von Java und die
Geschwindkeit von C vereint. Da RAM eine begrenzte Ressource auf eingebet-
teten Systemen darstellt, bietet es sich an, konstante Daten im ROM zu allok-
ieren. Unglücklicherweise bietet Java keine Möglichkeit Daten als konstant zu
markieren.

In dieser Arbeit wurden dem Java-nach-C-Compiler von KESO neue Analysen
hinzugefügt, die konstante Daten entdecken. Ausserdem wurde das Backend des
Übersetzers so angepasst, dass konstante Daten im ROM plaziert werden können.
Das Laufzeitsystem von KESO verfügt desweiteren über eine automatische Spe-
icherbereinigung. Diese musste angepasst werden, da sie Schreibzugriff auf den
Objekt-Kopf benötigt, um korrekt zu funktionieren. Dieses Vorgehen scheitert
jedoch bei nicht beschreibbaren Objekten, weshalb der Garbage Collector kon-
stante Objekte im ROM ignorieren muss.

Die verschiedenen Analysen und Anpassungen an Backend und Laufzeitsystem
wurden evaluiert. Die Ergebnisse unterscheiden sich sehr von Anwendung zu
Anwendung und sind stark abhängig von der Verfügbarkeit von ausnutzbaren
Daten. Je nach Anwendung provozierten die Optimierungen keine Veränderung,
unter den richtigen Umständen jedoch bis 10% Geschwindigkeitszuwachs.





Abstract

C is the dominating programming language in the field of embedded systems,
as it is resource efficient and operating close to the hardware. In safety-critical
environments, speed is not the only priority. A type-safe language with runtime
security checks, providing memory safety, would be convenient, especially on
systems lacking a memory protection unit.

KESO is a Java Virtual Machine targeting embedded systems, compiling Java
bytecode to C ahead of time, thus combining the security and safety features of
Java and the speed of compiled C code. As RAM is scarce resource on most
embedded systems it would be desirable to allocate constant data in the target’s
read-only memory. Unfortunately, Java does not provide a way declare fields as
constant.

In this thesis, new analysis passes were added to KESO’s Java-to-C compiler,
detecting constant data. Furthermore, functionality was added to the compiler’s
backend, so the constant data is placed in ROM. KESO’s runtime environment
features a garbage collector, which had to be adjusted as well, as the garbage
collector needs write access to the object headers, in order function properly.
This write operation will fail, when it comes to read-only objects, so the garbage
collector needs to ignore them.

The different analysis passes and adjustments of the backend and runtime
system were evaluated. The results vary from application to application, based
on the availability of exploitable data. Depending on the application, the results
range from no effect at all to 10% performance increase.
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1 Introduction

Embedded systems are all around us, used for a wide range of tasks, from control-
ling the thermostat at home, over playing music on MP3 players to supporting
brakes in cars. Those systems are tailored for one specific task, equipped with
processors of varying complexity, ranging from simple 8-bit AVR microcontrollers
to full-blown 32-bit multi-core ARM processors. For performance reasons and re-
strictions regarding code size and memory usage, software for these systems is
written in C most of the time, or even hand-crafted assembly code. Operating
so close to the hardware and having only few layers of abstraction is what makes
these languages so fast. However, this makes them risky at the same time, cre-
ating easy ways to make mistakes, leading to overwritten memory or otherwise
unwanted behaviour, especially with microcontrollers that lack memory protec-
tion. Using a type-safe programming language, providing compile-time and run-
time safety checks, would increase memory safety and remove the necessity of a
hardware memory protection unit.

1.1 The KESO Multi-JVM

Java is not the language that usually comes to mind talking about embedded
systems, though it is widely used in many other sectors. Its object-oriented pro-
gramming paradigm, automated memory management, type-safety and various
other features make this language so popular. Using the KESO Multi-JVM[10]
it is possible to write Java code for statically configured, deeply embedded sys-
tems, using the comfort of Java and its security and safety features, like runtime
bounds checks. KESO is capable of generating code for different real-time oper-
ating system standards like AUTOSAR OS[2] or OSEK[8], and for a variety of
processor architectures, including TriCore and AVR. Supporting only statically
configured systems and not allowing the loading of additional components at
runtime, distinguishes KESO from regular JVMs. This offers many possibilities
for optimizations, because it is guaranteed that the whole code base is known at
compile time.

Unlike most JVMs, KESO is not a bytecode interpreter or just-in-time com-
piler, executing native instructions on the CPU. KESO compiles Java bytecode
to C ahead of time. Compiling the emitted C code with a C compiler of the
developer’s choice, induces another round of optimizations. The existence of the
C compiler disburdens KESO from having to know everything about the target
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Figure 1.1: Overview of the KESO environment.

architecture and at the same time makes it easy to port KESO to new platforms.
Figure 1.1 gives an overview of the KESO environment. Different tasks are

confined to their domain, representing their runtime environment. Each domain
has its own heap, garbage collection mechanism and other resources, making a
domain a JVM instance of its own, thus the term Multi-JVM. It is possible to
communicate with other domains via KESO’s portals, an RPC-like mechanism.
Other ways of accessing resources or objects of other domains are prohibited,
protecting the isolation property of the domains.

1.2 Motivation

Targeting deeply embedded systems, KESO strives to produce code that meets
the constraints of that area. KESO already provides a wide range of optimiza-
tions, removing dead code, unused methods and fields, and unnecessary runtime
checks. On the other hand, read-only data like lookup tables and strings oc-
cupy precious RAM space. Reducing the demand for RAM by putting constant
data into ROM would reduce the overall cost of the system, since ROM space is
significantly cheaper in production cost.

One reason why KESO is not able to put constant data into ROM is that Java
has no way to declare fields constant in the first place, like the const keyword
does in C. The thing that comes close to defining a constant variable is to label
a field with the final modifier, which forbids the field’s reference to change.
For primitive data types like int this is sufficient, as their “reference” cannot
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be changed. However, the content of non-primitive data types, like objects and
arrays, is not protected by the final modifier. Because of this, KESO has to
assume that the content is subject to change and has to allocate space for the
array or object in memory.

One thing that is guaranteed to be constant in Java are string literals, which
means text in quotation marks. Every string literal used in the code gets placed
in the JVM’s constant pool and will be referenced by its constant pool entry ID
in the bytecode. KESO emits string literals in form of C char arrays, but is not
able to mark it with C’s const modifier, because of the way the garbage collector
works.

The scope of this thesis is to detect different kinds of constant data in the ap-
plications compiled by KESO, add functionality to put constant data into ROM,
thereby eliminating the runtime efforts for its allocation and initialization, ulti-
mately reducing the application’s memory consumption. Furthermore, KESO’s
runtime environment, the garbage collector in particular, has to be adjusted to
handle constant data properly. Some backends require specific changes generating
code to place data in ROM and access it as well, because of their architecture’s
design.

1.3 Outline of this Thesis

The next chapter provides the required background information, giving an overview
of KESO’s Java-to-C compiler JINO, a detailed insight into the optimization
passes relevant to this thesis, as well as some important data structures. Chapter
3 describes the newly introduced compiler passes needed to find constant data and
the functionality that was added to the backend and the runtime environment.
The evaluation in Chapter 4 measures the impact on binary size and execution
performance caused by these optimizations. The thesis then concludes with a
summary.
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2 Background

This chapter gives a quick overview of how KESO’s Java-to-C compiler JINO is
organized and describes the already existing compiler passes that will later be
used to detect constant data. Additionally, some important data structures and
the relevant information about the garbage collector will be outlined.

2.1 The JINO Java-to-C compiler

KESO’s heart is the Java-to-C compiler JINO. It’s functionality is split into three
major components. The first part parses Java bytecode into JINO’s intermediate
code representation, then optimizations of the intermediate code take place. The
last part is responsible for generating the application’s C code.

2.1.1 Frontend

The frontend is responsible for parsing the system’s configuration files and the
preparing the the Java source. It transforms (.java) files over to Java bytecode
(.class) and finally to JINO’s own intermediate code representation. JINO uses
the regular Java compiler to generate the .class files, removing the need for
functionality for lexing and parsing the original Java code. JINO then parses
the Java bytecode files and extracts all the relevant information for each class.
Methods get translated to intermediate code representation, split up into basic
blocks, which are composed of instruction nodes.

Listing 2.1 shows the Java bytecode of a recursive method computing the great-
est common divisor of two integers and Listing 2.2 the respective JINO interme-
diate code representation. JINO’s intermediate code is very similar to JVM
bytecode, although opposed to the JVM’s stack machine layout, JINO references
operands as results of previous instructions.

2.1.2 Intermediate Code Analysis and Transformation

After the intermediate code is created, JINO runs various analysis and transfor-
mation passes on it. Starting with gathering of basic information, like class type
information and simple constant propagation, the code gets transformed into the
static single assignment (SSA) form, which is required by further passes.
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public static int gcd(int , int);

Code:

0: iload_1

1: ifne 6

4: iload_0

5: ireturn

6: iload_1

7: iload_0

8: iload_1

9: irem

10: invokestatic #2; // Method gcd:(II)I

13: ireturn

Listing 2.1: JVM bytecode of a recursive GCD method.

gcd(II)I {

_B0: (0/2; LiveIn: [i0 , i1]; PhiIn: []; LiveOut: [i0 , i1])

0: %0 = IReadLocalVariable i1

1: %1 = IConstant 0

1: %2 = NEConditionalBranch %0, %1, [_B4 , _B6]

_B4: (1/1; LiveIn: [i0]; PhiIn: []; LiveOut: [i0])

5: %3 = Goto [_B15]

_B6: (1/1; LiveIn: [i0 , i1]; PhiIn: []; LiveOut: [i2_1])

7: %4 = IReadLocalVariable i0

8: %5 = IReadLocalVariable i1

9: %6 = IRem %4, %5

10: %7 = IStoreLocalVariable i3_0 , %6

10: %8 = IReadLocalVariable i3_0

6: %9 = IReadLocalVariable i1

10: %10 = InvokeStatic Example.gcd(II)I %9, %8

13: %11 = IStoreLocalVariable i0 , %10

13: %12 = Goto [_B15]

_B15: (2/0; LiveIn: []; PhiIn: [i0 , i2_1]; LiveOut: [])

15: %13 = Epilog i0

}

Listing 2.2: JINO intermediate code of the recursive GCD method.
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Each optimization pass comes with its own list of passes that need to be run
before and after the current pass is executed. The passes are executed in an
optimization loop, until either a certain number of iterations has passed or no
pass reports any changes. The transformation passes aim to generate code that
is as lean and fast as possible. They include removal of unused methods and
fields, removal of unreachable code, and inlining of methods. The different passes
influence each other greatly. For example, a folded constant could transform a
conditional branch into an explicit branch, rendering the alternative path un-
reachable. If this path contained the only invocation of a certain method, this
method can now removed. After the optimization loop finishes, the SSA form
gets de-constructed and the intermediate code is prepared for the translation
process.

2.1.3 Backend

The backend translates the intermediate code to C code, class by class, method by
method. JINO uses the previously gathered information about used types, code
reachability and content of variables to omit the classes and methods that were
marked as unreachable. It inserts crucial runtime safety checks like null-pointer
and array-bounds checks in all places where the previous analyzes passes did not
prove them to be redundant. The backend is responsible for generating everything
that is needed to compile and deploy the emitted C code, like Makefiles, OSEK
files describing the details of the target system as well as the application. The
backend also emits the rest of the runtime environment, which was not translated
from Java code, but comes in form of C files, like the garbage collector code for
example. Architectures supported by the backend, besides Intel x86, are the
Infineon TriCore, which is a popular architecture in the automotive industry, as
well as the Atmel AVR, a simple and cheap 8-bit microcontroller, also used in
the automotive sector and embedded systems in general.

2.2 Important Data Structures

JINO has to keep track of different types of information, mostly related to Java
being an object-oriented programming language. For instance, to ensure one
of the central features of Java, type safety, JINO has to have global knowledge
about the class hierarchy and the different object types. Other information, like
the size of a class is also important, so the memory allocator knows how much
space is needed in case an object is allocated at runtime. What follows are the
descriptions of the most important data structures of JINO.
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Figure 2.1: Layout of the object header, for a 32-bit system.

2.2.1 Class Storage

Every class used in the application is represented by an entry in JINO’s global
class storage. The class storage is composed of entries containing the following
information about each class:

• Size of the object

• Number of interfaces implemented by the class

• Number of object references

The index of each class in the class storage also serves as its class identifier.

2.2.2 Virtual Method Table

Another OOP-specific data structure JINO needs to maintain is the virtual
method table. If a sub-class overrides a method of its base class, there are two
methods with the same method signature. Both methods are saved in the vir-
tual method table, together with the class ID of their respective class. When
the compiler comes across a invocation of this method, it has to emit a special
virtual method call instruction, so the correct method is called at runtime. The
virtual call instruction then uses the class ID from the object’s header to lookup
the correct method to be called.

2.2.3 Object and Array Header

Additionally to the content of the object itself, every object needs a header, con-
taining the object’s class identifier and one byte reserved for the garbage collector.
This garbage collector byte is used to register whether the object is still refer-
enced or if its memory can be freed. Array headers contain the same information
as the regular object header, but have an additional entry representing the size
the of the array. Figure 2.1 shows the layout of an object header layout for 32-
bit systems, with a 16-bit class ID, and one byte reserved for garbage collector
information. The rest of the 32-bit header is currently not in use.
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2.3 KESO’s Garbage Collector

Like every Java virtual machine, KESO comes with automatic memory manage-
ment, taking care of the removal of unused objects, so the developer does not
have to. KESO includes two different variants of garbage collection, configurable
for every domain. One variant works during the application’s idle time, the other
one periodically stops the application.

As mentioned above, every object has an object header, in which one byte
is reserved for garbage collector information. Whenever the garbage collector
searches for objects that can be freed, it starts looking at the references in its
root set. The root set consists of static class fields and objects on the current
stack. Starting from the root set, the garbage collector visits the respective object
references of every object, setting a bit in a bitmap representing all objects that
are still reachable from the root set. To prevent infinite loops while following
references, each visited object is marked with a specific color, represented by a
bit in the object header. From the color bit, the garbage collector knows that it
already visited this object. This color changes every time the garbage collector
runs, so every visited object has to be colored with the color of the current run.
This is done by toggling one bit in the object’s header. At the end of the garbage
collector run, objects gets freed, if their respective bit in the bitmap has not been
set.

2.4 Data Flow Analysis

The main advantages of Java, like object-oriented programming, and runtime
security checks, come at a price. The need to resolve virtual method invocations,
and performing array bounds checks, etc. affects the code size and execution per-
formance. To keep their impact as low as possible, JINO incorporates a powerful
data flow analysis pass described in [4], based on the Sparse Conditional Constant
algorithm by Wegman and Zadeck [11]. The pass analyzes the intermediate code
in a control-flow sensitive manner, visiting the intermediate code in the order in
which the program code would normally be executed. That way, it computes in-
formation about object types, reachability of basic blocks and methods, usage of
classes and content of fields and stack slots. This information can later be used to
remove some array bounds check, in case the data flow analysis has proven that
the index in use is always within the boundaries of the array’s size. Furthermore,
the gathered object type information can remove virtual method table lookups,
if the analysis shows that there is only one possible method candidate that can
be called.
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2.4.1 Information Representation

The algorithm computes lattice values for every variable it passes on its way
through the basic blocks. This lattice value represents the gathered knowledge
about the type and content of the variable. Each node consists of lattice cells,
which can be described as a container for the lattice elements of the operands
and for the result of the node itself.

A lattice value can be in one of the following three states:

• No data flow information available yet (default preset)

• Constant value

• Non-constant value (no further exploitation possible)

It is important to note that a lattice’s state can only be “lowered”, so only going
from the “no information available” state to constant or non-constant is possible,
but there is no way to escape the “non-constant value” state.

If the data flow analysis evaluates a binary expression, like for instance an
addition, it does so by inspecting the cells of both operands. Using the informa-
tion for both values, gathered from previous assignment statements for example,
the data flow analysis performs the operation, for example the addition, saving
the result in the expression node’s cell. In the case that both operand cells are
constant, the result’s cell will be constant as well. If one or both cells are in the
non-constant state, the result of the expression is non-constant as well, putting
the expression’s cell in that state, too.

The “constant” state of the lattice can be defined in a more fine-grained man-
ner for specific types of cells. For example, an integer variable normally gets
assigned more than one value over the course of a program. So the lattice of an
integer variable in JINO can therefore go from containing one value to a set of
values. After a certain threshold of members of the set is reached, the information
precision is reduced to a value range. The information about a possible range of
values can still be useful, when checking if an index is within array boundaries for
example. Lattices of object references can also be constant, or valid, non-null
objects, or unknown. The backend uses this information to omit null-pointer
checks, if the analysis can prove that the object reference is always valid.

2.4.2 Propagation of Information

The data flow analysis algorithm starts analyzing the basic blocks of all possible
entry points of the program, like the main method, but also interrupt handlers and
the like. Further basic blocks are analyzed, if it becomes clear that these blocks
will be visited, by their respective branch instructions. The algorithm evaluates
conditional branches based on the gathered cell information. If the lattice cell
information shows that a condition can or cannot be met, it will only visit the
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basic block that would be taken depending on the outcome of the conditional
statement.

If the lattice value of a variable changes due to an assignment statement, all
nodes that depend on that lattice information need to be revisited, to update the
cells containing the lattice value of the variable. For example, if a node writes to
a certain field, all other nodes using this field need to be revisited, to propagate
the new information.

The algorithm terminates when no more nodes need to be visited, as all infor-
mation was propagated and every lattice value has reached a stable state.

2.4.3 Usage of the Gathered Information

The results of the data flow analysis are used in a variety of other passes. In the
whole program optimization pass, basic blocks that were never visited during the
data flow analysis will be removed. With the help of the computed object type
information, the number of possible method candidates in a virtual method call
can also be reduced. The virtual method invocation could even be converted to
a regular invocation, if only one possible candidate is left.

2.5 Extended Escape Analysis

One of Java’s biggest assets is its automatic memory management. There is no
need to free memory explicitly, as the garbage collector will take care of objects
that are not reachable anymore and frees the heap space they claim. Some objects
even last only as long as the method they were created in. Instead of iterating
over lists of available memory slots, trying to find heap space with the appropriate
size for these objects, they could be allocated cheaply on the stack, if their size
permits it. Allocating stack memory normally just requires a certain value to
be subtracted from the stack base register, and freeing the memory happens
implicitly in the epilogue of the function.

The extended escape analysis (EEA) described in [6], based on the algorithm
developed in [3], detects if objects escape their method. Escaping means that
they are being referenced outside of the method they were created in. Objects
that do not escape their method can be allocated on the stack instead of the heap.
This speeds up both the allocation and the deallocation process and also reduces
the workload of the garbage collector. In order to determine if objects escape,
the EEA pass performs an extensive alias analysis, keeping track of assignment
statements and references used as method parameters and return values.

The relevant information for this thesis gathered from the EEA is alias infor-
mation, which is needed to see which fields and stack slots point to arrays. That
information is used to correctly propagate lattice information of arrays in the
data flow analysis.
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2.5.1 The Connection Graph

The algorithm builds a connection graph (CG) for each method. In this graph,
vertices representing field references and stack slots point to vertices representing
allocated objects. There are object nodes, representing allocated objects. Field
reference nodes represent fields, pointing to object nodes with field reference
edges. Global reference nodes are static class members. Stack slots are repre-
sented by local reference nodes. Method parameters and return values are called
actual reference nodes.

The EEA starts by analyzing the intermediate code on a per-method basis.
Each object allocation, that means an invocation of new, in the code creates a
new object node. Method calls create nodes for the respective parameters and the
objects they are representing. Assignment statements create a reference node (if
none exists yet) for the left hand side and an edge from the variable holding the
reference to the object. If no object node for the specific object is available yet,
as it is allocated in another method, a phantom node is created, to be resolved
later in the interprocedural analysis.

Every object has a default escape state, set to local, which means stack allocat-
able. The escape state changes accordingly, if new references point to the object.
For example, if a static field reference is attached to an object node, this object
escapes globally.

After the intraprocedural analysis is finished, the EEA propagates each callee’s
information to its callers, resolving the phantom nodes and spreading the escape
state information. The details of the interprocedural analysis can be found in the
thesis of Clemens Lang [6] and will not be further discussed here.

2.5.2 Example

Listing 2.3 shows a simple example of two arrays, a two dimensional static field
and a regular one dimensional field. The generated C code is shown in Listing
2.4 and corresponding connection graph is shown in Figure 2.2. oned is as a
member of obj0, which is always the this object representing the class instance.
twod is a global reference node, connected to a object node representing the
first dimension of the array. Two field array edges originate from that object
node, each connecting to nodes with the corresponding array index of the two
dimensional array. All stack slots used in the array writes and reads are pointing
to their respective object nodes representing the allocated array.

2.6 Summary

KESO’s Java-to-C compiler JINO compiles Java code ahead of time to C code,
focusing on generating compact code suitable for embedded systems, which is sup-
ported by a wide range of compiler optimization passes. Two of those passes were
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1 public class Example implements Runnable {

2
3 static private byte [][] twod = { {0}, {1} };

4 private byte[] oned = { 23 };

5
6 public void run() {

7 oned [0] = 42;

8 System.exit(twod [0][0]);

9 }

10 }

Listing 2.3: Example Java code for connection graph example.

1 void c7_Example_m4_run(object_pointer obj0)

2 {

3 jint i2_0;

4 object_pointer obj1_0;

5 object_pointer obj1_1;

6 object_pointer obj1_2;

7
8 obj1_0 = (ACCFIELD_C7_EXAMPLE_C7F2_ONED(obj0 ));

9
10 BYTE_ARRAY_LEA(obj1_0 , (0)) = 0x2a;

11 obj1_1 = SC7_EXAMPLE_C7F1_TWOD ((( domain_t *) &dom1_DDesc ));

12
13 obj1_2 = OBJECT_ARRAY_ALOAD(obj1_1 , (0));

14 i2_0 = BYTE_ARRAY_ALOAD(obj1_2 , (0));

15
16 ShutdownOS (( StatusType) i2_0);

17
18 return;

19 }

Listing 2.4: Generated C code from Java code in listing 2.3.
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Figure 2.2: Simple connection graph generated by the EEA.
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described in detail, as they gather information needed in the following chapter, in
which this information will be used in the detection of constant data. The data
flow analysis gathers information about field content, and the extended escape
analysis collects alias information. Furthermore, some of KESO’s data structures
and details of garbage collector internals, especially the coloring of objects, were
described, as they are subject to changes in the realization of ROM allocated
data support in KESO.
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3 Design and Implementation

This chapter presents how the goal of this thesis—detecting constant data and
placing it in ROM—is achieved, by adding compiler passes, extending existing
ones, as well as adjusting the backend and runtime environment.

Java does not offer a way to declare fields as constant, in a way that it is
guaranteed that their content cannot be changed at runtime. KESO needs a
way to identify if a field’s content does not change after its initialization, before
being able to place it in read-only memory. Additionally, the KESO runtime
environment prevents the ROM allocation of constant objects.

The chapter describes how constant arrays are found, by tracking their content
with the already existing data flow analysis. Accuracy of the array’s content is
ensured by retrieving aliasing information for the arrays. For a field array to
be constant, its reference must not change during runtime. This is ensured by
another analysis pass, checking if non-final fields fulfill the requirements of the
final modifier. JINO’s backend will be taught how to emit the content of the
constant data in way it is placed in read-only memory of the target architec-
ture. Finally, the garbage collector is adjusted, so it ignores constant objects,
preventing it from trying to write to their headers.

3.1 Constant Arrays

In application software, there are many different uses for constant arrays. They
can, for example, serve as lookup tables for pre-calculated sine values, state tran-
sition tables of parsers, or substitution boxes in cryptography. However, Java
does not provide a way to declare array content immutable, so JINO cannot tell
if an array is constant and will treat it like any other array, allocating space and
writing its initial values to it. Code like this initialization of a final int array:

private static final int[] foo = {1,2,3};

translates to Java bytecode shown in Listing 3.1, allocating space for the array
and initializing every array index. Based on this bytecode, JINO emits the C code
shown in Listing 3.2. It would be more efficient to find out if an array like foo is
constant, and make it possible to emit it fully initialized in the C code. Instead
of allocating memory and wasting runtime by initializing the allocated array, like
it is done in Listing 3.2, a reference to the initialized array could substitute the
allocation.
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1 iconst_3

2 newarray int

3 dup

4 iconst_0

5 iconst_1

6 iastore

7 dup

8 iconst_1

9 iconst_2

10 iastore

11 dup

12 iconst_2

13 iconst_3

14 iastore

15 putstatic #3; //Field foo

Listing 3.1: JVM bytecode of an array initialization.

1 obj1_0 = keso_alloc_int_array ((3));

2 INT_ARRAY_LEA(obj1_0 , (0)) = (1);

3 INT_ARRAY_LEA(obj1_0 , (1)) = (2);

4 INT_ARRAY_LEA(obj1_0 , (2)) = (3);

Listing 3.2: C code emitted by JINO initializing an array.

The following will describe how constant arrays can be found and how JINO
emits them as initialized structures.

3.1.1 Gathering Data Flow Information

To gather information about constant array content, support for tracking array
information was added to the data flow analysis. As described in Chapter 2.4,
the data flow analysis visits the code in a control-flow sensitive manner, calculat-
ing lattice information for every instruction node in every basic block that was
declared reachable based on evaluated conditional branches.

The array specific part is pictured in a simplified manner in Figure 3.1 and
works as follows. If the analysis comes across an array allocation, it creates an
empty array cell object, containing information about the requested array size
and content type. The array cell also contains an actual array of the requested
size, used for saving the cells of the operands written to the array. If the lattice
cell of the operand representing the requested array size is not a constant, the
array cell’s array will be set to null and every future read or write to this array
will yield in a lattice state, representing the “unknown” state.

On an array write, three lattice cells need to be examined: the array cell, the
index, and the operand. The operand cell gets written to the array inside the
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array cell object. The index can either be a constant integer, in which case the
operand cell gets written to that exact index. If the index cell is in the non-
constant state, we merge the content of the operand cell with every cell of the
array cell array, because the destination is not known, so it could be written to
any index of the array.

When reading from an array the data flow analysis takes the cell information
for the array and the index and returns the cell that is saved in the array cell’s
array, from the position of the index cell. So this is either cell at the position
of the index, or a “meet” over all cells in that array, in case the index is not
constant. This might still be valuable information, for example, when reading
from integer array it can return a cell containing the range of values in that array.
In case that cell is assigned to an integer used as an index for another array access
and the range of the cell is within the boundaries of the array to be accessed, the
bounds check can be omitted.

int[] foo = new int[4];

foo[0] = 42; foo[1] = 23;

42 23

foo[(Math.random() % 4)] = 5;

5,42 5,23 5 5

int i = 0;

0

i = foo[(Math.random() % 4)];

0,5,23,42

Figure 3.1: Example of array cell usage.

3.1.2 Detecting Aliases

Whenever an array is written, the data flow analysis has to calculate the new
cell information and forward the new information to all other instruction nodes,
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1 private byte foo[] = { 1, 2, 3};

2 private byte bar[] = foo;

Listing 3.3: Simple example for array aliasing.

that are using that array. For primitive field types this is simple, as they are read
and written explicitly using the fields name in the instruction reading or writing
the field. In case of arrays this gets slightly more complicated, as there can be
more than one field or local variable referencing the object representing the array,
an alias. See Listing 3.3 for a very simple example of array aliasing. Whenever
foo is written, the data flow information of bar has to be updated as well, and
vice versa. Missing writes to array aliases lowers the precision of the data flow
analysis information and could lead to arrays being falsely marked as constant.
Furthermore, the compiler can be tricked into omitting an array bounds check,
based on an incomplete range of possible values. Keeping track of all array aliases
is mandatory.

The extended escaped analysis (EEA) described in Section 2.5 already takes
care of the alias analysis, as it keeps track of references passed around by method
invocations, return statements and assignments. The following describes how a
list of all aliases for an array is extracted from connection graph (CG) built by
the EEA.

The array alias analysis searches for array writes and reads in the intermediate
code. It retrieves the connection graph node representing the array variable
used in the instruction, as the EEA saves a mapping from all variables to their
corresponding connection graph nodes. As the variables connection graph node
has to be a reference, there needs to be an edge to the corresponding object node.
The analysis follows this edge to the object node and inspects the list of nodes
pointing to that object node, as these are the nodes that need to be updated
after the array is written. Every field reference (fields) and local reference node
(stack slots) pointing to the object node will be added to the list of aliases of the
variable.

Figure 3.2 shows a connection graph generated by the EEA, for the Java code
shown in Listing 3.4. Listing 3.5 shows the emitted C code including the local
variables. The twod static field is shown as a global reference node, pointing to
the same object node as obj2 0, which is the stack slot used for reading from
twod, changing oned ’s reference. Two array field reference nodes originate from
the object node, one for each used array index. obj2 1 is the stack slot used to
write the value 23 to oned as well as twod[0].

The array alias analysis would begin with the investigation of the write to
obj1 1, retrieving the corresponding local reference node in the connection graph,
following the edge to phantom node, representing the array it is pointing to. The
analysis now searches the list of nodes pointing to the object node, and in that
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1 public class Example implements Runnable {

2
3 static private byte [][] twod = { {0}, {1} };

4 private byte[] oned = { 23 };

5
6 public void run() {

7 oned [0] = 42;

8 oned = twod [0];

9 oned [0] = 23;

10 System.exit(twod [0][0]);

11 }

12 }

Listing 3.4: A more complex aliasing example.

case adding oned to the aliases of obj1 0. The next array write is the one writing
23 to obj2 1. Again, the analysis follows the edge to the object node, this time
adding twod[0] and oned to the list of aliases.

If the array alias analysis had been omitted, the results of the data flow analysis
would declare twod a constant array, additionally the content of twod would be
propagated and the result of the array read instruction, defining the exit status
of the program, would have been falsely replaced with a 0, instead of a 23.

3.2 Detecting Runtime-Final Fields

So far, the data flow analysis saves information about array contents and ensures
the accuracy of that content by gathering alias information. To be able to mark
a field as constant, in addition to constant content, the field’s reference needs to
be constant as well. When the data flow analysis comes across an instruction
reading a non-final field, the lattice cell information for that field is computed
from all writes to this field, but also a zero value is added. This is done in case
the field is read before it has been written, because Java implicitly initializes all
variables with a zero value. A final field does not require adding that implicit
zero value, In the context of field variables, Java’s final modifier ensures that the
field’s reference is only set once and has to be set by the end of the constructor,
or, in the case of a static field, by the end of the class constructor.

A programmer could have forgotten about adding the final keyword to a
field that was meant to be constant, or it is just not possible to add the keyword
because the variable potentially could change its value. In this case, with the help
of the reachability information of the data flow analysis, it is possible to detect
that all nodes writing to this field, except for the initialization, are unreachable,
making the field runtime final.

The following three steps explain, when a static field can be declared runtime
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1 void c7_Example_m3_run(object_pointer obj0)

2 {

3 jint i3_0;

4 object_pointer obj1_0;

5 object_pointer obj2_0;

6 object_pointer obj2_1;

7
8 obj1_0 = (ACCFIELD_C7_EXAMPLE_C7F4_ONED(obj0 ));

9 BYTE_ARRAY_LEA(obj1_0 , (0)) = 42;

10
11 obj2_0 = SC7_EXAMPLE_C7F1_TWOD ((( domain_t *) &dom1_DDesc ));

12 obj2_1 = OBJECT_ARRAY_ALOAD(obj2_0 , (0));

13 (ACCFIELD_C7_EXAMPLE_C7F4_ONED(obj0)) = (object_pointer)obj2_1;

14
15 BYTE_ARRAY_LEA(obj2_1 , (0)) = 23;

16
17 i3_0 = BYTE_ARRAY_ALOAD(obj2_1 , (0));

18 ShutdownOS (( StatusType) i3_0);

19 }

Listing 3.5: Generated C code of Listing 3.4.

obj0
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P
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P
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P

Figure 3.2: Connection graph generated by the extended escape analysis.
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final. The following is only sufficient for static field members, since the only
place to check for the initialization is the class initializer, as opposed to the
constructor and all super classes with non-static fields.

Assembling a list of writes: A simple analysis pass scans the intermediate code
for a writes of every static field.

Counting and analyzing the writes: Fields written more than once or written
outside their class initializer cannot be runtime final. In the case of an array,
every index has to be initialized.

Ensure write-before-read: The field has to be initialized before it is being read,
so the class initializer method has to be checked accordingly. A basic block in
which an instruction node is reading the field or calling a method (which could
potentially use the field) has to be dominated by the basic block initializing the
field. That means, that all paths in the class initializer leading to the basic block
that is reading the field or calling a method, have to go through the basic block
writing the field. If there are method invocation instructions or read instructions
using the field in the same basic block as the initialization, the write has to hap-
pen before them.

If the three requirements are met, the field can be marked as runtime final and
a field with constant content can be declared constant after all. Additionally, the
Java language specification states that variables of primitive data types marked
final are constant. The lattice value of a primitive variable, that is only written
once and fulfills the requirements of a final variable was not constant before this
analysis. In addition to its initial value, the data flow analysis always added the
implicit zero value. With the runtime final analysis marking this variable runtime
final, the implicit zero value can be removed, potentially creating the possibility
to convert some conditional branches, marking more code paths unreachable. The
dead code could again contain write instructions for other static fields, making
even more fields runtime final. Furthermore, runtime final fields of primitive
types can, in most cases, be removed, as the byte code instructions fetching their
value can be replaced with their constant value.

3.2.1 Emitting Constant Arrays

When the data flow and alias analysis are finished gathering all array informa-
tion, it is time to find out which arrays are constant, so they can be emitted as
constant, pre-initialized structures and to change the intermediate code, replac-
ing the instructions allocating memory for them and writing to them. Arrays
will be declared constant, if they are either final or at least runtime final. So
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1 /* Typedefs for constant arrays */

2 #include "byte_array.h"

3 typedef struct {

4 ARRAY_HEADER

5 const jbyte data [3];

6 } byte_array3_t;

7
8 /* Constant arrays */

9 const byte_array3_t const_arr1 ALIGN4 ={

10 /*.gcinfo=*/ 1, /*.class_id=*/ BYTE_ARRAY_ID , /*.size=*/ 3,

11 { 1, 2, 3 } /* data */,

12 };

Listing 3.6: Constant array typedef and struct emitted by JINO

a constant array has to be initialized by the end of its (class) constructor and
the alias analysis has to prove that no other variable referencing this array has
altered the array’s content.

A transformation pass was added, running after the optimization loop and
before the intermediate code gets translated to C. This transformation pass ana-
lyzes array write instructions in the intermediate code, checking if the array that
is written to is constant. It does so by checking the data flow cell of the array
received by the data flow analysis, as well as the data flow information of the
aliases, if there are any. If the array content is constant, the pass removes the
array write instruction, as it is redundant and saves the array content in the form
of the array cell, so it can be emitted later. If the “defining statement” of the
variable referencing the array is an allocation instruction, like in Listing 3.2, this
allocation instruction will be saved as well, so it can be replaced later, with a
reference to the constant array in the translation process.

The effect of the pass can best be visualized by comparing the initialization of
an array like it is shown in Listing 3.2. The transformation removes the write
instruction and replaces the allocation instruction, resulting in a much shorter
and simpler code:

obj1_0 = const_arr1;

Finally, in the translation stage that is generating the C code, JINO will emit
a typedef for every combination of every different array type and array size for
all saved constant arrays. After that it will emit the saved array’s contents in
form of const structs. Listing 3.6 shows an example defining a structure of a
constant byte array with the size three. The const arr1 structure represents the
content of the array from the beginning of this chapter in Listing 3.1.
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3.3 Adjusting the Backend and Runtime
Environment

Up to this point, JINO is able to detect constant arrays, emit them in form of C
structs and substitute allocations with references to this structures. The run-
time environment needs adjustments to handle constant data in general. String
literals in JINO, although obviously constant, could have been in ROM before
the changes described above were developed, but because of the way the garbage
collector works, this was not possible. The garbage collector needs to change
object header information, in order to work correctly. Certain architectures need
special handling of constant data as well, as it resides in memory regions that
require other modes of access.

3.3.1 Adjusting the Garbage Collector

If enabled, at some point during the program’s execution, KESO’s garbage collec-
tor will follow object references, starting from a root set, checking which objects
are still reachable. Objects that are not referenced anywhere, are freed. While
following the object references, the garbage collector detects if it has already vis-
ited a certain object by marking the object with a certain color. This is done by
changing a bit in the field reserved for garbage collector information in the object
header. The color which is used to mark already visited objects changes every
time the garbage collector is run. That way, objects that have been analyzed in
the current run, need to be marked with the current color of the run, by toggling
their color bit.

When the garbage collector tries to toggle the color bit of one of the constant
arrays, it will likely result in a segmentation fault, if the target’s platform fea-
tures memory protection of some kind. The garbage collector needs some way
to identify constant objects, so it knows that it can ignore them. Two different
solutions for this problem were developed in this thesis.

Ignore objects by address: One way to identify objects to be ignored by the
garbage collector is to put them into a memory region of which the boundaries
are known at runtime. This was done by letting JINO’s emitted C code be
marked with a special ELF section attribute section(".rodata.keso"), telling
the linker to put the data into that specific section of the binary. This section
will be appended to the .rodata section, if the linker script shown in Listing 3.7
is added to the regular linker script. The linker script provides symbols for the
beginning and the end of the memory region where the constant data lives. These
symbols can be used in the C code. The loader resolves them two real addresses
at runtime and the garbage collector can check if an object lies between start and
end of the KESO specific section and can simply ignore the object in that case.
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1 SECTIONS

2 {

3 .rodata :

4 {

5 __keso_glob_start = .;

6 PROVIDE(__keso_glob_start = .);

7 *(. rodata.keso)

8 __keso_glob_end = .;

9 PROVIDE(__keso_glob_end = .);

10 }

11 }

Listing 3.7: Linker script exporting symbols for the KESO specific section.

Ignore objects by color: Another method that is more architecture and tool
chain independent, is to make the garbage collector ignore certain objects by
reserving a special bit in the garbage collector information byte of the object
header, as a marker for constant objects not to be touched. Figure 3.3 shows the
layout of the garbage collector information structure. Only two bits of the byte
are always in use at the moment. One bit for the color, and the most significant
bit is always zero, to distinguish the object header form a regular reference.
Additionally to the two existing bits, one bit was be reserved, to mark an object
untouchable by the garbage collector. Instead of checking if the object’s memory
address is within boundaries of read-only memory, the garbage collector checks
if the “constant bit” in the object header is set.

3.3.2 Constant Objects on the AVR Platform

The AVR 8-bit microcontroller platform supported by KESO adds an additional
challenge to allocating constant data in read-only memory. The AVR’s architec-
ture separates instructions and data into two different physical locations. Instruc-
tions are stored in the non-volatile flash memory of the microcontroller, whereas
data is placed in SRAM. As the available size of RAM on that platform is only
a small fraction of the available size of flash memory for code, it is desirable to
put constant data into the AVR’s program memory. However, since data and
instructions are physically separated, the C compiler stores constant data in the
SRAM as well, even if they are marked with the const modifier. This does not
only waste precious RAM space, but makes the constant data modifiable again, as

01234567

Unused Const Color 1

Figure 3.3: Layout of the garbage collector information byte.
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there is no memory protection unit to create non-writable sections in the SRAM
of the AVR.

Using the AVR’s Program Memory

The AVR instruction set provides a way to read data from the program memory
and loads it into a register. Reading data from program memory requires the
usage of a special assembler instruction so the microcontroller knows that it has
to fetch the data from a different memory space. This instruction is called lpm,
“Load from Program Memory”, loading one byte of program memory from an
address, stored in a 16-bit address register, into a register.

JINO stores constant data in the AVR’s program memory by emitting a special
attribute provided by the GNU C compiler, called PROGMEM, when defining the
variable holding the constant data. This keyword tells the linker to put the vari-
able into program memory. Now that the variable resides in a different memory
space, the C code has to be adjusted as well, or else the instruction reading the
variable will read from the address in the wrong memory region. This is done by
adding a macro, provided by the compiler, around every read access of constant
variables marked with the PROGMEM attribute. This macro tells the C compiler
to insert the special “Load from Program Memory” instruction in the generated
assembler code.

Class Storage and Dispatch Table on the AVR

As mentioned in Section 2.2, JINO maintains two arrays containing object-
oriented related information, namely the class storage, containing a list of all
classes and knowledge about their hierarchy and size, as well as the dispatch
table, needed for virtual method calls, in case there is more than one method
candidate able to be called. These two arrays will obviously never change, at
least not under the premises of KESO, which deny loading of classes at the run-
time.

Storing the class storage and the dispatch table in program memory was al-
ready implemented in JINO before this thesis. JINO provides a compiler flag
emitting a workaround for the AVR architecture, or rather Harvard architectures
in general, making it possible for the dispatch and class storage table to reside in
the program memory. Instead of generating arrays containing the class and vir-
tual method entries, it emits methods containing switch statements, returning
the information requested via the method parameters as the result of a method
call. This way the information formerly stored in arrays is saved in program
memory space, encoded in conditions and return statements.

An alternative to the switch encoding was added, using the avr-gcc’s PROGMEM
attribute. As every access to the dispatch table and class storage is done via
a macro already, a compiler option was added to mark the dispatch table and
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class storage array with the PROGMEM attribute and add the “Load from Program
Memory” macro to the macro accessing the dispatch table or class storage.

Constant Arrays on the AVR

Now that the class storage and dispatch table can be stored in the AVR’s pro-
gram memory, it would save additional space in the target’s SRAM if constant
arrays could be saved in program memory as well. Placing the constant arrays
into program memory is done by marking them with the PROGMEM attribute again.
Reading the constant variables placed in the program memory needs special han-
dling in the emitted C code, too. This is handled the same way it as reading from
the class storage and dispatch table. The instructions reading from the ROM al-
located array are wrapped in a special gcc macro, telling the C compiler to emit
the lpm instructions, to load the data of that address from program memory, and
not from RAM.

Constant Data on the AVR and Garbage Collection

Placing constant arrays and strings in the program memory of the AVR adds
one limitation to the possible options of the application’s runtime configuration.
The garbage collection must not be enabled. Enabling the garbage collector
and having some objects living in program memory and some in RAM would be
hazardous, because the garbage collector has no way to detect in which memory
space the respective object is placed. The garbage collector only sees an address,
but the address can be a valid address in both program memory as well as in
data memory. With no special precautions taken, this could lead to garbage
collector mangling data SRAM, when it tries to toggle the color bit of an object
at an address, that actually points to program memory, for example. Since the
demand for garbage collection in the area where AVR microcontrollers are used
is probably low, this should not be a problem.

3.4 Summary

JINO’s data flow analysis was enhanced to support array information, making
it possible to detect arrays with constant content. The correctness of the array
content is ensured by using the alias information computed by the extended
escape analysis. A new analysis pass was added, detecting if a field fulfills the
conditions of the final modifier, without being declared final. Constant arrays
are emitted as pre-initialized structures by the backend. Objects referencing these
structures are ignored by the garbage collector and can even be placed in ROM
on the AVR’s Harvard architecture.
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4 Evaluation

During this thesis different changes to JINO’s runtime environment were made
and new compiler passes were added, detecting constant data and generally mak-
ing it possible to place constant data in the read-only memory of the programs
target. The following will now measure how these changes and additions affect
the size of the generated binaries and the impact on the programs execution
performance.

4.1 Benchmarks

To measure the effect of the changes, there will be data based on the compilation
of two different programs. One is CDx [5], a real-time Java benchmark, emulating
an aircraft collision detector. The platform chosen as a benchmark for the AVR
related changes is the Mica2 sensor node, running a traffic light application.

The CDx benchmarks were performed on x86 hardware and on a TriCore CPU.
The AVR code was not run on actual hardware, but in the Avrora AVR simu-
lator. Avrora provides different simulation and profiling methods for AVR code,
among them statistics about the amount of cycles the processor spent in each
method. The AVR platform has no advanced features like instruction caches, so
the amount of cycles each assembly instruction takes, is the exactly the time that
is listed in the processors data sheet. See Table 4.1 for details about the test
environment.

Benchmark Hardware OS Toolchain
CDx on-the-go Infineon TriCore

TC1796
CiAO be3999 gcc 4.5.2,

binutils 2.20
CDx simulated Intel Core2

2.40GHz
Linux 3.4.74 gcc 4.7.2,

binutils 2.22
Traffic light AVR Atmega128

(simulated)
JOSEK gcc 4.7.2,

binutils
2.20.1

Table 4.1: Specification of the test environment.
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4.1.1 CDx

The CDx implements an aircraft collision detector, calculating the distance be-
tween aircrafts from radar frames generated by an air traffic simulator.

There are two operation variants of the CDx. The simulated CDx runs two
different threads, one for the collision detector and one the air traffic generator
generating radar frames and passing it to the collision detector. The on-the-go
variant generates the radar frames for the collision detector in the same task,
with a simpler radar frame generation method. As the on-the-go variant is of a
much simpler structure it is the only CDx variant that was tested on the TriCore.
The simulated multi-domain version does not fit into the TriCore’s memory and
was only compiled for x86 to measure the changes of the binary size.

4.1.2 I4Copter

The I4Copter [9] is quadrotor helicopter, used as a research platform for safety-
critical embedded software. It runs on top of the CiAO operating system [7],
with different software modules controlling the copter’s rotors based on the input
by gyroscopic sensors, accelerometers and the remote control. Different software
modules, for example the module managing the SPI bus controller, are available
as KESO ports and were added to the list of benchmarks, as an example for a
real world Java project.

4.1.3 AVR Traffic Light

The AVR test application simulates a traffic light, displaying its current state
with three LEDs of red, yellow, and green color. The default state of the traffic
light is the red light and a state change can be triggered by sending a command via
a serial connection. There are two tasks in the application. The remote control
task, waiting for the signal switch command, triggering the actual traffic light
task, which then cycles through the colors of a regular traffic light, displaying the
respective color for a pre-defined amount of time, until it reaches the red-light
state again.

4.2 Measurements

Two different kinds of data will be measured in the following, using the setup
described above: the effect of the optimizations regarding the generated binary
size, especially the differences between text and data section, as well as the impact
on the execution time of the compiled application.
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1 if (v[i]. equals("MAX_FRAMES")) {

2 Constants.MAX_FRAMES = Integer.parseInt(v[i + 1]);

Listing 4.1: Static field members set by parameters in the CDx.

4.2.1 Binary Size

The data was gathered using the size utility from the GNU binutils package.
Both variants of the CDx were analyzed for changes in the binary size and were
compiled with the x86 as target architecture and Trampoline OSEK implementa-
tion as the operating system, because the target architecture and OS are of no real
relevance measuring the binary size and the measurements could be automated
in a more convenient way.

Runtime Final Analysis

The first thing measured is the impact of the runtime final analysis. This analysis
detects static field variables that are not marked final, but meet the conditions
of the keyword after all.

Table 4.2 shows the difference in binary size created by the runtime final anal-
ysis pass. As the analysis did not find any runtime final variables in the traffic
light application, as well as in the I4Copter code, it had no effect on the binary
size and therefore no results for these applications are listed in the table. How-
ever the analysis found several runtime final variables in the CDx. The on-the-go
variant has 71 runtime final fields in total. In the simulated variant 75 runtime
final variables were found. The CDx benefits a great deal from the runtime final
analysis, because of a class literally called Constants, containing different static
field members, most of them final integers, controlling parameters of the air
traffic generator. Under normal circumstances the CDx can be configured with
flags passed to the binary on execution, changing some of the constants in the
Constants class, therefore some of them cannot be marked final. Every KESO
application is statically configured, that way there is no need for passing fur-
ther configuration parameters. Code like in Listing 4.1, containing a condition
checking if a certain parameter was given to the binary and setting the respective
constant accordingly, is marked dead. The analysis detects 30 runtime final fields
in the Constants class and all of them are removed by the optimization pass re-
moving fields that are never written nor read, as all instructions reading the field’s
value can be replaced with the actual value of those fields. Enabling the runtime
final analysis removes 35 additional fields in the unneeded-field-removal pass in
the simulated variant. In the on-the-go variant 33 more fields are removed.

31



Benchmark Text Data

CDx simulated, runtime final analysis disabled 275,986 47,680
CDx simulated, runtime final analysis enabled 262,218 45,608

-5% -4%
CDx on-the-go, runtime final analysis disabled 86,166 3,820
CDx on-the-go, runtime final analysis enabled 74,474 2,240

-14% -41%

Table 4.2: Result of the runtime final analysis. Segment sizes in bytes. The
runtime final analysis renders 4 to 14% of previous code dead and
reduces the data segment usage of the simulated variant by 4%, with
the on-the-go variant even by 41%.

Constant Data in ROM

The primary focus of this thesis is the amount of ROM allocatable data. How
much of the targets memory can be freed by moving constant data from the data
section to read-only memory. Table 4.3 displays the shifting of constant data
from the data to the text section. Both CDx benefit from the fact that strings
can now be placed in the ROM section, which was prohibited by the garbage
collector. Besides strings, no further constant data was detected in the CDx on-
the-go. The simulated variant contains three additional constant arrays in parser
related code, but they only contain one element, which is a reference to a string.

The I4Copter modules did not contain any constant arrays, nor strings. How-
ever the traffic light contains strings that are now placed in program memory,
as well as the table containing the information about the duration of each color
phase and the next color to be shown. This state table is detected as a constant
array and is emitted as a fully initialized C structure and placed in program
memory, too. Adding to the shift of bytes from data to text section in the traffic
light binary, is the fact that the virtual method table and the class storage array
are no longer occupying SRAM space but are placed in flash memory.

4.2.2 Execution Time

To measure the impact on the execution time the CDx on-the-go variant was
executed on the TriCore board with the specifications listed in Table 4.1. The
data that was compared is output generated by the CDx benchmark. The CDx

measures the timespan for the calculation of the collision probability, based on
incoming radar frames. The CDx prints these times to the standard output.
50 iterations were deemed adequate for this thesis. The AVR code was analyzed
with the help of the Avrora AVR simulator, as it offers different profiling options
and cycle-accurate simulation. Changes to the performance of the I4Copter were

32



Benchmark Text Data

CDx simulated, without ROM allocation 262,218 45,608
CDx simulated, with ROM allocation, excl. strings 262,282 45,560

+64 -48
CDx simulated, without ROM allocation 262,218 45,608

CDx simulated, with ROM allocation 306,154 1,684
+43,936 -43,924

CDx on-the-go, without ROM allocation 74,474 2,240
CDx on-the-go, with ROM allocation, excl. strings 74,474 2,240

+0 -0
CDx on-the-go, without ROM allocation 74,474 2,240

CDx on-the-go, with ROM allocation 75,658 1,052
+1,184 -1,188

Traffic light, without ROM allocation 8,626 940
Traffic light, with ROM allocation (excl. strings) 8,738 828

+112 -112
Traffic light, without ROM allocation 8,626 940

Traffic light, with ROM allocation 8,890 672
+264 -268

Table 4.3: Results of ROM allocation. Segment sizes in bytes. Strings make up
the biggest part of the amount of data shifted from the data to the
text segment.
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Benchmark NPC emitted NPC removed

CDx, on the go, RFA disabled 204 796
CDx, on the go, RFA enabled 142 621

Table 4.4: Number of null-pointer checks emitted and number of null-pointer
checks removed, as JINO’s data flow analysis guarantees that these
objects are valid. The number of null pointer checks is reduced by
30%, the overall number of removed checks went down by 22%, at-
tributed to the general code size reduction.

not analyzed, as none of the optimizations developed in this thesis yielded any
results.

Runtime Final Analysis

Figure 4.1 shows the measured time of a CDx, compiled with the runtime final
analysis (RFA) enabled, relative to the time measured with an instance compiled
without the analysis. Again, the AVR traffic light is not listed in the results,
as the runtime final yields no changes on that application. The runtime final
analysis gains an overall execution time improvement, with a mean value of 10%.
This is mostly due to the folding of conditional statements, removing the dead
basic blocks and removed null-pointer checks. Table 4.4 shows the difference in
the number of emitted null pointer checks, which is reduced by 30%. The number
of null checks that JINO removed, as the the information of the data flow analysis
proved that the object in question is always valid, was reduced as well. This is
attributed to general decrease of code size.

As the runtime final analysis not only declares fields of primitive data types,
like integers, as runtime final, but object references as well, this gains performance
improvements, too. Some static fields used in the CDx code and in the library
code originate from the usage of the singleton design pattern. With this pattern,
there is only one instance of a class, which can be received by a static method
provided by that class. See Listing 4.2 for an example used in the CDx. The
singleton field is only written once and guaranteed to be non-null, so all null
checks regarding that particular field can be removed.

ROM Allocation

In Figure 4.2 two relative time measurements are shown for two CDx instances
that were compiled with ROM allocation enabled. One was built with the garbage
collector ignoring constant objects by checking if the object’s address lies in the
special memory range for constant objects, provided by the linker script. The
second instance was built with the garbage collector ignoring constant objects of
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1 public class Clock {

2
3 static Clock singleton = new Clock ();

4
5 public static Clock getRealtimeClock () {

6 return singleton;

7 }

8 public AbsoluteTime getTime () {

9 long nanos = System.nanoTime ();

10 return new AbsoluteTime(nanos / 1000000L, \

11 (int) (nanos % 1000000L));

12 }

13 }

Listing 4.2: Example of the singleton design pattern. The instance of the class
can only be acquired via the getRealtimeClock() method.
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Figure 4.1: Relative execution time of the CDx on-the-go with runtime final anal-
ysis. Execution time improved by 5 to 12%.
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Figure 4.2: Relative execution time of the CDx on-the-go with enabled ROM allo-
cation. Ignoring constant objects in the GC via memory range check
induces 8 to 12% penalty on the execution time, whereas checking
for a special color in the object header’s gcinfo byte only decreases
performance between 4 and 8%.

a certain color, represented by a special bit in the object’s header. The results
show that the method ignoring by color has less negative impact on the execution
time, with a mean of 6% slowdown, compared to 10% of runtime penalty due to
the linker script memory range method.

To measure changes in the performance due to ROM allocation in the traffic
light application, the profiling feature of the Avrora simulator was used. The
profiler measures the amount of time it spent in each function. The time is
measured in cycles. To measure the performance, the traffic light application was
run with profiler enabled, measuring the time spent in each function during one
full cycle from red light to green and back to red light again. The method that was
compared is the setLights method, responsible for enabling and disabling specific
LEDs and setting the alarm trigger for the display of the next color. This method
almost exclusively works with the array containing the states and the amount of
seconds that each color is displayed, so the impact on the execution time when
storing this array in program memory is best revealed here. Table 4.5 displays
the result of the Avrora cycle count of the setLights method, showing a 24%
runtime overhead with the ROM allocated state array. The Atmega128 manual [1]
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Function ROM allocation No ROM allocation

TrafficLightTask setLights 877 671
TrafficLightTask clinit 31 115

Table 4.5: Time spent in the method responsible for toggling the LEDs and the
class initializer of the AVR traffic light application, measured in cycles.

Inst. (no ROM alloc.) Cycles Inst. (ROM alloc.) Cycles

movw r30, r16 1 movw r30, r28 1
ldd r22, Z+5 2 adiw r30, 0x05 2
mov r28, r17 1 lpm r28, Z+ 3
std Y+2, r22 2 movw r30, r16 1

std Z+2, r28 2

6 9

Table 4.6: Comparison of the emitted assembly instructions and their cycle count,
reading a byte from program memory versus reading a byte from RAM.

states that the lpm instruction responsible for reading data from program memory
takes three cycles to complete. Table 4.6 shows the assembly instructions emitted
and the cycle count for reading a value from an array saved in RAM with ldd

(load indirect from data space), versus reading from program memory with lpm.
Additionally the cycle count for the class initializer of the TrafficLight class
was measured. The cycle count is down by 73% with ROM allocation enabled,
because the state array does not need to be allocated and initialized, only the
reference to it has to be assigned to the static field variable pointing to it. By
removing the allocation of the state array, the method responsible for allocating
objects on the heap is not required anymore, as every other resource or variable
already has space reserved in the heap or is stack allocatable, so ultimately no
garbage collector code would be needed for this application.

4.3 Summary

The evaluation of the runtime final analysis and the ROM allocation of constant
data show that the effect of the optimizations that were developed during this
thesis are very application specific. Neither the runtime final analysis, nor the
constant arrays detection had any effect on the I4Copter application, since there
are no runtime final variables or constant arrays. The runtime final analysis,
however, did affect the CDx execution performance and binary size in very posi-
tive way, removing 30% of the null pointer checks and adding a 10% performance
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gain. Also the ROM allocation shifts great amounts of bytes from the data to
the text section of the CDx, although most of that data consists of strings and
no real world embedded-system application would contain that large amount of
strings. Additionally reading data from ROM slows down the execution time of
the application.

The traffic light application gains nothing from the runtime final analysis.
However, the ROM allocation of the array containing the state table responsi-
ble for the correct timing and display of the correct LED has different positive
implications on the generated code. It slows down the application, because the
instruction reading from program memory takes more time to complete than a
load from RAM, but it reduces the amount of required memory and in the case
of this specific application removes the need for a garbage collector all together,
reducing the requirements of program memory size. Especially with the AVR as
target, ROM allocation is a space-time tradeoff, but environments deploying this
type of microprocessor are probably not aiming for high performance anyway.
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5 Conclusion

In the scope of this thesis, different optimization passes were added to the KESO
Java Virtual Machine, which is designed for statically configured systems in the
embedded software area, compiling Java to C code ahead of time. The opti-
mizations detect constant data in application bytecode, in the form of arrays and
primitive fields. The JVM backend was enhanced to make it possible to place this
newly detected data in read-only memory, as well as already existing constant
data, like string literals and runtime data structures. The necessary measures
to support Harvard architectures, like the AVR, providing separate locations for
program memory and data, were taken as well. Finally, the runtime environment
was changed, to protect the constant objects from unwanted attention from the
garbage collector.

Constant arrays were detected by adding the support for this data structure to
the already existing data flow analysis. Possible aliasing, where more than one
variable is able to alter the content of an array, was detected, too. This was done
by extracting information from another existing analysis pass, originally used for
escape analysis.

Additionally, objects and primitive fields that never change their initial ref-
erence or value during runtime can be declared runtime final, if they fulfill the
requirements of Java’s final modifier, but are not declared as such.

The garbage collector was taught to ignore constant objects, either by ignoring
a certain memory range, reserved for constant objects, or by setting a special bit
in the object’s header. For the AVR, the backend emits special macros, to tell
the assembler to generate appropriate instructions when it tries to read values
from constants placed in the processors flash memory.

The effects of the developed optimizations on the execution time and binary
size of different applications were measured. The results show that the impact of
the ROM allocation and runtime final analysis are highly application depended.
If the application provides exploitable data, like a lookup table, or strings, the
optimizations moves this data away from RAM to the read-only data section,
although at the expense of execution performance. Storing data in the program
memory on the AVR is a space-time tradeoff, too. The runtime final analysis can
improve the performance and decrease the binary size under the right circum-
stances.
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