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Abstract

Escape analysis can be used for automatic memory management in Java.
Based on the work of Choi et al. in 2003 [CGS+03], this thesis improves the
existing escape analysis in KESO, a Java virtual machine for deeply embedded
systems. Enhancements implemented for this document include flow-sensitive
analysis, modifications that reduce compile time and a fix for a conceptual flaw
in the work of Choi et al. Further analysis explored the possibility of allocating
objects in callers’ stack frames or memory regions.

Based on the computed analysis results, two different optimization back-
ends are presented and compared: The preexisting stack allocation and a new
method using task-local heaps automatically managed in a stack-like fashion
with precise overflow checks. Both methods have predictable allocation and
deallocation behavior and can guarantee tight upper bounds of their runtime
since they do not suffer from external fragmentation. This increases predictabil-
ity, which is beneficial in an embedded real-time Java environment.

Besides memory management, the thesis discusses other usage possibilities
of escape analysis results, such as optimizations in remote procedure calls, syn-
chronization optimizations, and a new theoretical approach to cycle-aware ref-
erence counting.

Compiler-assisted memory management pays positively: In a real-time Java
benchmark, object lifetime is automatically inferred at up to 43.7 % of all allo-
cation sites. The optimizations reduce heap memory usage, in some cases to less
than half of what it was without automatic memory management using escape
analysis. Additionally, the benchmark’s time requirements are cut short by up
to 18.7 %.
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Zusammenfassung

Fluchtanalyse kann in Java zur automatischen Speicherverwaltung genutzt
werden. Basierend auf einer Arbeit von Choi et al. aus dem Jahr 2003 [CGS+03]
verbessert diese Masterarbeit die existierende Fluchtanalyse in KESO, einer vir-
tuellen Maschine für Java im Anwendungsfeld eingebetteter Systeme. Die Er-
weiterungen, die für dieses Dokument implementiert wurden, beinhalten Fluss-
sensitivität, Modifikationen zur Reduzierung der Übersetzungszeit und die Kor-
rektur eines inhaltlichen Fehlers in der Arbeit von Choi et al. Weitere Analysen
untersuchten die Möglichkeit der Objektallokation in Stapelrahmen bzw. Spei-
cherbereichen von Aufrufern.

Basierend auf den berechneten Analyseergebnissen werden zwei Optimie-
rungsmöglichkeiten vorgestellt und verglichen: Die bereits existierende Stapel-
allokation und eine neueMethode, die stapelähnlich verwaltete aktivitätsträger-
lokale Halden mit präzisen Überlaufprüfungen benutzt. Beide Methoden besit-
zen vorhersagbares Allokations- und Deallokationsverhalten und können enge
obere Schranken ihrer Laufzeit garantieren, weil sie nicht von externer Frag-
mentierung betroffen sind. Dies erhöht die Vorhersagbarkeit, was in eingebet-
tetem Echtzeit-Java von Vorteil ist.

Neben Speicherverwaltung beleuchtet diese Arbeit auch andere Nutzungs-
möglichkeiten von Ergebnissen der Fluchtanalyse, wie Optimierungen in Fern-
aufrufen, Synchronisationsoptimierungen und einen neuen theoretischen An-
satz zur zyklengewahren Referenzzählung.

Übersetzerunterstützte automatische Speicherverwaltung lohnt sich: In ei-
nem Leistungsbewertungsprogramm für Echtzeit-Java konnten die Lebensdau-
ern der erzeugten Objekte an bis zu 43.7 % aller Allokationsstellen automa-
tisch bestimmt werden. Die Optimierungen reduzierten die Auslastung des Hal-
denspeichers im Vergleich zu Messungen ohne Speicherverwaltungstechniken,
die auf Fluchtanalyse basieren, in einigen Fällen auf weniger als die Hälfte.
Zusätzlich verbesserten sich die Ausführungszeiten des Leistungstests um bis
zu 18.7 %.
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1 | Introduction

Embedded devices are on the rise. While internet-connected refrigerators, which

have been journalists’ favorite prediction for the future, are still a long way off, other

Turing complete devices have found their way into daily life. Taking a look around

an ordinary kitchen reveals devices like a fully automatic coffee machine, a digital

kitchen scale, a dish washer, or even a WiFi-enabled bar code scanner to update

shopping lists. All of those contain microcontrollers, each serving a special purpose.

And it seems these are just the first vistas of an emerging trend: At the embedded
world conference 2014 in Nuremberg, the Internet of Things, i.e. the interconnection

of these embedded devices, was a very popular topic. It seems the future will bring

loads of highly integrated and networked microcontroller-driven devices.

These single-purpose embedded devices are commonly programmed in C and the

like. However, with increasing software complexity of these devices, Java has been

emerging as an appropriate alternative for a number of reasons. Java’s ease of use,

large standard library and suitability for complex projects are increasingly called

for even in embedded software. Its type safe design prevents memory faults that

could be caused by out of bounds array accesses or mistakes in manual memory

management, eliminating a whole class of potential bugs. Case studies found these

improvements to be not only theoretical [Phi99].

Java’s advantages used to come at the price of reduced performance and increased

memory usage due to the need for runtime environment and garbage collection.

New virtual machines and compilers try to overcome the performance penalty using

new techniques. Ahead-of-time compilation, i.e., translation to native code before

deployment, has been gaining popularity lately: Google revealed switching its An-

droid platform to a new runtime environment, which is expected to “speed up apps

1



1 Introduction

by around 100 %” [Ant13] using ahead-of-time compilation [Lin14]. Microsoft de-

clared a similar intention for its .NET platform [Lar14]. Oracle and others have

developed Java virtual machines targeted at embedded systems [Mer13, Max12].

1.1 | The KESO Multi-JVM

The KESO Java virtual machine uses ahead-of-time compilation and assumes all

application code is available for analysis at compile time. This “closed world” as-

sumption makes aggressive optimizations possible. KESO systems are built on top

of real-time operating systems (RTOSs) implementing either OSEK/VDX [OSE05] or

AUTOSAR [AUT06], specifications used in operating systems for automotive embed-

ded systems. KESO allows writing applications and even device drivers in Java and

targets deeply embedded systems with real-time requirements [TSWSP10]. KESO’s

compiler JINO analyzes the application code, tailors the runtime environment (in-

cluding the Java standard library) to the application’s needs, and emits standards-

compliant C code to be compiled for the target architecture.

Figure 1.1 gives an architectural overview of a KESO system. The runtime environ-

ment provides an abstraction layer on top of the OSEK/VDX or AUTOSAR RTOS and

allows configurable access to specific memory addresses for memory-mapped I/O,

e.g., in device drivers. KESO also provides a mechanism similar to the Java native in-

terface (JNI) to execute native code. A KESO system can contain multiple protection

realms (so-called domains), each of which can have a number of tasks, resources,

alarms, and interrupt service routines (ISRs), its own heap region, and garbage col-

lection mechanism. Domains communicate using a remote procedure call (RPC)

mechanism called portals. The KESO runtime environment ensures objects passed

through portals cannot interfere with other protection domains.

Because Java is a type safe language, KESO can employ a combination of compile-

time and runtime checks to ensure that applications cannot modify memory outside

their protection realm even in the absence of specialized hardware for this task, such

as a memory protection unit (MPU) or memory management unit (MMU). Since

KESO guarantees complete isolation even when one of the tasks misbehaves, multi-

ple applications can be run on the same system, possibly further reducing required

chip size, energy consumption and production costs. Due to the reduction of struc-
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Microcontroller

OSEK / AUTOSAR

KESO Runtime Environment

Memory-Mapped I/O
Device Drivers

Domain C

Domain B Portal
Portal

GC/Heap Resources
Alarms
ISRs

5 2 3

Tasks

Domain A

Figure 1.1: Schematic overview of a KESO system. An OSEK or AUTOSAR RTOS runs on a microcontroller. On
top of the operating system, the KESO runtime environment provides services and abstractions used
by the application, such as RPC primitives or device drivers. Multiple protection realms (domains) can
contain multiple tasks each, have their own resources, heap, and garbage collector and communicate
safely using portals.

ture sizes in modern computing chips, dealing with transient soft errors such as bit

flips is mandatory for critical applications. Software-based mechanisms for isolation

are at a disadvantage compared to microcontroller units (MCUs) with hardware-

based memory protection such as MPUs and MMUs, which offer protection against

errors caused by this problem class. Previous work on KESO attempts to compensate

this [TSK+11, SSE+13].

1.2 | Motivation

Manual memory management using library functions has been the de facto standard

method of dealing with dynamic memory needs in C and C++. It provides fine-

grained control over applications’ memory allocation behavior, but comes with a

downside: Programming mistakes can lead to leaks and dangling pointers, which

in turn can lead to security vulnerabilities or crashes. As a consequence, developers

need to be careful while writing code that uses manual memory management, in

particular when used in safety-critical components.

3



1 Introduction

In order to address these drawbacks, automatic memory management techniques,

such as garbage collection, can be used. Instead of having the software developer deal

with unused memory manually, slices of memory that are no longer referenced from

the working data set are automatically identified and reclaimed, avoiding memory

leaks and dangling pointers entirely. On the downside, unused memory is not re-

claimed until the next garbage collection cycle, potentially reducing the predictabil-

ity of an application’s memory usage. Finding tight upper bounds for both runtime

– the so-called worst-case execution time (WCET) – and memory usage is required

to determine whether real-time constraints can be met. Compared to manual mem-

ory management, garbage collection is less error-prone at the cost of not reclaiming

memory immediately, being less predictable and requiring additional computation.

Both manual memory management and garbage collection need to deal with frag-

mentation caused by reclaiming in a sequence that differs from the allocation order

(external fragmentation), further increasing the complexity of memory allocation and

reclaiming.

Another alternative that exists in both manual and automatic variants are region-
based approaches to managing memory. Each slice of memory is allocated in one of

many memory regions (also called pools). Regions which are no longer used are re-

claimed on the whole, avoiding external fragmentation completely. A pool will only

be recycled if all of the objects allocated in its memory area are no longer referenced.

A bad mapping from allocation to memory pool may thus prevent the recycling of

unused memory; in the worst case a single object can hold a whole pool “hostage”,

preventing its re-use. On the other hand, region-based memory management does

not suffer from external fragmentation because it does not reclaim slices from its

pools. The time needed for allocation operations is thus easily predictable and allo-

cation can be implemented inΘ(1). This is obvious when considering how allocation

requests are handled and where the used memory resides: All previously allocated

memory is still considered to be in use and occupies a single continuous block at the

beginning of the memory pool. New requests can be served by extending this block,

which takes a constant number of operations (moving a level marker). Constant

runtime is an advantage over both manual memory management and garbage col-

4



1.2 Motivation

lection, which do not always guarantee tight upper bounds for memory management

operations1.

Manual region-based methods require developers to map allocation operations to

the regions that shall be used to satisfy the requests. The Real-Time Specification

for Java supports manual region-based approaches to memory management with the

subclasses of its javax.realtime.ScopedMemory class [BBG+00]. Manual meth-

ods allow fine-grained control over the application’s behavior, but suffer from the

same potential problems present in (non-region-based) manual memory manage-

ment, such as dangling pointers.

Automatic region-based approaches infer regions and region assignments at com-

pile time. Previously published techniques include semi-automatic methods, combi-

nations of region inference and garbage collection to fully automatic region infer-

ence [GMJ+02, HET02, CCQR04]. Most of the work related to region inference is

based on the work of Tofte and Talpin in 1994 originally aimed at functional lan-

guages [TT94]. Downsides of region inference in literature include its high algorith-

mic and computational complexity, its suboptimal results for larger programs and

the assumption that object lifetimes follow a stack discipline. Small source code ad-

justments are sometimes necessary to achieve good memory performance. [HMN01]

A special case of manual region-based memory management is stack allocation.
Each function call creates a new logical memory pool that can be used to allocate

structures and objects on the stack. The pool is automatically reclaimed at the end of

the method, so only objects whose lifetime is bounded by the runtime of their allo-

cating function can be stored in stack memory. Since stack memory is automatically

reclaimed, memory leaks cannot occur. Dangling pointers, however, are still possi-

ble, for example by returning a pointer to local stack memory. In type safe source

languages such as Java, compilers can accurately compute which references point to

the same memory locations (alias analysis) and whether any of these references re-

mains live after the method that initially defined them terminates (escape analysis).
Using escape analysis, dangling pointers can be detected at compile time and ob-

jects which will not escape their method of allocation can safely be allocated in stack

1This is not to say that they cannot, and there are a few algorithms that achieve good upper bounds
for these operations by avoiding fragmentation or embracing it. See [Str14] for previous work in
KESO about this problem and [PZM+10] for the work it is based on.
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1 Introduction

memory. In the context of real-time systems, automatic stack allocation can reduce

the working set of the garbage collector and increase the system’s predictability.

Stack allocation using escape analysis has been implemented in my bachelor’s the-

sis [Lan12]. The scope of this thesis is improving the existing analysis (covered

in Chapter 2) and extending it to allow more objects to be managed automatically

without garbage collection (in Chapter 3). To achieve this, an analysis pass identify-

ing objects which will outlive their method of allocation but not the calling method,

was developed. The results of this analysis were used in a transformation that ex-

tends the scope of such objects into the calling method, enabling their allocation

in the caller’s stack frame, similar to a pattern often encountered in C programs.

This transformation can be beneficial in some Java APIs commonly used in generic

software, e.g., when dealing with strings and StringBuilders. While embedded

systems in a car environment typically do not deal with strings a lot, the optimiza-

tion might still be useful when implementing network communication protocols. Al-

though the Internet of Things is not one of KESO’s target domains, the work done in

this thesis should improve the memory allocation behavior of applications that deal

with string-based protocols such as HTTP.

1.3 | Previous Work

Based on the work of Choi et al. published in 2003 [CGS+03], I implemented alias

analysis and escape analysis in my bachelor’s thesis. Different from the paper it

was based on, KESO’s implementation does not dynamically allocate memory on the

stack. Instead, allocation sites whose objects’ liveness regions overlap are allocated

in garbage-collected heap memory, keeping the stack usage bounded in the absence

of recursion. Since KESO targets embedded systems with real-time constraints, pre-

dictable stack usage is important.

Note that most of this work cannot be applied to languages with pointers easily.

This is due to the fact that pointer arithmetic might not be predictable at compile

time, increasing alias analysis complexity. Because conservative assumptions must

often be made for code using pointers, determining whether an object does not es-

cape its method of allocation is much harder [Hor97, HBCC99, Lan92, Ram94].
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1.4 Document Structure

1.4 | Document Structure

Chapter 2 describes the changes implemented in KESO’s escape analysis for this the-

sis. It starts with a basic summary of the algorithms and data structures used and

contains detailed descriptions of improvements and the fix for a conceptual flaw in

the work of Choi et al. The following Chapter 3 outlines the idea of improving stack

allocation using variable scope extension and explains how this was implemented

and which challenges I encountered while doing that. The evaluation in Chapter 4

compares the results of my work to previous versions of KESO using static results

– like the number of automatically managed allocations – and runtime results of a

number of benchmarks. Chapter 5 gives an overview of related work and explains

the differences to this thesis before Chapter 6 concludes, gives an overview over the

work done for this thesis and discusses some ideas for future work.

7
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2 | Escape Analysis

KESO’s compiler JINO uses alias and escape analysis to identify objects whose

lifetime is bounded by the runtime of their allocating method. The algorithm

was implemented in [Lan12] and is largely based on the work of Choi et al. in

2003 [CGS+03]. The following section contains a brief description of the imple-

mentation and highlights differences. For an in-depth explanation, please refer

to [Lan12] and [CGS+03]. Section 2.2 lists and explains the improvements written

for this thesis before Section 2.3 concludes with a few applications of the information

computed in escape analysis.

2.1 | Basics

The algorithm starts with alias analysis, which is separated into a method-local (also

intraprocedural) analysis and a global (interprocedural) analysis. To compute and

store alias information, a specialized data structure called connection graph (CG) is

used. For each analyzed method, this graph contains representations of local vari-

ables, static class members, dynamic instance variables, array indices, and objects.

Variables of non-reference type are ignored because they do not contribute to alias

information.

2.1.1 | Intraprocedural Analysis

In intraprocedural analysis, each method in the call graph of an application is tra-

versed and a CG representation is computed. It is a key contribution of Choi et al.

that this representation is independent of the calling context. Since their allocation

9



2 Escape Analysis

site might be unknown for some objects (e.g., if they have been passed as argument),

a special type of placeholder called phantom node is used to represent these objects.

For pointer analysis as discussed in Section 1.3, summarizing a method’s effect in-

dependently of aliasing relationships in the calling context is impossible [CGS+03,

p. 886]. For each allocation, assignment, field or array access, return statement,

method invocation, and exception throw, the CG is modified appropriately, ensur-

ing possible alias relations are represented accurately.

Nodes in the CG have different types: Object nodes are added for each encountered

allocation site. Note that a single object node in the graph might represent multi-

ple objects at runtime because an allocation might be executed multiple times (e.g.,

if it is inside a loop). Local variables, static class members, and member variables

are represented using local reference nodes, global reference nodes, and field reference
nodes, respectively. Array members are treated like fields and are thus also repre-

sented by field reference nodes. Each reference node can point to a series of object

nodes and via so-called deferred edges to other reference nodes. Deferred edges are

used to simplify updates of the CG while processing assignments. After intraproce-

dural analysis, these edges are removed by replacing all incoming deferred edges

of a reference node with edges to its successors. Different from the work of Choi

et al., reference nodes with incoming deferred but no outgoing edges are preserved

without change. Section 2.2.2 gives the rationale underlying this difference. Finally,

object nodes can point to field reference nodes, denoting that the pointed field exists

inside the object where the edge originates.

Each node in the CG has one of three escape states, indicating whether a node will

outlive its allocatingmethod or thread. Among these states, a total order exists. Local
is the lowest state. Nodes marked local do not escape the analyzed method. Next

after local is method. Nodes that outlive a method by being returned or assigned to

an object passed as parameter are tagged method-escaping. Objects with an escape

state of method are only reachable from the thread that allocated them. The highest

escape state is global and is given to objects and references that are assigned to static

class members (which exist once in each KESO domain to ensure the isolation of the

protection realms) or thrown as exceptions. While processing amethod’s instructions

and building the CG, operations that cause the escape state of one of their operands to

change trigger the appropriate change in the escape states recorded in the connection

10



2.1 Basics

Listing 2.1: A simple generic linked list in Java

1 public class LinkedList<T> {
2 private static final class ListElement<U> {
3 ListElement<U> next;
4 U elem;
5

6 public ListElement(U elem) {
7 this.elem = elem;
8 }
9 }

10

11 private ListElement<T> head;
12

13 public void addElement(T elem) {
14 insert(this, new ListElement<>(elem));
15 }
16

17 private static <V> void insert(LinkedList<V> list,
18 ListElement<V> elem) {
19 elem.next = list.head;
20 list.head = elem; // make elem the first entry
21 }
22 }

A simple generic linked list implementation in Java. Note that this example is more complex than it would
have to be, especially due to the insert method, for demonstration purposes.

An inner class is used to wrap the list entries with references to their successor. The addElement method
allows insertion of new entries. Internally, addElement uses insert, which enqueues the given new element
at the start of a list.

graph. Allocations whose object node representation in the CG is tagged local are
considered for stack allocation. Note that not all of these objects are converted into

stack allocations. Allocations inside loops that create objects whose liveness periods

overlap are not allocated on the stack, because that would require resizing the stack

frame during the runtime of a method, which KESO avoids deliberately.

See Listing 2.1 for source code corresponding to the CGs to be explained in depth.

The code example is a simple generic linked list. Using common sense we can deduce

that, in the absence of a removal operation, all list elements will be reachable until

the list itself has reached the end of its lifetime. Consequently, the only allocation

in the given example can not be allocated on the stack, because it must outlive the

11



2 Escape Analysis

this

obj0

insert(list) insert(elem)

ListElement

ListElement(this)

ListElement(elem)

obj1

elem

(a) Connection graph for addElement. insert(list) and insert(elem)
represent the parameters passed to the insert method at its invo-
cation. ListElement(this) and ListElement(elem) do the same for
the implicit invocation of ListElement’s constructor.

list

obj0

head

elem

obj1

next

oldhead

(b) Connection graph for insert. The edge
from head to obj1 is the one that pre-
vents stack allocation of the list element
in addElement. Interprocedural analy-
sis needs to propagate this edge into the
caller context to determine this.

Figure 2.1: The connection graphs for the addElement and insert methods given in Listing 2.1 after intraprocedural
analysis. Vertices with rounded corners represent reference nodes, where field reference nodes have a red
�, other reference nodes a blue� border. Dotted borders mark artificial reference nodes representing
a method’s parameter or return value. Rectangles with green� borders are object nodes. If the border
is dashed, the node is a phantom node. The escape state of nodes is encoded in the fill color. White,
orange�, and red� represent local, method, and global, respectively.

method of its allocation addElement. Due to the structure of the example, intrapro-

cedural analysis will not suffice to determine this. Global analysis will be necessary.

See Figure 2.1 for the connection graphs of the methods insert and addElement
given in Listing 2.1. The addElement method has two parameters, but only the sec-

ond one is visible in the code listing, because Java implicitly passes the this reference
as first argument. These parameters are represented in Figure 2.1a by two reference

nodes with dotted borders. Since they are reachable after the method returns, they

are marked as method-escaping, denoted by the orange fill color. Because the al-

location sites of the pointees of both this and elem are unknown, these objects are

represented using phantom nodes (dashed green rectangles). Note that the escape

state propagates along the edges from this into obj0 and from elem into its pointee

obj1. The first statement in the bytecode representation of addElement is the allo-

cation of a new list element, which causes the creation of an object node (green

rectangle) in the CG. The constructor of the newly created ListElement is called with

two arguments: a reference to the object and a reference to the given parameter elem,

represented in the connection graph by the ListElement(this) and ListElement(elem)
reference nodes. The this parameter of the constructor invocation points to the allo-

cated list element, denoted by a solid edge in the graph. The algorithm can deduce

that ListElement(elem) points to the same object as elem. Adding a deferred edge

12
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Listing 2.2: Example exposing the difference between flow-sensitive and flow-insensitive analysis.

1 public class FlowSensitivity implements Runnable {
2 static Object global;
3

4 public void run() {
5 Object a = new H();
6 Object b = new I();
7 Object c = new J();
8

9 a = b;
10 b = c;
11 c = a;
12

13 FlowSensitivity.global = c;
14 }
15 }

Simple Java example exposing the difference between flow-sensitive and flow-insensitive alias analysis.
Flow-sensitive analysis will correctly determine that c will point to the I object at the end of the given
method. Hence, escape analysis will determine that H and J do not escape run. Flow-insensitive analysis
will list H, I, and J as possible pointees of c. As a consequence, all of the three allocations will be assigned
a global escape state.

Adapted from [ALSU07, Sec. 12.4.3].

between the two encodes this situation (note that the deferred edge is not visible

in the graph, because it has been compressed into an edge from ListElement(this)
to obj1). Finally, processing the invocation of insert creates a similar set of nodes

insert(list) and insert(elem) pointing to the this reference and the ListElement object,
respectively.

The graph for insert is given in Figure 2.1b. The two parameters are again rep-

resented by a reference node and a phantom node each. The first few statements

create the next field node below obj1 and add a deferred edge to head. This edge is

not shown in the graph, because the next statement in the code changes the value

of head.

The next step of processing differs depending on whether the analysis is flow-

sensitive or flow-insensitive. Since KESO’s alias analysis was modified to be flow-

sensitive for this thesis (see Section 2.2.1), the discussion of the current example will

use the flow-sensitive approach. The difference between the approaches is best ex-

13



2 Escape Analysis

plained using the simple example given in Listing 2.2. Flow-sensitive analysis follows

the control flow and computes the possible pointees of each variable after each state-

ment. In the given example, the statement a = b removes the previous pointees of

a (i.e., the H object) from the list of possible pointees of a. Flow-insensitive analysis

on the other hand ignores the control flow. This means that statements are treated

as if they could be executed in random order. Flow-sensitive analysis thus generates

more accurate information at the cost of building a representation that is specific for

a point in the control flow graph. The results generated by flow-insensitive analysis

are valid for the entire method.

Returning to the current example, the flow-sensitive variant is used, which causes

all incoming deferred edges of a reference node to be compressed and all outgoing

edges to be removed before pointing to the new target. Compressing deferred edges

requires the target of the deferred edge to have at least one pointee. Since head does

not have any pointees at this point in the analysis, a phantom node representing the

possible previous pointees of head is created. This node is denoted oldhead in Fig-

ure 2.1b. Using flow-insensitive analysis, the deferred edge from next to head would

have been preserved and later compressed into an edge from next to obj1. Finally,

the edge from head to obj1 is added to represent the effect of the statement in line 20

in Listing 2.1, completing intraprocedural analysis.

2.1.2 | Interprocedural Analysis

Looking at the summary information generated for bothmethods given in Listing 2.1,

the object node that represents the only allocation (LinkedList in Figure 2.1a) has an

escape state of local at this point in the analysis. Recall that local nodes are con-

sidered for stack allocation, but entries of a linked list cannot be allocated on the

stack. The results are thus not sound and further analysis is required. Looking at the

example, the edge from head to obj1 in the CG of insert is the edge that will prevent

stack allocation of the list element in addElement. To determine this algorithmically,

the edges found while processing insert need to be propagated to its caller addEle-
ment. Once the connection from obj0 via a new field reference node head to the list

element is established, the escape state of the ListElement object node increases to

method, making the result sound.

14
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this

obj0

insert(list) insert(elem)

ListElement

ListElement(this)

ListElement(elem)

obj1

elem

head

next

oldhead

elem

Figure 2.2: The connection graph for the addElement given in Listing 2.1 after interprocedural analysis. Colors and
shapes cf. Figure 2.1.

A second analysis pass propagates information from the subgraph containing all

non-local nodes of the CGs into the CGs of all calling methods. This interprocedural
analysis modifies the summary information of the callers, which in turn require their

callers to be updated again. To prevent unnecessary recalculation of information,

this pass should use a bottom-up traversal of the call graph. In the absence of re-

cursion, the call graph will not contain cycles, making this a simple problem. When

recursion is used, identifying strongly connected components and iterating in each

component until a fixed point is reached has proved to be effective. KESO’s imple-

mentation uses Tarjan’s algorithm to identify strongly connected components and a

topological order among them in the call graph [Tar72].

To update the callers’ connection graphs, pairs of corresponding nodes in the graph

on the caller and the callee side are identified as starting points and added to a work

list. Originating at these anchors, further nodes and their counterparts are found

and again added to the work list. While the work list is not empty, processing con-

tinues and builds a relation of object nodes in the callee and the caller CG called

mapsToObj. This step is called updateNodes. A simplified form of the procedure is

given in Algorithm 2.1. It uses a dual work list approach to avoid creating spurious

phantom nodes because some of the relationships might not be known until the algo-

rithm completes. See [Lan12, Sec. 3.2.1] for a detailed explanation of the problem

that causes unneeded phantom nodes to be added and slows down the analysis. Up-
dateNodes ensures that all object nodes used in a callee are represented in its caller. It

also adds field reference nodes present in the callee CG but missing from the caller’s

graph and marks the counterparts of globally escaping nodes in the callee’s CG as

globally escaping in the caller CG.
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Algorithm 2.1: The updateNodes procedure [Lan12, Alg. 2]
Input : xs: method parameters, ys: invocation arguments
Result: mapsToObj relation between caller and callee nodes

1 updateNodes (xs, ys)
2 begin
3 workList = {(x, y) | x← xs | y← ys };
4 needsPointee = ∅;
5 mapsToObj = ∅;
6 while workList 6= ∅ or needsPointee 6= ∅ do
7 while workList 6= ∅ do
8 (mParam, iArg) = pop(workList);
9 // Mark iArg globally escaping if mParam is.

10 updateEscapeState(iArg, mParam);
11 // Find pairs of descendant object nodes
12 xPointees = pointees(mParam);
13 yPointees = pointees(iArg);
14 if xPointees ≡ ∅ or yPointees 6= ∅ then
15 // Find pairs of field reference nodes
16 foreach (xd, yd) ∈ {(x, y) | x← xPointees, y← yPointees} do
17 mapsToObj(xd) ∪= yd;
18 foreach calleeField ∈ fields(xd) do
19 callerField = getField(yd, calleeField);
20 workList ∪= (calleeField, callerField);

21 else
22 // The callee node is not represented in the caller node
23 needsPointee ∪= (mParam, iArg);

24 while workList ≡ ∅ and needsPointee 6= ∅ do
25 foreach (mParam, iArg) ∈ needsPointee do
26 if pointees(iArg) 6= ∅ then
27 // mParam’s pointees are represented (happens with recursion)
28 else
29 // Check for other representatives of pointees of mParam

30 callerObjs = {x | x← mapsToObj(y) | y← pointees(mParam) };
31 if callerObjs 6= ∅ then
32 addEdges(iArg, callerObjs);
33 else
34 // Delay adding phantom nodes
35 continue;

36 needsPointee \= (mParam, iArg);
37 workList ∪= (mParam, iArg);

38 if workList ≡ ∅ then
39 // workList is still empty, no pairs found. Add a phantom node.
40 (mParam, iArg) = pop(needsPointee);
41 addEdges(iArg, createPhantom(mParam));
42 workList ∪= (mParam, iArg);
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The example given in Listing 2.1 and Figure 2.1a is shown after interprocedural

analysis (for both invocations) in Figure 2.2. In this case, interprocedural analysis

adds field reference nodes head and next below obj0 and ListElement, respectively.
Furthermore, a phantom node is added to represent oldhead. Note that the head
reference node does not yet point to the list element object node. The next step

of the algorithm called updateEdges adds the missing connection. It takes the same

parameters as updateNodes from Algorithm 2.1 and adds all missing edges. See Al-

gorithm 2.2 for a pseudocode listing of the procedure. It identifies pairs of corre-

sponding object nodes using the mapsToObj relation computed in updateNodes. For
each possible pair it follows outgoing edges to any field reference nodes in the callee

graph and finds the corresponding field reference node in the caller’s CG. Next, the

newly found correspondence pair is added to the work list and all outgoing edges

to object nodes in the callee graph are added to the caller graph. Note that code to

prevent endless loops in cyclic data structures has been left out for simplicity, but

can be easily added.

Algorithm 2.2: The updateEdges procedure [Lan12, Alg. 3]
Input : xs: method parameters, ys: invocation arguments

1 updateEdges (xs, ys)
2 begin
3 workList = xs;
4 while workList 6= ∅ do
5 mParam = pop(workList);
6 foreach (x, y) ∈ {(x, y) | y← mapsToObj(x) | x← pointees(mParam) } do
7 foreach (i, j) ∈ {(field, getField(y, field)) | field← fields(x)} do
8 workList ∪= (i, j);
9 addEdges(j, {mapsToObj(k) | k← pointees(i)});

After interprocedural analysis, nodes marked local in the CG can be allocated on

the stack. Note that KESO does not convert all allocations that fulfill this crite-

rion into stack allocations. Instead, variable liveness information is used to com-

pute whether multiple objects allocated at the same allocation site are needed at the

same time. Objects with overlapping liveness regions are not allocated on the stack

because the amount of memory used by these allocations might be unbounded, e.g.,

if the allocation is inside a loop. See [Lan12, Sec. 3.3] for detailed rationale and a

description of the implementation.

17



2 Escape Analysis

2.2 | Improvements

The algorithm implemented in [Lan12], which is based on [CGS+03], was improved

for this thesis in a number of ways. Among these improvements was flow-sensitivity,

which was proposed by Choi et al. in 2003, but not implemented in my bachelor’s

thesis. The changes required to achieve flow-sensitivity are outlined in the follow-

ing Section 2.2.1. Furthermore, a problem producing possibly incorrect results was

discovered in the algorithm given in [CGS+03]. Section 2.2.2 gives an example and

explains where the incorrect analysis results occur and how they were fixed in KESO’s

implementation.

Last but not least, the algorithm’s runtime on large examples amounted to several

minutes and was deemed unsatisfactory. In particular, recursive and virtual method

invocations significantly increased the size of the generated CGs, raising the runtime

of interprocedural analysis. Section 2.2.3 deals with modifications implemented to

reduce the runtime of the alias analysis.

2.2.1 | Flow-Sensitivity

For flow-sensitive alias analysis a standard forward data flow analysis [ALSU07,

Sec. 9.2] is used. The set of operations needed for data flow analysis is

Cb
o = fb

(
Cb
i

)
(2.1)

Cb
i =

∧
x ∈ pred(b)

Cx
o (2.2)

where Cb
i and Cb

o are input and output data flow information for the basic block b, fb
in Equation (2.1) is called the transfer function for the basic block b, and ∧x ∈ pred(b)

in Equation (2.2) is the meet operation. The data flow transfer function modifies

the data flow information (i.e., the connection graph) according to the statements

in the basic block b. The meet operation combines the output information of all

predecessors of a basic block into the input information of a given basic block b.

The basics of the transfer function are explained in [Lan12, CGS+03]. In theory,

all Cb are distinct. In practice, this would manifold the memory requirements for

the CGs. Instead of copying the graph in each invocation of the transfer and meet
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operations, KESO’s implementation uses a single representation. This idea is also

present in [CGS+03, Sec. 3], but is not explained very well. In specific, it is not

clear to the author of this thesis what Choi et al. meant when they wrote “in the

flow-sensitive version, we only kill local variables” [CGS+03, p. 885].

The KESO compiler achieves flow-sensitivity while retaining a single representa-

tion of the CG by tagging all reference nodes with the basic block for which they are

valid. Object nodes are not modified for flow-sensitive analysis. For each reference

node used in at least one predecessor, the meet operation creates a representation

of the reference in the current basic block and subsumes all outgoing edges present

in the predecessors. For each assignment operation encountered by the transfer

function, ByPass(p) is called on the reference to be written. ByPass(p) (as explained

in [CGS+03]) redirects all incoming deferred edges of p to its successors and removes

any outgoing edges (i.e., it ensures that strong updates are performed).

After implementing this improvement, a fixed point iteration used to reduce the

number of unnecessary phantom nodes in intraprocedural analysis did no longer

terminate for some inputs. This happened because the iteration tracked changes to

the CG rather than comparing the graph against an older copy. Due to the use of

ByPass(p), the graph was modified in every loop, but further processing returned

to the previous state again. Switching to a comparison against an old copy of the

CG rather than tracking of modifications fixed this particular problem. To efficiently

implement comparisons against older versions of the same graph, the connection

graph’s nodes were extended with the ability to store a copy of a single older state

of outgoing edges.

2.2.2 | Fixing Incorrect Results: The Double Return Bug

KESO’s implementation of escape analysis produced incorrect results given inputs

similar to those generated by the idea outlined in Section 3.1. Further analysis sug-

gests this is a conceptual flaw in the work of Choi et al. See Listing 2.3 for an example

triggering this bug. The getObject method allocates two objects and passes them to

chooseOne, which selects one of them at random and returns it. The return value of

chooseOne is then returned from getObject. Because either of the two objects allo-

cated in getObject might escape, both allocations must not use stack memory.
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Listing 2.3: Example exposing the double return flaw

1 public class ChooseOne implements Runnable {
2 public void run() {
3 Object a = getObject();
4 }
5

6 private static Object getObject() {
7 return chooseOne(new Object(), new Object()); // bug occurs here
8 }
9

10 private static Object chooseOne(Object a, Object b) {
11 if (Math.random() < 0.5)
12 return a;
13 return b;
14 }
15 }

A simplified example exposing the double return bug in the escape analysis by Choi et al. One of the
objects allocated in getObject is returned from its allocating method, but escape analysis did not detect
this due to the use of phantom nodes to represent return values.

However, the CG constructed according to [CGS+03, Sec. 4] does not correctly

identify the two objects as method-escaping. The connection graph for chooseOne
is straightforward and given in Figure 2.3a. For the CG of getObject, Sections 4.3

“The Connection Graph Immediately Before a Method Invocation” and 4.4 “The

Connection Graph Immediately After a Method Invocation” are the relevant parts

of [CGS+03]. According to the first section a new actual reference node is created

for each argument of the invocation and an assignment âi = ui is processed. âi

denotes the actual reference nodes, ui are the corresponding invocation arguments.

The statement causes the creation of deferred edges from the âi’s to the ui’s, which

will later be compressed.

The handling of return values is not explicitly explained in this section, but the next

section mentions them as “âi’s (representing actual arguments and return value) of

the caller’s CG,” [CGS+03, p. 891] suggesting that an actual reference node for the re-
turn value is added in the caller’s CG. Figure 2.3b shows this connection graph: The

rounded rectangles with blue dotted borders are said actual reference nodes. Both

chooseOne(a) and chooseOne(b) initially have a single outgoing edge pointing to a

local variable, which in turn points to the allocated objects. This indirection is omit-
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a

obj0

b

obj1

ret

(a) The CG for chooseOne.

ret

objret

chooseOne(ret)

Object(a) Object(b)

chooseOne(a) chooseOne(b)

(b) The CG for getObject according to [CGS+03, Sec. 4].

Figure 2.3: The CGs for getObject and chooseOne from Listing 2.3, exhibiting the double return flaw. The object
nodes in getObject should be pointed-to by ret, which would raise their escape state to method, but these
edges are missing. Colors and shapes cf. Figure 2.1.

chooseOne getObject

obj0 Object(a), objret
obj1 Object(b), objret

(a) The mapsToObj relation constructed using updateNodes as
given in [CGS+03]. Note that this is the same even after
KESO’s modifications.

chooseOne getObject
a chooseOne(a)
b chooseOne(b)

ret chooseOne(ret)

(b) The mapsToRef relation constructed using
KESO’s modified updateNodes algorithm.

Table 2.1: The mapsToObj and mapsToRef relations for the call of chooseOne from getObject as given in Listing 2.3.

ted from the graph in Figure 2.3b for simplicity. The return value of getObject is

modeled using assignments to a special “phantom” variable called return (in KESO’s

implementation: ret). Since the result of the call to chooseOne is returned from getO-
bject, a deferred edge from the phantom return variable to the actual reference node
representing chooseOne’s return value is added. After completing intraprocedural

escape analysis all deferred edges are removed from the graph according to Choi et

al., adding phantom nodes where necessary. This leads to the creation of the phan-

tom node denoted objret in Figure 2.3b. The following path compression removes

the deferred edges from ret to chooseOne(ret) and adds a points-to edge to ret. The
method escape state of chooseOne(ret) is retained, but is not relevant for the further

problem description.

The analysis ends with the UpdateCaller routine. It consists of UpdateNodes and Up-
dateEdges. The former computes equivalence pairs of object nodes in the callee’s and

caller’s CGs (the so-called mapsToObj relation) and adds phantom nodes for objects

that have no equivalence in the caller yet. UpdateEdges ensures all relevant edges

present in the callee’s CG are propagated into the caller’s graph. The mapsToObj rela-
tion for the call from getObject to chooseOne is given in Table 2.1a. If chooseOne(ret)
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did not yet have any pointees at this point of the analysis, statement 7 in UpdateNodes
as displayed in [CGS+03, Fig. 7] would have created it as a phantom node, leading

to the same problem. No new edges are inserted in interprocedural analysis for this

example, because no structure of the form p → fp → q (where p, q are object nodes

and fp is a field reference node) exists in the CG of chooseOne.

Note that both phantom nodes in chooseOne’s CG map to both their respective

object node and the objret phantom node, but the equivalence of Object(x) ∀x ∈ {a, b}

and objret is not represented in getObject’s CG, leading to incorrect escape states for

the two allocated objects.

To work around this problem, KESO’s alias analysis (outlined in Algorithms 2.1

and 2.2) was extended to not only track equivalences between object nodes in map-
sToObj, but also between reference nodes in a new relation called mapsToRef. This

data is used in a modified version of updateEdges to add the missing edges in the

caller’s CG. On each occasion of p → o in the callee’s CG where p is a reference node

that does not represent a parameter and o is an object node, an edge x → y is added

in the caller’s CG for each x ∈ mapsToRef (p) and y ∈ mapsToObj(o), if no such edge

exists yet. Edges outgoing from parameters must be ignored in this step because

Java has call-by-value semantics which means that the arguments given at a method

invocation will always remain unchanged. All references reachable via other edges

below the arguments can be modified, however, as can the return value.

Using this extension for the running example generates the mapsToRef relation

as given in Table 2.1b. To avoid the superfluous phantom node objret that would

be added because of the removal of deferred edges before interprocedural analysis,

KESO’s alias analysis does not attach phantom nodes to nodes that have incoming

deferred but no outgoing edges. This required modifying the analysis to be able to

deal with deferred edges in interprocedural analysis. After the modified interpro-

cedural analysis finishes, the CG of getObject (depicted in Figure 2.4) contains the

missing edges.
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retchooseOne(ret)

Object(a) Object(b)

chooseOne(a) chooseOne(b)

Figure 2.4: The CG for getObject as generated by KESO’s modified algorithm to fix the double return flaw. The two
object nodes are correctly marked method-escaping. Colors and shapes cf. Figure 2.1.

2.2.3 | Interprocedural Analysis Optimizations

Some of the larger applications (up to 28.3 kSLOC1) used in testing the KESO com-

piler took up to 19 minutes to compile with alias and escape analysis enabled. The

compile times were dominated by the duration of alias analysis. To reduce this un-

acceptable overhead, a series of possible culprits were identified and modifications

to the algorithm where implemented in order to improve compile times. Since the

vast majority of the time was spent in interprocedural analysis, all optimizations

described in the following sections apply to this part of alias analysis.

2.2.3.1 | No Propagation of Read Operations

Analyzing the generated CGs after interprocedural analysis revealed that virtual in-

vocations of methods which in turn call the same set of virtual methods caused the

size of the graphs to increase rapidly. This situation commonly occurs in Java with

simultaneous use of the equals method and collections (whose equals implementa-

tions call equals once for each element in the collection). Since calling equals usually
does not change any references reachable from its parameters it does not add new

aliases. Based on this observation, the intraprocedural analysis was extended to

track all edges that were added to the CG due to a write operation. KESO’s imple-

mentation uses a set of properties called isWritten and isWriteOperand available in

each connection graph node to store this, because information cannot be easily at-

tached to the edges themselves in KESO’s adjacency list-based implementation of the

CG. After intraprocedural analysis, a modified version of Tarjan’s algorithm to find

strongly connected components [Tar72] finds all cycle-free paths from the method’s

1generated using David A. Wheeler’s “SLOCCount”
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formal parameters to edges created by write operations. All edges that compose this

subgraph are called important and marked for later use. Note that the subgraph

may contain cycles because while important edges alone will not cause cycles, an

additional edge created by a write operation might. Furthermore, interprocedural

analysis was extended to ignore all nodes and edges that have no role in a write

operation and are not marked important (i.e., are not on a path from the method’s

entry points to a write operation edge).

In theory, these changes should have removed the effect of calls to equals, hash-
Code and similar methods completely. In practice, however, some implementations

of equals may in fact contain write operations: For example, the java.util.Hashtable
class from the GNU classpath project implements equals by comparing the entry sets

of the two hash tables. This entry set is eagerly created and cached inside the hash

table class. This write operation causes all edges leading up to it to be marked impor-

tant. These edges are then propagated into all other invocations of equals, causing
further edges to be considered important, nullifying the effect of the optimization for

equals. Other implementations and functions might, however, still benefit from the

improvement, and this is in fact the case for the CDj benchmark used in Chapter 4

where the data gathered in this modification causes an allocation in a hot spot of the

application to be optimized. If Java did have constant methods like C++ does, equals
(and other methods that are marked constant and only have constant reference pa-

rameters) could be automatically ignored in alias analysis.

2.2.3.2 | No Reprocessing of Unchanged Invocations

Strongly connected components in an application’s call graph (i.e., recursive meth-

ods) are handled in interprocedural analysis by iterating until a fixed point has been

reached. During this process, invocations might be reprocessed even though their

callees’ CGs have not changed since the last iteration. This happens for all call graph

edges leaving the strongly connected component. See Figure 2.5 for a graphical

representation of this situation.

KESO’s interprocedural analysis only re-runs the updateNodes and updateEdges
steps if a callee’s CG changed since the last iteration, avoiding unnecessary over-

head. Unfortunately, the savings from this optimization are marginal.
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Figure 2.5: Call graph with a strongly connected component (blue� vertices) and a few dependent nodes (green
� vertices). While methods inside the strongly connected component might have to be visited multiple
times in interprocedural analysis, the summary information from a–c only needs to be propagated into
their callers once.

2.2.3.3 | Connection Graph Compression

While the improvements in Sections 2.2.3.1 and 2.2.3.2 reduced the compile time

of large applications, the savings were still not enough to enable escape analysis by

default in KESO without having a noticeable effect during development. Connection

graph sizes would still surpass 10000 vertices on large inputs with these optimiza-

tions enabled, slowing down further steps of the analysis. Most of these nodes were

created in interprocedural analysis as phantom nodes to represent objects allocated

in callees of the current function and often had siblings that would represent the same

objects. To reduce the size of the connection graphs, a graph compression transfor-

mation inspired by Steensgaard’s almost linear time points-to analysis [Ste96] was

implemented.

Starting at each entry point into a method’s CG (i.e., every method parameter

and the return value), the graph compression algorithm processes each reference

node recursively but avoids loops using a color bit. For each reference node, lists

of pointees segregated by escape state are collected. The separation into different

escape states ensures that object nodes are only unified with nodes that have the

same escape state. This avoids deterioration of the computed results up to this point.

Each list that contains at least two object nodes, at least one of which must be a

phantom node, is compressed by removing all phantom nodes. Note that any two

non-phantom object nodes (i.e., any two nodes with a known allocation site) are

not consolidated to preserve the one-to-one mapping between intermediate code

allocation instruction and its CG representation.

Incoming edges pointing to the phantom nodes to be removed are redirected to the

retained object nodes. Field reference nodes reachable from the phantom nodes are
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re-created below the object nodes in the compression set. Edges outgoing from the

removed field reference nodes are moved to their equivalents below the retained ob-

ject nodes. Since this might create new graph constellations that can be compressed,

the color bit possibly marking the descendant field reference nodes as visited is reset.

Since these modifications always preserve object nodes and do not unify subgraphs

with different escape states, the effect on the results is negligible. However, the

compile time required for alias analysis has improved by an order of magnitude.

2.3 | Applications

Besides stack allocation, the results of KESO’s escape analysis can be used for other

applications. This section presents some of the analyses and optimizations that use

the connection graphs generated by alias and escape analysis. Note that some of the

ideas outlined have proved to be difficult or impossible to implement using KESO’s

representation of the alias information, and some are possible but have not been

implemented yet due to time constraints.

2.3.1 | Removing Unneeded Copies in Portal Calls

To support communication between protection realms (domains), KESO offers an

RPC implementation called portals (see also Figure 1.1). To ensure complete isola-

tion of objects passed through portals, the KESO runtime environment creates deep

copies of these objects in the target domain’s heap. This ensures that modifications

of the object in the target domain do not affect the object in the source domain.

Especially for large trees of objects, this is very expensive. Results from escape and

alias analysis can be used to determine whether the copy can be omitted. This opti-

mization pass is called superfluous portal copy removal.

Objects must be copied if they, or any object reachable from one of their fields,

(a) live longer than the runtime of the methods handling the portal call on the des-

tination side, i.e., if they have a global escape state in the callee’s CG, or (b) are

modified by the callee. Whether (a) applies can be determined using the connec-

tion graph for the method handling the portal call. For each argument passed into a

portal, the corresponding representation on the callee side and its descendant nodes
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must not have a global escape state. A simple work list algorithm suffices to check

for globally escaping objects.

Avoiding the removal of copies that are required because they are modified ac-

cording to (b) is more complicated. KESO’s implementation starts by constructing a

mapping between the CG representation of objects and the index of the portal call

argument that initially brought them into the portal handler’s protection domain, if

any. In a pass over all code reachable from the portal handler, each write opera-

tion’s operands are checked for the presence of this mapping. If no mapping exists,

the modified object was not passed through the portal but originated in the portal

handler’s domain. As such, it can be freely modified. On the other hand, if a mapping

exists, the currently processed instructionmodifies an object passed through a portal,

i.e., the instruction is a witness stating that the parameter must be copied. Hence,

the argument, whose index is obtained from the mapping, is marked as must-copy.
If the code traversal encounters method invocations that reference any of the objects

in question, the mapping is extended and the method’s code is visited recursively. If

no witnesses against the copy removal are found after the traversal is complete, the

copy operation is omitted.

KESO’s portal mechanism supports replication and voting on the results as an ap-

proach to software-based fault tolerance. By default, each object tree passed into

a replicated portal is copied three times, once for each replicated portal handler.

Superfluous portal copy removal is used to avoid the third copy, if copying is not

necessary.

Note that KESO’s implementation either completely copies an object and its de-

pendents, or it does not copy any part of the object. While it is possible to compute

which descendants of an object are modified or escape the callee and only copy these

parts rather than the whole tree, the additional runtime support and runtime rep-

resentation of the partial copy information made this a refinement not considered

worthwhile by the KESO developers.

2.3.2 | Synchronization Optimizations

The information computed in escape analysis and stored in the CGs can be used

to remove unneeded synchronization operations. Objects that are only reachable
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from a single thread (or task in the KESO context) and are used for synchronization

will never have to wait for a lock. Blocking can only occur when a different thread

currently holds the lock of the object, but this is not possible if the object is not

reachable from within more than one thread. The connection graph can be used to

determine whether objects are local in a thread using the escape state. An escape

state of method or lower implies that the object does not escape its thread of creation.

Since KESO does not currently synchronize at objects but uses OSEK’s resource
abstraction for mutual exclusion, this optimization’s potential for performance im-

provement and code size reduction is likely to be low, and it has not been imple-

mented in KESO. However, other situations that require synchronization in KESO

could still benefit from the information. On target platforms with small word sizes,

such as AVR microcontrollers, KESO ensures multi-word data writes are not inter-

rupted by disabling interrupts for the duration of the write operation. If the written

objects are task-local, this safety precaution is not necessary, because the modified

object cannot be read in an inconsistent state by other tasks. Once execution of the

interrupted task resumes, the write operation will continue and bring the multi-word

data field into a consistent state.

2.3.3 | Cycle-Aware Reference Counting

Automatic reference counting as a method of automatic, compiler-assisted memory

management that does not require garbage collection has been gaining popularity

lately. For example, Apple’s Objective-C used on iOS and OS X employs compiler-

generated reference counting. Unfortunately, it is a well-known limitation of refer-

ence counting that it cannot automatically reclaim self-referential (i.e., cyclic) data

structures. Cyclic data structures either require the additional use of a garbage col-

lector, or the use of special pointer types called weak pointers that do not increase

the reference count of objects to break the cyclic structure.

Using the connection graphs constructed in alias and escape analysis, cyclic struc-

tures, their components and corresponding allocation sites can be computed at com-

pile time. Using this information, cycles could be automatically managed by assign-

ing a cycle descriptor to each object that is part of a cyclic structure and keeping a

reference count for the whole structure in the cycle descriptor. Once this reference
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Figure 2.6: Cycle-aware reference counting using cycle descriptors. Blue� vertices are part of a cyclic data struc-
ture, green� ones reference cyclic structures. Nodes 1–3 share a cycle descriptor. Adding a reference
to an object inside the cycle looks up its cycle descriptor and increases the cycle’s reference count.

count drops to zero due to the release of an object that references the structure, the

whole cycle could be reclaimed.

Figure 2.6 has a graphical representation of the approach. The structure consist-

ing of the three nodes 1–3 is identified as self-referential at compile time. A cycle

descriptor is allocated with the first object of the cycle, and each object’s header ref-

erences the cycle descriptor. Adding the reference from a to 1 increases the cycle’s

reference count. When the cycle reference count drops to zero, the complete cycle

must be unreferenced and can be reclaimed.

Unfortunately the representation of the alias information in JINO makes it difficult

to apply this idea, because the CG of a method is independent of its calling contexts

(which is one of the significant contributions of Choi et al. in [CGS+03]). Cycles

in connection graphs can be identified, but are useless when containing phantom

representations of nodes passed into a method from a caller. Because a single static

representation exists for multiple instances of cycles, the approach is unlikely to

perform well: For example, when used on KESO’s current alias analysis results, all

objects stored in a doubly linked list (which is a cyclic data structure) can only ever

be reclaimed on the whole, even if the lists are completely separate. The approach

might work reasonably well given a global points-to graph, but this has not been

tested in KESO.
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A standard pattern found in C programs is passing a buffer and its size to a func-

tion which will write a computed result into the given buffer. Since the location of

the buffer is controlled by the calling function, it can be allocated in stack memory.

In Java, a method would instead allocate a new object on the heap and return a

reference to it to achieve the same. Using information from alias and escape anal-

ysis, objects that escape their method of allocation into the caller but no further

can be automatically identified. Since the lifetime of these objects can be statically

determined, the need for garbage collection can be avoided and the memory can be

automatically managed using compiler-generated code (for example, but not limited

to, using stack allocation). This further reduces the load of the garbage collection

mechanism and can improve worst- and average-case execution times of applica-

tions. This optimization is called scope extension in the following.

Note that while only stack allocation has been discussed as optimization to manage

objects with statically computed and bounded lifetimes, it is not the only possibility,

and may not be the best. Several other approaches such as region-based methods

or explicit deallocation operations come to mind. Depending on the nature of the

optimization used, their unbounded application may lead to problems and can in

fact worsen an application’s performance. Nonetheless, stack allocation will serve

as the default backend in the code and the following description of the algorithms.

Steps in the optimization that are induced by the properties of stack allocations are

marked as such.

In the remainder of this chapter, Section 3.1 outlines the general idea of the opti-

mization implemented for this master’s thesis and gives and example showing where,

why, and how it can be applied. The following Section 3.2 discusses in detail which
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Listing 3.1: Example containing a candidate for scope extension

1 public class Factory {
2 class Builder {
3 // ...
4 }
5 protected Builder getBuilder() {
6 return new Builder();
7 }
8 }
9

10 class Simulation implements Runnable {
11 @Override
12 public void run() {
13 Factory f = new Factory();
14 while (true) {
15 Builder b = f.getBuilder();
16 for (Aircraft a : getAircraft()) {
17 b.addPosition(a, getPositionForAircraft(a));
18 }
19 SimFrame frame = b.makeFrame(); // last reference of b
20 simulate(frame);
21 }
22 }
23 // ...
24 }

Example simplified from the CDj benchmark from the CDx family of benchmarks [KHP+09]. The ob-
ject allocated in Factory.getBuilder does not escape Simulation.run. It can be allocated on the stack of
Simulation.run.

preconditions must be fulfilled, which constellations hinder or prevent optimization,

and how these shortcomings could be addressed. Two different transformations us-

ing the analysis results and their advantages and drawbacks are presented in Sec-

tion 3.3, before Section 3.4 concludes this chapter with a consideration of possible

problems caused by excessive use of scope extension.

3.1 | Algorithmic Idea

Listing 3.1 shows an example adapted from the source code of the CDj bench-

mark [KHP+09] where scope extension can be applied. The Builder object allo-

cated in Factory.getBuilder escapes its allocating method into Simulation.run, but
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is no longer referenced after line 19. The runtime of Simulation.run is thus an upper

bound for the lifetime of the object. Consequently, KESO does not have to rely on

garbage collection to reclaim the memory used by the object, but can instead auto-

matically manage the object’s memory using one of the techniques from Section 3.3.

All examples discussed so far deal with objects escaping their method of creation

via a return operation. Note that being returned is not the only way an object can

escape: storing references in a field of an object given as parameter will also increase

the escape state. This case is omitted in all examples for simplicity, but always im-

plied.

3.2 | Analysis

Any object in the method escape state partition of a method’s CG is a candidate for

optimization. The escape state of the object’s representation in the method’s callers

can be taken into account to decide whether the object should be allocated by the

caller. Note that since there might be multiple callers and the optimization could be

applied multiple times (moving allocations up multiple levels in the call hierarchy)

considering the escape state of the object in the callers’ CGs is not always a trivial task.

For example, the object might escape further in some of the callers but not in others.

When using stack allocation, even objects that are local in a calling method might

still not be eligible for optimization due to overlapping liveness regions. KESO’s

stack allocation transformation avoids possibly unbounded growth of stack usage by

omitting the transformation into a stack allocation if multiple objects allocated at

the same allocation site are in use simultaneously (see Section 2.1.2 and [Lan12,

Sec. 3.3] for details).

When the optimization backend used requires additional parameter passing across

invocations, virtual method calls need to be handled with special care to avoid break-

ing their signatures: all candidates for a virtual method invocation need to share the

same signature before and after optimizing. See Section 3.2.2 for a detailed discus-

sion of virtual method invocations in the context of scope extension.

Because of the complexity involved in doing so, KESO’s implementation does not

take the escape state of object nodes’ equivalents in the callers’ CGs into account. For

each run of the optimization pass, allocations are propagated at most a single level
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up against the direction of the call hierarchy. Therefore, running the pass multiple

times will increase the maximum scope extension level. Note that it is not necessarily

beneficial to run the pass often, since it may lead to undesirable results. See Sec-

tion 3.4 for a discussion of the limitations and problems of scope extension.

3.2.1 | Non-Virtual Calls

Non-virtual call sites, i.e., those where the invoked method is unique and known

at compile time, constitute the simple cases of the analysis. Fortunately, the KESO

compiler tries to increase the number of non-ambiguous invocations by devirtualiz-

ing method invocations where a single candidate can be deduced using static analy-

sis [ESLSP11, Sec. 3.4], increasing the number of non-virtual method calls.

Each object nodewith a known allocation site (i.e., each non-phantom object node)

and an escape state of method will be optimized in KESO. When optimizing alloca-

tions of local objects using stack allocation, the allocation instruction must be moved

into all callers. A reference to the allocated object is instead passed to the method on

invocation, which uses this reference instead of the reference previously returned by

the allocation instruction. Each allocation that is optimized using scope extension is

copied into all callers and executed unconditionally, regardless of whether the allo-

cation sites were in mutually exclusive control flow paths before optimization, and

hence could never be used at the same time. In some examples, this causes a large

number of allocations and new method parameters even though only a few are used

simultaneously. See Section 3.4 for a detailed analysis of the problem, possible ways

to avoid it, and a discussion of the challenges in solving it.

3.2.2 | Virtual Calls

Virtual method invocations further complicate the decision whether to apply scope

extension to an allocation site. Since all candidates of a virtual method invocation

must share the same signature (i.e., the same parameter and return types), a method

cannot be optimized individually without considering its siblings when the optimiza-

tion requires adjusting a method’s signature (as is the case when using the default

stack allocation backend). Figure 3.1 contains a graphical representation of this

problem. Interdependencies between methods cause them to form up into groups
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a b

1 2 3 4 5

Figure 3.1: Call graph showing the complexity of scope extension for virtual method calls. Green� vertices mark
methods that contain allocations eligible for scope extension, blue� vertices represent other methods.
Solid lines are method invocations. Assume that both a and b contain a single virtual method invocation
each, i.e., the possible callees are 1–3 for a and 3–5 for b. Dashed lines point from methods eligible for
scope extension to methods that must share their signature. Since this relation is transitive, nodes 1
through 5 and their invocation sites must be adjusted for each optimization in 2, 3, and 4.

sharing the same signature. Scope extension, however, depends only on the code

of the methods in these groups, which is in general unrelated. A single method in

such a group could cause the modification of its invocations’ argument lists, which in

turn requires the same changes to all other candidates for the modified method calls.

Since the modifications are in general unnecessary in all other methods than the one

causing them, this increases the runtime overhead and possibly allocates memory

that is unused in most candidates of a virtual invocation.

Because of the overhead and the complexity inherent to applying this optimization

correctly in the presence of virtual method calls, KESO does not currently perform

scope extension across virtual invocations. Note that some of the challenges are

caused by properties of the applied optimization. Intermediate code transformations

that do not require changing a method’s signature can simplify the problem. For

example, instead of using stack memory, a separate thread-local heap section with a

simple bump pointer memory management strategy could be used (see Section 3.3.2

where this is discussed). Memory could be allocated in the section corresponding

to a calling method in these thread-local heaps during a method’s prologue before

creating a new method frame. Objects allocated in this region would remain valid

until the calling method terminates.

A different approach to solve the same problem could be not to change the allo-

cations at all (i.e., allocating in garbage-collected heap memory) and to modify all

callers to explicitly reclaim the objects that are no longer used. However, in the pres-

ence of a garbage collector this does not necessarily reduce the memory management

overhead. Marking a section as free reduces neither the time required for the mark

phase (the unreferenced section will not be marked, whether it was explicitly freed
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or not) nor the sweep phase (the work done in the sweep step is the same, whether

it is run by the garbage collector or the explicit statement). As a consequence, the

only possible improvement achieved by explicit deallocations could be a reduction

in the number of garbage collector runs. By keeping a list of memory areas that can

be re-used immediately, the runtime system could avoid the scan phase entirely if

enough memory can be reclaimed using the known unused areas.

Because KESO’s current escape analysis summarizes a method’s effect independent

of any calling contexts, but both approaches outlined in the last paragraphs depend

on the caller, further analyses would have to be implemented to use these ideas.

In the complete absence of a garbage collector, the scope extension could be used

to checkmanual memorymanagement for potential mistakes. In each locationwhere

KESO would automatically place a reclaim operation, it can check whether the pro-

grammer did write the expected instruction. If the object in question is not explicitly

returned into the memory pool, leakage occurs and the compiler can print a warn-

ing. For this application, running the scope extension pass multiple times can be

beneficial, because due to the lack of modifications, the code size does not increase,

but the number of objects whose lifetime can be inferred by the compiler grows.

3.3 | Optimization

Based on the results of alias and escape analysis and the decisions presented in Sec-

tion 3.2, KESO’s compiler can apply two new optimizing transformations. The first

transformation operates on the intermediate code representation of the program and

moves eligible allocations into a method’s callers. To preserve soundness, a refer-

ence to the allocated object is instead passed as argument at the method’s invocation.

The newly created allocation can potentially use stack memory subsequently. The

second new transformation applies in KESO’s backend where C code is emitted. It

is described in Section 3.3.2 and introduces a different concept to avoid potential

problems with excessive stack usage.
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Listing 3.2: Java bytecode of a complete object allocation

1 new $1 # 1 is constant pool entry for the object type
2 dup
3 invokespecial $2 # 2 is constant pool entry for the object’s constructor
4 astore_0 # stores a reference to the object in a local variable

Java bytecode of a complete object allocation. The new instruction allocates new memory. The following
dup operation is required because of the JVM’s stack machine semantics. Before astore_0 stores a reference
to the allocated object in the variable 0, invokespecial calls the object’s constructor and passes a reference
to the memory area as first parameter.

3.3.1 | Extending Variable Scope

Extending the scope of variables constitutes the core part of extended escape analysis.

The creation of an object that will be optimized by the transformation consists of two

major instructions on the intermediate code level. Since JINO’s intermediate code

is similar to Java bytecode, these instructions loosely correspond to the bytecode

instructions generated by the Java compiler for allocations. See Listing 3.2 for the

sequence of Java bytecode instructions generated for each allocation.

The first of two instructions allocates a new chunk of memory, initializes any in-

ternal data expected by the virtual machine (such as runtime type information) and

sets the rest of the object’s memory to zero to comply with Java’s semantics. In Java

bytecode, this operation is known as new. Note that this differs from the interpre-

tation of the same keyword at the Java language level, which includes the call to

the constructor. If the application can be interrupted between stack allocation in

the caller and constructor call in the callee (e.g., by stop-the-world or on-demand

garbage collection or a blocking method call) the referenced memory area must be

in a defined state. Passing a reference to uninitialized memory (like in C) is not

possible unless special precautions such as pointer tagging are used.

The second instruction invokes the object’s constructor. The first argument of this

call is always a reference to the allocated object. Further arguments are passed, if

the constructor has any.

This distinction is important, because the transformation will exclusively deal with

the first part. The invocation of the constructor is unaffected and will not be moved

since that would increase the complexity and reduce the number of possible opti-
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mization spots. Besides the instruction itself, the invocation’s arguments would have

to be replicated in different methods, which would in turn require copying compu-

tations and possibly further method calls while preserving Java call semantics.

Since the invocation of the constructor needs a reference to the allocated object,

the allocation instruction is replaced with an operation reading a variable. The vari-

able is a newly created method parameter, where the parameter type equals the

type of the object. Replacing the new operation with the instruction reading the

parameter (one of the aload instructions in Java bytecode) is simple but may lead

to unnecessary copying. However, since JINO operates on code in static single as-

signment (SSA) form at this point, superfluous variable copies will automatically be

consolidated in SSA deconstruction using Sreedhar’s SSA based coalescing [SJGS99].

Adding a new parameter changes the method signature of the callee. This invali-

dates all existing invocations. As a consequence, all callers of an optimized method

must be adjusted accordingly. This adjustment consists of copying the previously

removed allocation instruction right before all invocations and passing the reference

returned by this operation as new last argument.

After the pass finishes and all candidates for optimization have been processed,

escape analysis is run again. This ensures that alias and escape information for the

objects allocated at these new allocation sites is up to date when it is needed in a

subsequent pass optimizing allocations of local objects.

3.3.2 | Task-Local Heaps

Turning allocations into stack allocations for automatic memory management is not

necessarily the best solution, depending on the circumstances. Especially in safety-

critical embedded systems, allocating objects and arrays on the stack could lead to

increased worst-case stack usage estimations. Since the stack space needs to be re-

served for each task even if it is not going to be used simultaneously, the overall

memory requirement can increase compared to a system without escape analysis.

This situation occurs when the sum of upper bounds is larger than the upper bound

of the sum. Furthermore, to keep stack usage limited and simplify finding an upper

bound of stack usage, KESO does not turn allocations whose liveness regions overlap

into stack allocations. Overlapping objects occur because they are allocated inside
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a loop and alive after the loop. This requires memory proportional to the number

of loop runs, where an upper bound might be unknown. To avoid stack overflows,

KESO will always use heap memory for these allocations.

In order to address these shortcomings, an alternative to stack memory is neces-

sary. A special region can be used for all objects that can be automatically managed

by the compiler. To provide a runtime advantage over the normal heap, this re-

gion must be exempt from garbage collector sweeps. There should be one logical

region for each method, while empty regions (i.e., those corresponding to methods

without local objects) can be omitted. At the end of the method, its associated re-

gion can be reclaimed as a whole. To retain the semantics of stack allocations and

reclaim-on-return, these logical regions should be organized in a stack. One possible

implementation of these constraints are small specialized heap regions local to each

task. Given these local heaps, the logical regions are implemented similar to a stack

in KESO: Each task-local heap has a fill marker and a maximum fill level. At method

entry, the fill marker is saved and necessary objects are allocated by moving the fill

marker. At method exit, the fill marker is reset to its previous value. Saving the

fill marker on the stack can be avoided if the amount of memory that will be allo-

cated in a function and all alignment offcuts are known at compile time, because this

knowledge can be used to calculate the value at method entry. KESO’s implemen-

tation does not currently support this optimization. The approach does not require

any synchronization for allocations, which constitutes another advantage over heap

allocation.

Memory shortages can be detected by checking whether the next operation would

move the fill marker above the maximum level, preventing unforeseen behavior in

case of overflows. Since object allocation on stack no longer occurs with this method

of region based memory management enabled, finding a tight upper bound for stack

usage is simplified. With precise and quick checks preventing task-local heap over-

flows in place, liveness interference avoidance can be disabled, further reducing

garbage collector load (possibly exceeding amounts proportional to the number of

affected allocations due to the use in loops). The necessary size of these local heaps

can be statically configured using results from manual worst-case memory usage

analysis. Future work (see Chapter 6) could automate this process and determine

the size of task-local heaps automatically.
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It is worth noting that this optimization can only be applied to code that will always

be called in a task context. Class initializers andmethods called from class initializers

may not use a task-local heap because they are called during startup and not in a

specific task. Since tasks and their code are implementations of Java’s Runnable
interface in KESO, they have a constructor. While this constructor will also be called

from outside any task context, task-local allocations can still be enabled by using the

task-local heap corresponding to the task that is being constructed.

KESO’s implementation uses static analysis to determine which tasks reach a spe-

cific method. If only a single task uses an allocation site, the dynamic lookup of

the task descriptor (which contains the task-local heap descriptor) is replaced with

a simple address-of operation that can be resolved to a memory address by the com-

piler and linker. If multiple tasks use an allocation, a dynamic lookup is required

and preserved. If an allocation is not reachable from any task constructor or entry

point, it must not use local heaps. KESO’s compiler will detect this situation and gen-

erate an error message to prevent runtime errors. ISRs do not use task-local heaps

in the current implementation. They could use their own task-local heaps or use the

task-local heap of the current active task they interrupt. The latter solution would,

however, increase the worst-case memory usage of all tasks that can be interrupted

by an ISR. Portal handler methods use the task-local heap of their caller, which is in

a suspended state until the portal call finishes.

3.4 | Potential Problems and Limitations

Applying scope extension to all candidates does not yield a better program in all

cases. A number of situations could actually decrease the performance. Heuristics

are necessary to avoid these transformations.

For example, suboptimal results are generated for methods that allocate a large

number of objects that are eligible for the optimization. A particular specimen ex-

posing this behavior is a generated recursive descent parser used in the CDj bench-

mark [KHP+09]: The method that shows the undesirable behavior consists of a large

distinction of cases where each case allocates and returns an object. Applying scope

extension creates a new parameter for each object and adds the corresponding allo-
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cation to all callers. Besides the overhead caused by passing a lot of parameters, this

example also exhibits two further problems.

First, since the control flows in the switch statement of the optimized method are

mutually exclusive, at most a single object is allocated and returned in the example.

After scope extension, however, all objects are allocated by the caller methods and

references are passed for each one, even though only one of the arguments is actually

used. In this case, the memory usage is thus actually increased by the optimization.

This problem could be avoided by consolidating memory areas (and the correspond-

ing method parameters) that are used in mutually exclusive control flows. Interfer-

ence analysis is needed to determine this information. Good results can probably be

achieved using a modification of Sreedhar’s φ congruence classes [SJGS99], which

are already implemented in KESO to remove unnecessary copies of variables in SSA

deconstruction, but are not used in scope extension yet. Since consolidated memory

areas might be used for objects of different types and sizes, garbage collectors would

have to support uninitialized chunks of memory as method arguments.

Summarizing so far, scope extension can increase memory usage due to the alloca-

tion of unused objects and it can cause sub par performance when a large number of

allocations are optimized because of the increased overhead of the modified method

invocation.

The necessary modification of a method’s call sites induces another set of potential

problems. First and foremost, optimizing a method with more than one call site will

increase code size. Because the allocation instruction is removed from the callee and

replicated in all callers instead, the optimization is only neutral with respect to the

code size if a method has exactly one caller.

Cafter = Cbefore + (r − a) + c · (a+ p) (3.1)

Cafter = Cbefore +Θ(1) + Θ(c) (3.2)

Equation (3.1) gives a relation between the code sizes before and after applying

the optimization. In the equation, r denotes the code size of an aload (read from

variable) operation, a is the size of an allocation, p the size of passing an argument to

a method and c is the number of callees of the optimized method. As Equation (3.2)

shows, the change in code size is dominated by the number of callers c. Note that
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Listing 3.3: Scope extension example

1 public class ScopeExtExample implements Runnable {
2 public StringBuilder buildString() {
3 StringBuilder sb = new StringBuilder();
4

5 sb.append(”Ground control to Major Tom\n”);
6 sb.append(”Ground control to Major Tom\n”);
7 sb.append(”Lock your Soyuz hatch and put your helmet on\n”);
8 sb.append(”Ground control to Major Tom\n”);
9 sb.append(”Commencing countdown, engines on\n”);

10 sb.append(”Detach from Station, and may God’s love be with you\n”);
11 // . . .

12

13 return sb;
14 }
15

16 public void run() {
17 StringBuilder sb = buildString();
18 System.out.println(sb.toString());
19 }
20 }

Example for scope extension. The StringBuilder object allocated in buildString is returned into the run
method. Extending its scope will make it a local object in run and subject to optimization.

the number of objects allocated at runtime does not change even though the number

of allocation instructions increases. This is obvious when considering the number of

calls to the object’s constructor, which is not touched by the transformation and

hence stays the same.

The use of appropriate heuristics can prevent the potential problems with methods

that have a lot of candidates for the optimization. To avoid allocating memory that

is not actually used later, interference analysis can be implemented. For interference

analysis and consolidation, garbage collectors must be adjusted to tolerate chunks

of uninitialized memory in method arguments. The overhead of passing a lot of pa-

rameters can be countered by limiting the number of applications of the optimization

per method. Code size explosion can be prevented by avoiding the optimization for

methods whose number of callers is above a certain threshold. Techniques that do

not require adjusting the calling context (see also Section 3.2.2) would completely

remove the overhead of argument passing and prevent code size from increasing.
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3.5 Example

3.5 | Example

Consider the example given in Listing 3.3 and its Java bytecode representation in List-

ing 3.4. The StringBuilder object allocated in buildString escapes its method of cre-

ation into run. Consequently, its CG object node representation has a method escape

state due to its incoming edge from the node representing buildString’s return value.

In the connection graph for run, the StringBuilder object is is represented as a phan-

tom node. This phantom node has a local escape state because it does not escape

run and is not assigned to any global variables inside toString.

When scope extension encounters the allocation, it removes the new instruction

at bytecode position 0 in buildString and creates an equivalent instruction between

bytecode positions 0 and 1 in run. It also adds an additional parameter to the invo-

cation of buildString. See Listing 3.5 for bytecode excerpts from both methods after

scope extension. The allocation has been moved into run, where its representation

in the CG after another run of alias and escape analysis will be local. The previous

new instruction has been replaced with an operation that reads the new parameter.

SSA deconstruction removes the unnecessary copy that would occur if the new opera-

tion was naively replaced with the appropriate aload instruction due to the sequence

aload, dup, constructor invocation, astore.

The remaining allocation can be turned into a stack allocation or use a task-local

heap of the ScopeExtExample task. Garbage collection is no longer required for the

object previously allocated in buildString. Note that the toString method of the

StringBuilder class contains the allocation of a String object that escapes its method

of creation into run. This allocation would also be moved into its calling method,

despite being part of the standard library. This behavior is not limited to scope ex-

tension, but is a general feature of KESO. All Java library code used in an application

is analyzed and tailored just like application code.
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3 Extended Escape Analysis

Listing 3.4: Bytecode for the scope extension example

1 public class ScopeExtExample implements java.lang.Runnable {
2 // . . .

3 public java.lang.StringBuilder buildString();
4 0: new $2 // StringBuilder
5 3: dup
6 4: invokespecial $3 // StringBuilder.”<init>”:()V
7 7: astore_1
8 8: aload_1
9 9: ldc $4 // Ground control to Major Tom\n

10 11: invokevirtual $5 // StringBuilder.append:(LString;)LStringBuilder;
11 14: pop
12 15: aload_1
13 16: ldc $4 // Ground control to Major Tom\n
14 18: invokevirtual $5 // StringBuilder.append:(LString;)LStringBuilder;
15 21: pop
16 // . . .

17 50: aload_1
18 51: areturn
19

20 public void run();
21 0: aload_0
22 1: invokevirtual $9 // buildString:()LStringBuilder;
23 4: astore_1
24 5: getstatic $10 // System.out:Ljava/io/PrintStream;
25 8: aload_1
26 9: invokevirtual $11 // StringBuilder.toString:()LString;
27 12: invokevirtual $12 // java/io/PrintStream.println:(LString;)V
28 15: return
29 }

Excerpts from the Java bytecode compiled from the source given in Listing 3.3, generated using
javac 1.7.0_55 from OpenJDK 7.
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Listing 3.5: Bytecode after scope extension

1 public class ScopeExtExample implements java.lang.Runnable {
2 // . . .

3 public java.lang.StringBuilder buildString(java.lang.StringBuilder);
4 0: aload_1
5 3: invokespecial $3 // StringBuilder.”<init>”:()V
6 6: aload_1
7 // . . .

8

9 public void run();
10 0: aload_0
11 new $2 // StringBuilder
12 1: invokevirtual $9 // buildString:(LStringBuilder;)LStringBuilder;
13 4: astore_1
14 // . . .

15 }

Excerpts from the Java bytecode compiled from the source given in Listing 3.3 after KESO’s scope ex-
tension. The allocation has moved into run, where it is local and subject to optimizations such as stack
allocation.
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4 | Evaluation

In order to determine whether the optimizations implemented in this thesis actually

improve compiled programs, its results should be compared to systems generated

without the optimizations. A series of criteria can be evaluated to find differences

between different runs. Some of them can be determined without running the gen-

erated program, such as code size and the number of optimized allocations. Others

require measurements at runtime, such as heap memory usage or execution speed.

Any measured application should be as close as possible to real-world usage to

yield representative results. On the other hand, any benchmark should produce

output that can be easily processed, compared and graphed. Rather than using a

series of micro-benchmarks targeting a certain aspect of the system, previous work

on KESO used an open source real-time Java benchmark family for embedded sys-

tems [Erh11, ESLSP11, STWSP12]. This benchmark is called Collision Detector

(CDx), its Java variant CDj, and was published by Kalibera et al. in 2009 [KHP+09].

It consists of two main components: (a) an air traffic simulator that generates a

stream of radar frames and passes them to (b) the collision detector, which scans the

radar frames for potential aircraft collisions.

The KESO project uses two variants of this benchmark depending on the size re-

strictions of the target platform. The on-the-go variant generates the radar frames in

the collision detector task and avoids the overhead of passing the frames between the

two components. At the cost of less realism, this modification significantly shrinks

the size of the generated binary and reduces the memory requirements. Due to the

lower system requirements, this version of the benchmark fits and runs on an Infi-

neon TriCore TC1796 board used for testing.
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4 Evaluation

TriCore system Linux system
CPU Infineon TriCore TC1796 Intel Core i5 650, 3.20 GHz

150 MHz CPU, 75 MHz Bus
Memory 2 MiB internal Flash 7817 MiB DDR3 PC1333

1 MiB external SRAM
OS CiAO 4c19874 Ubuntu 13.10, Linux 3.11

Compiler TriCore GCC 4.5.2, Binutils 2.20 GCC 4.8.1, Binutils 2.23.52
KESO r4072

Table 4.1: Hard- and software configurations for the benchmarks

The second, larger version of the CDj benchmark used to test the KESO compiler

and its optimization result is called the simulated variant. This type runs the air

traffic simulator in a separate protection domain and passes the generated frames

to the collision detector using a queue. When frames are generated faster than they

can be processed (i.e., when deadlines are not met), frames are dropped. Due to

heap size requirements and code size, this variant of the benchmark does not fit on

the TriCore board. Since runtime measurements in a simulated OSEK or AUTOSAR

OS environment are heavily affected by jitter, time-sensitive measurements are only

conducted using the on-the-go variant.

The test setups consisting of relevant compiler and software versions and system

specifications are given in Table 4.1. Measurements of the on-the-go benchmark al-

ways use the TriCore system, others are built and run on Linux using an OSEK emula-

tion layer. These emulation layers are either JOSEK [SB10] or Trampoline [BBFT06].

All runtime measurements use KESO’s CoffeeBreak stop-the-world garbage collector

for heap memory management.

4.1 | Static Results

The number and percentage share of optimized allocations can be used as a compile

time criterion for the quality of KESO’s optimizations. The higher the number and

share of automatically managed objects, the lower the heap load, which possibly

reduces garbage collector usage. Figure 4.1 lists the number of stack allocations,

task-local heap allocations and the total number of allocations in the CDj on-the-
go benchmark. For the number of stack allocations without using scope extension,
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Figure 4.1: Number of stack and task-local allocations in the on-the-go CDj before this thesis and after this thesis
with and without scope extension.

the share of optimizations fell from 34.4 % before this thesis to 30.1 %. This drop

is caused by the removal of 43 allocations likely due to improved removal of un-

used fields, which has been added to KESO between these measurements. Using

task-local heaps instead of stack allocation increases the percentage of optimized

allocation sites to 39.0 %. The 13 additional optimizations are local objects with

overlapping liveness regions that are left unmodified in stack allocation to avoid un-

bounded growth of stack usage. Enabling scope extension in the same measurement

adds another 28 allocations created by copying allocation bytecode instructions into

multiple callers. This will likely also increase code size (see also Section 3.4). The 28

additional allocations are created instead of 12 allocation sites that are eligible for

scope extension. Each of the dozen allocations is thus propagated into 3.331 callers

on average. The number of stack allocations increases by 32 from 44 (30.1 %) to 76

(43.7 %). Note that these are statically determined numbers, i.e., the actual number

of objects allocated at runtime does not change despite the increase in allocation

instructions. The number of allocations not converted into stack allocations due to

overlapping liveness regions of the allocated objects stays the same. Consequently,

the number of allocations using task-local heaps stays at the same margin to stack-

allocated ones in comparison to the measurement without scope extension.

1 174− (146− 12)

12
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Figure 4.2: Number of stack and task-local allocations in the simulated CDj before this thesis and after this thesis
with and without scope extension.

Results for the simulated variant (given in Figure 4.2) show similar behavior al-

beit with lower percentages of optimized statements. These are caused by the much

lower share of local objects relative to the total amount of allocations. Between the

results from before this thesis and those without scope extension, the number of total

allocations was reduced again, likely due to removal of unused fields. The percent-

age of allocations that use stack memory stayed roughly equal (18.1 % vs. 18.0 %).

Scope extension increases the total number of allocation sites by 74 to 109.3 %.

This should also result in a significant increase of the code size. Another 28 allo-

cations are eligible for stack allocation after scope extension. Again, the number of

objects with overlapping liveness regions hardly changes between the measurement

with and without scope extension – in the simulated variant, it increases by 29 (one

allocation more than stack allocation) from 20.3 % to 21.9 % of all allocations.

As expected, stack allocation and task-local heap allocation increase the size of the

code. In the on-the-go variant shown in Figure 4.3a increases once escape analysis

is enabled. This increase is caused by inlining the code that initializes an object’s

header data. Previously, this initialization was only present in a single place (the

allocation function) in the binary. Because stack allocations have been added in

multiple places, this initialization code gets replicated and increases the binary size.

Additional runtime code further increases the code size. New runtime functions and

the explicit creation and destruction of regions at entry and exit points of methods

increase the text segment size when task-local heaps are used. As predicted in Sec-
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4.2 Runtime Results

tion 3.4 scope extension further increases the size of the code unless methods with

candidates for the optimization only have a single caller. Since the on-the-go variant

extends variable scope into 3.33 callers on average, growth of the text segment is

expected. Overall, the text segment’s size increases only moderately to a maximum

of 104.0 % compared to the smallest selection.

For the simulated CDj benchmark in Figure 4.3b, code size behaves similar when

enabling escape analysis, both with the stack and task-local heap allocation back-

ends. Again, task-local heaps need a little more space, but the growth is small in

comparison with the code size (≤ 1.2 % relative to the variant with stack allocation).

For the simulated benchmark, enabling scope extension significantly increases code

size by up to 20.3 KiB or 9.3 %. Most of the additional allocations are created by a

small number of methods (e.g., a generated parser) that, however, allocate a large

number of escaping objects. Limiting the number of optimizations per method as

suggested in Section 3.4 or other heuristic limits could stem this problem.

The data segment size does not change for stack allocation. When using task-local

heaps, each configured task-local heap adds two additional pointers to the data seg-

ment. For the on-the-go variant, the size of the data section grows by 24 bytes (the

size of two pointers on the 32-bit TriCore target architecture times three task-local

heaps). The larger simulated variant uses four tasks – its data segment size increases

by 32 bytes.

4.2 | Runtime Results

While static analysis shows a significant share of allocations is optimized, it is not

immediately obvious that the use of automatic memory management reduces the

benchmark’s runtime. While a reduction in execution time is not imperative be-

cause reducing heap memory usage (and with it garbage collector load) is a worth-

while end itself, a large runtime overhead of other automatic memory management

method might still make garbage collection the method of choice in all but corner

cases. Measurements at runtime will also help determine whether the optimized in-

structions are located in much frequented code paths or outside the standard control

flow (e.g., in error handling code). Hence, runtime data should reveal whether the

optimizations improve application behavior and are useful.
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Figure 4.3: Text segment sizes of the CDj benchmark before optimization (plain), after escape analysis with stack
allocation (EA+stack), after escape analysis with task-local heaps (EA+TLH), after scope extension
with stack allocation (SE+stack), and after scope extension using task-local heaps (SE+TLH).
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Figure 4.4: Heap memory usage of the on-the-go variant of the CDj benchmark with (a) escape analysis and stack
allocation before this thesis (EA+stack BT), (b) escape analysis and stack allocation (EA+stack), and
(c) escape analysis and task-local heaps (EA+TLH) relative to a run without escape analysis-based
optimizations (plain).

All measurements in this section were conducted on the TriCore system setup as

described in Table 4.1. The data always shows the average of five runs. The stan-

dard deviation of the measurement values was always lower than 0.06 % for time

measurements and equal to 0 for heap memory usage. For this reason, none of the

plots use error bars – they would simply not be visible.

Figure 4.4 graphs the relative heapmemory usage of the collision detector CDj after

escape analysis. The median heap usage for escape analysis with the stack allocation

optimization backend is only 50.7 % relative to a run without optimizations based on

escape analysis. When using task-local heaps instead of stack allocation, the median

heap usage drops to 50.1 % due to the added optimizations of allocations that create

objects with overlapping liveness regions. Other than expected, the impact of those

allocations is small, even though they can be executed multiple times because they

are in loops. Compared to the state of escape analysis before the improvements
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Figure 4.5: Heap memory usage of the on-the-go variant of the CDj benchmark with (a) scope extension and
stack allocation (SE+stack), and (b) scope extension with task-local heaps (SE+TLH) relative to a run
without escape analysis-based optimizations (plain). For comparison, heap memory usage for escape
analysis and stack allocation (EA+stack) as in Figure 4.4 is also shown.

implemented in this thesis (see Section 2.2) heap memory usage has been massively

improved from the previous median usage of 99.6 % of the baseline2.

When enabling scope extension, the fluctuations in heap memory usage present in

the optimized variants given in Figure 4.4 are smoothed: In Figure 4.5, the points

measured for scope extension have considerably less variation than those of a run

with escape analysis only. The median heap usage is reduced to 50.4 % and its stan-

dard deviation is reduced from 1.51 percentage points for escape analysis with stack

allocation to 0.94 percentage points. When using task-local heaps, the numbers are

again similar to stack allocation but a little lower: The median heap memory usage

is 49.8 %, the standard deviation decreases from 1.41 to 0.76 percentage points.

The lower variance is probably caused by invocations that only occur in some of the

collision detector iterations. The invoked methods allocate objects in heap memory.

2Measurements representing the state before this thesis were made using KESO r3092. The version
of CiAO used was the same across all measurements. Since the baseline was generated using KESO
r4072, the EA+stack BT values are not the percentage of improvements that would be measured if
the baseline was generated using r3092. Do not use the line to rate the previous implementation.
It can, however, serve as a reference to visualize the improvements in this thesis.
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These allocations seem to be candidates for scope extension and are hence no longer

allocated in the heap when the optimization is enabled.

For runtime measurements, the CDj benchmark internally reads values from a high

resolution timer before and after a collision detector run. The difference (i.e., the du-

ration) is stored in a global array and printed after the simulation completes. Again,

escape analysis shows significant improvements: Figure 4.6 contains the execution

times of three configurations relative to the baseline without optimizations based

on escape analysis. Before this thesis (measured using KESO r3092 and a current

version of CiAO), the median runtime was 90.5 % of the reference with a standard

deviation of 0.79 percentage points3. Due to the changes implemented, the same

configuration with escape analysis and stack allocation now performs significantly

better with a median of 81.1 %. As the graph shows, some of the iterations have

previously executed slower causing spikes in the graph. The impact of the spikes

increases, which explains the higher standard deviation of 2.17 percentage points.

As expected due to the additional instructions managing regions in task-local heaps

on method entry and exit, stack allocation is faster than the code generated by the

task-local heap allocation backend. The median runtime improvement for task-local

heaps is 13.7 % compared to 18.7 % for stack allocation.

While enabling scope extension further reduces the heap memory usage, the same

is not necessarily true for execution time, as Figure 4.7 shows. For the stack alloca-

tion backend, enabling scope extension slows down the median time needed by the

collision detector by 1.14 percentage points to 82.3 %. The task-local heap backend

on the other hand, speeds up with scope extension by 0.59 percentage points to a me-

dian value of 85.5 %. The increased time requirements with stack allocation might

be another effect caused by over-optimization of pathologic examples as discussed

in Section 3.4.

Overall, enabling escape analysis considerably improves the performance and re-

duces the heap memory requirements. In situations where a danger of stack over-

flows exists, task-local heaps provide a safe alternative is exchange for a small over-

head until KESO supports stack overflow checks or automatic worst-case stack us-

age and WCET analysis. While the changes implemented for this thesis achieve a

lower percentage of objects that are candidates for the optimizations, the runtime

3Note that the baseline was again generated with KESO r4072.
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Figure 4.6: Runtime of the on-the-go variant of the CDj benchmark using (a) escape analysis with stack allocation
before this thesis (EA+stack BT), (b) escape analysis with stack allocation (EA+stack), and (c) escape
analysis with task-local heaps (EA+TLH) relative to a run without escape analysis-based optimizations.
Times are measured in the application by reading from a high-resolution timer before and after each
collision detector run. The difference is computed and shown.
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Figure 4.7: Runtime of the on-the-go variant of the CDj benchmark using (a) escape analysis with stack allocation
(EA+stack), (b) escape analysis with task-local heaps (EA+TLH), (c) scope extension with stack allo-
cation (SE+stack), and (d) scope extension with task-local heaps (SE+TLH) relative to a run without
escape analysis-based optimizations (plain). Time measurements as in Figure 4.6.

results are considerably improved: Execution time is reduced by up to 9.5 percent-

age points, heap memory usage in collision detector runs is more than halved. It is

thus recommended to enable escape analysis and one of its optimization backends

for all applications.

A similar suggestion can, however, not be given for scope extension. While it does

reduce heap memory usage a little and reduces the variance between the collision

detector iterations this optimization comes at the price of slower execution speeds

in some configurations. Some of the examples tested expose at least some of the

erratic behavior predicted in Section 3.4, for example by significantly increasing the

code size. For some applications, the decreased variance that manifested in the on-
the-go variant of the benchmark when scope extension was activated might increase

the predictability of the application. In real-time systems, this might make the opti-

mization worthwhile. Whether scope extension improves an application’s behavior

should be determined on a case-by-case basis.
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5 | Related Work

Since the algorithms used in KESO’s alias and escape analysis are based on the work

of Choi et al. published in 2003 [CGS+03], behavior, results, and features of the

analysis are similar. However, different from their work, KESO’s compiler avoids

resizing a method’s stack frame at runtime and offers task-local heaps as an alter-

native optimization backend to stack allocation. For this thesis, a conceptional flaw

discussed in Section 2.2.2 present in Choi’s original work was fixed. Several other

performance improvements were implemented in Section 2.2.3. Further applications

for escape analysis’ results, such as removal of unneeded copies in RPCs across pro-

tection realm boundaries were added to KESO. Chapter 3 extended the algorithms

published in [CGS+03] with allocation of objects in callers’ stack frames.

Section 2.2.3.3 presents an alias analysis modification that considerably reduces

compile times for large specimen by merging sibling nodes. This compression tech-

nique is inspired by ideas from Steensgaard’s almost linear time points-to analy-

sis [Ste96]. Different from Steensgaards work, KESO’s analysis does not necessarily

compress all sibling nodes pointed to by a common ancestor, but only merges nodes

with the same escape state to avoid deteriorating the quality of escape analysis re-

sults. Object nodes that represent an allocation site are not compressed either to

preserve the one-to-one mapping between allocation instructions in the intermedi-

ate code and their corresponding object nodes in the connection graphs.

Using escape analysis for automatic memory management solves the same prob-

lem as region inference. First published by Tofte and Talpin in 1994 [TT94],

region inference has seen widespread adaption in later work by Henglein [HMN01],

Grossman [GMJ+02], Hallenberg [HET02], Chin [CCQR04], and Salagnac [SYG05,

SRY07] et al. While the initial publication only applied to a call-by-value λ-calculus,

59



5 Related Work

later publications have successfully used similar techniques for StandardML [HMN01,

HET02], safe dialects of C [GMJ+02] and Java [CCQR04, SYG05, SRY07].

Different from [GMJ+02, SRY07], KESO’s escape analysis is fully automatic and

does not require source code modifications or developer interaction. Salagnac’s

work attempts to overcome the problem of region size explosion (i.e., region in-

ference placing a lot of objects in the same region that will then not be reclaimed

for an extensive period of time) by developer interaction and review. While other

region based approaches are also frequently affected by this problem, KESO’s escape

analysis-based optimizations do not suffer from it because they do not try to avoid

garbage collection completely, but rather complement it. If the exact lifetime of an

object cannot be determined, the object is allocated in a garbage-collected heap in-

stead of risking region explosion. In fact, [SRY07] gives an example causing region

explosion in their approach which would not be converted into stack allocations by

KESO due to the overlapping liveness region analysis presented in Section 2.1.2.

Similar to [HET02], the system implemented in this thesis co-exists with garbage

collection. Hallenberg’s approach was implemented for Standard ML, whereas KESO

exclusively uses Java. Both publications by Salagnac et al. [SYG05, SRY07] do not

use garbage collectors, stating that garbage collection is generally unsuitable for

real-time Java systems, a view the KESO project does not share.

Chin’s [CCQR04] only supports a subset of Java called Core-Java for their analysis,

while KESO does not impose limitations of the source language features1. Experi-

mental results provided by Chin et al. are minimal: The largest example has only

170 lines of source code.

All of [CCQR04, SYG05, SRY07] are written with a context of Java usage in real-

time systems, which brings them closer to this thesis than other work on region

inference. In [SYG05] the goal is to avoid garbage collection entirely, even though

the only measurements at runtime still use a garbage collector together with region

inference. In this benchmark, the actual region-allocated memory is only about 5 %.

The approach also only analyzes a subset of the code used by an application, whereas

KESO’s compiler always analyzes the complete application and all library methods

used by it. Their algorithm is based on work by Gay and Steensgaard [GS00], while

1even though it does currently not support catching exceptions, but this is not a limitation caused by
escape analysis, and escape analysis does in fact handle exceptions correctly
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this thesis uses Choi et al. [CGS+03] as foundation. Salagnac’s [SRY07] combines

developer-supported and automatic methods and requires annotations to avoid re-

gion size explosion. Furthermore, it makes assumptions that have to be verified at

runtime [SRY07, Sec. 3.1]. It is also flow-insensitive (even though it operates on

code in SSA form, which makes this less of an issue) as opposed to KESO’s fully

flow-sensitive approach presented in Section 2.2.1.

Molnar et al. [MKB09] propose stack allocation in their CACAO Java virtual ma-

chine using escape analysis and use a Steensgaard-based method for escape analysis.

Different from KESO’s design, their virtual machine uses just-in-time compilation,

and escape analysis is done at runtime. Their virtual machine also supports loading

code at runtime, which KESO deliberately avoids to improve its optimization output.

Molnar et al. handle local objects allocated in loops similar to KESO’s overlapping

liveness region approach and do not resize stack frames at runtime. They do not

support stack allocation of arrays and do not have a generic method to encode the

escape information of objects passed to native methods. Finalizers are handled by

avoiding stack allocation – KESO currently ignores them, but this could easily be

changed. Overall, their approach seems to perform better for some small examples,

and on par for larger benchmarks, although a quantitative comparison has not been

performed.

61



62



6 | Conclusion

This thesis strove to improve alias and escape analysis in the KESO Java virtual ma-

chine for deeply embedded systems. The escape analysis implementation in KESO’s

compiler JINO – initially based on the work of Choi et al. in 2003 [CGS+03] – was

improved to be flow-sensitive and run faster. A conceptual flaw that produced incor-

rect analysis results was discovered together with a possible solution in Section 2.2.2.

Using the information computed by escape analysis, a number of optimizations such

as removal of unneeded copy operations for method calls into different protection

domains, synchronization optimizations and cycle-aware reference counting were

discussed or implemented.

The core part of this thesis concentrates on the application of escape analysis re-

sults for automatic memory management. Objects whose lifetime is bounded by the

runtime of the method they are allocated in are optimized using one of two mech-

anisms. Besides stack allocation, this thesis introduced small task-local heaps with

very simple automatic memory management as a special case of region-based mem-

ory management similar to the ScopedMemory class in the Real-Time Specification

for Java. Furthermore, allocation in a caller’s stack frame or task-local heap region

was explored in Chapter 3.

Measurements show that in a benchmark suite for real-time Java systems, up to

43.7 % of allocations are modified to automatically manage the allocated objects

without garbage collection. At runtime, heap memory usage is more than halved in

some configurations, a huge improvement from previous versions of this analysis.

Additionally, execution is sped up by up to 18.7 % compared to the same configura-

tion without optimizations based on escape analysis.

63



6 Conclusion

The automatic management of a considerable share of objects reduces garbage col-

lector load. Since the lifetimes of optimized allocations are organized in a stack man-

ner, external fragmentation can be (and is in KESO’s implementation) completely

avoided. In the context of recent work in KESO concerned with fragmentation-

tolerant garbage collection [Str14], reducing the amount of memory that is poten-

tially affected by fragmentation is a welcome side effect. Other work concerned with

transient errors and software-based mechanisms to detect and correct them – espe-

cially in the garbage collector [Taf14] – also benefit from the optimizations in this

thesis.

The alias analysis results in the form of connection graphs have also been used in

attempts to improve Java’s bad support for constant array data in KESO. Using the

alias graph, constant objects have been identified and placed in read-only memory

on target architectures that support it [Kuh14].

Future Work

Despite the good results outlined in Chapter 4, a number of further ideas could still

improve results or usability of the optimizations. The effectiveness of scope extension

is currently limited by virtual method calls, which are not modified. Heuristics that

use scope extension in its current form when improvements can be expected and the

additional overhead is low have the potential to further increase the share of objects

managed without garbage collection. Optimization backends that allow allocation in

the memory region corresponding to a calling method would lift the requirement of

adjusting all call sites and solve the current problem with virtual method invocations

outlined in Section 3.2.2.

As outlined in Section 3.4, scope extension will move allocations from mutually

exclusive control flow paths to locations that are not mutually exclusive. Since this

increases memory usage and potentially slows down applications, further analysis to

identify these situations and avoid them could be useful. Interference analysis, pos-

sibly based on Sreedhar’s SSA based coalescing using φ congruence classes [SJGS99]

could identify non-interfering objects – empirical data already revealed this possibil-

ity due to a bug in KESO’s SSA deconstruction triggered by non-interfering param-
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eters created by scope extension. A direct method to allocate objects in a caller’s

memory region would be an alternative approach to solving this problem.

Objects allocated at one of the optimized sites do not support Java’s finalize meth-

ods at the moment. Since finalizers could add new references to an object, sup-

porting them would require special analysis support. Additional data structures to

locate all objects on the stack or in task-local heaps would be required as well as new

runtime support code that processes objects and calls the finalize methods.

Furthermore, alias analysis could use data flow information associated with refer-

ences to increase the precision of the results without affecting legality. For example,

references that are known to be null at a given point in alias analysis cannot be

dereferenced. Any fields read from objects apparently pointed to be these references

could be ignored – if the reference were actually dereferenced, the program would

abort with an exception.

Finally, the minimum size requirements for stack allocation or task-local heaps

could be automatically computed in most cases (e.g., in the absence of unbounded

recursion or loops). Stack overflows could thus be avoided at compile time and

programmers would not have to manually determine and configure task-local heap

sizes. This idea could be implemented in parallel with a WCET analysis, because the

principles used for both analyses would likely be similar in nature.
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7 Appendix

7.2 | Source Code Access

KESO is distributed under the terms of the GNU Lesser General Public License, ver-
sion 3. The source code is published in irregular snapshots available for download

from https://www4.cs.fau.de/Research/KESO/#download. The implemen-

tation described in this thesis is not available in any snapshots created earlier than

2014-06-23.

The website also has a documentation section at https://www4.cs.fau.de/
Research/KESO/doc/ that can be very helpful in starting to work with KESO. The

“First steps” and “Toolchain” articles are a must-read to work with the analyses and

optimizations outlined in this thesis.

Table 7.1 lists the flags for KESO’s JINO compiler related to this thesis that can

be set in the $JINOFLAGS environment variable. Some of the source files that have

been written or modified for this thesis are given in Table 7.2.
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7.2 Source Code Access

Flag Name Meaning

escape_analysis Enables escape analysis and, unless tasklocal_heaps
is set, stack allocation.

production Enable production mode, omits debug strings, reduces
binary size. Used for measurements.

scope_extension Enable scope extension. See Chapter 3.
stack_alloc_stats Print statistics about the number of stack allocations and

objects’ escape states.
superfluous_portal_copy_re-
moval

Enable removal of unneeded copy operations in portal
calls, see Section 2.3.1.

tasklocal_alloc_stats Print statistics about the number of task-local heap allo-
cations and object’s escape states.

tasklocal_heaps Use task-local heaps instead of stack allocation. Requires
tasks to have the size of the task local heaps configured
using the LocalHeapSize property in the KESO config-
uration file.

tasklocal_heaps_avoid_overlap Avoid allocating objects with overlapping liveness re-
gions from task-local heap memory like it is the default
for stack allocation.

Table 7.1: JINO configuration flags used by escape analysis and extended escape analysis and their meaning.

File Contents

analysis/EscapeAnalysis.java Alias and escape analysis.
analysis/SuperfluousPortalCopyOptimizaton.java Removal of unneeded copy operations in

portal calls, see Section 2.3.1.
transform/ScopeExtension.java Scope extension, see Chapter 3.
transform/StackAllocation.java Stack allocation and liveness overlap

analysis, see Section 2.1.2.
transform/TaskLocalHeapAllocation.java Task-local heap allocation, see Sec-

tion 3.3.2.

Table 7.2: Paths in the KESO source code that were written or modified for this thesis. All paths are relative to
keso/src/builder/keso/compiler in the KESO source tree.
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