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ABSTRACT
Nearly ten years after its first presentation and five years after its
first application to operating systems, the suitability of Aspect-
Oriented Programming (AOP) for the development of operating
system kernels is still highly in dispute. While the AOP advo-
cacy emphasizes the benefits of AOP towards better configurability
and maintainability of system software, most kernel developers ex-
press a sound skepticism regarding the thereby induced runtime and
memory costs: Operating system kernels have to be lean and effi-
cient.
We have analyzed the runtime and memory costs of aspects in gen-
eral, on the level of µ-benchmarks, and by refactoring and extend-
ing the eCos operating system kernel using AspectC++, an AOP
extension to the C++ language. Our results show that most AOP
features do not induce a intrinsic overhead and that the actual over-
head induced by AspectC++ is very low. We have also analyzed a
test case with significant aspect-related costs. This example shows
how the structure of the underlying kernel can have a negative im-
pact on aspect implementations and how these costs can be avoided
by an aspect-aware design.
Based on this analysis, our conclusion is that AOP is suitable for the
development of operating system kernels and other kinds of highly
efficient infrastructure software.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Real-
time systems and embedded systems; D.3.3 [Programming Lan-
guages]: Language Constructs and Features
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1. INTRODUCTION
Nearly ten years after its first presentation[22] and five years af-
ter its first application to operating systems[4, 7], it is still a con-
troversial question whether Aspect-Oriented Programming (AOP)
provides a real benefit for the development of operating system ker-
nels. Many OS developers have a sound skepticism regarding the
suitability of high-level paradigms, such as AOP, for the system-
level development problems they have to solve in their daily work.
By the notion of aspects, AOP provides means to encapsulate and
separate the implementation of concerns that otherwise would have
to be scattered over implementation artifacts of other concerns.
Typical examples for such “cross-cutting” concerns in operating
systems are multi-user support or proper synchronization. Separa-
tion of concerns is clearly an important issue in the domain of oper-
ating systems. This was shown by retroactive studies in the context
of the FreeBSD kernel [6]. It is also evident from the “#ifdef-hell”
that can be found in the code of many current operating systems.
Especially systems that strive for a high level of tailorability and
configurability suffer from the negative impacts of scattered con-
cern implementations on readability, maintainability and reuse. A
good example for this class of systems is the embedded config-
urable operating system eCos, which is the subject of a case study
that will be described later in this paper.
Nevertheless, there are serious doubts whether AOP provides an ef-
ficient solution for these problems. The most mentioned concerns
regarding a more extensive use of aspects in operating systems are
comprehensibility, resource efficiency, and real applications:

Comprehensibility
Separating concern implementations into aspects involves the risk
of a loss of comprehensibility. The reason is that aspects “affect”
the static structure or the dynamic behavior of other modules with-
out being “visible” in the source code of these modules. While
such higher level of abstraction may be considered as an advantage
in other domains, system developers usually prefer a more explicit
representation of the program’s implementation in the code.
Actually, AOP fits surprisingly well into this philosophy, as on the
technical level it is still a very code-driven approach. AOP pro-
vides novel declarative means to specify where something should
apply and thus facilitates to separate the what of a concern’s im-
plementation from the where of it’s application. The actual imple-
mentation (the what), however, is still specified in the same lan-
guage as other component code, e.g. Java, C, or C++. Hence, it
is possible to present developers a precise view of the merged as-
pect and component code on source level and thereby reach the
required level of comprehensibility. This is basically a question
of tools, namely of AOP-aware editors and debuggers that visual-
ize in the source how aspects affect the currently viewed or edited
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component. For AspectJ[21] such tool support already exists and
has reached an industry-strength level of maturity[20]. For other
languages, such as AspectC++[28], it is actively being developed
(http://acdt.aspectc.org). Overall, the comprehensibility issue is
solvable and not a fundamental problem of AOP.

Resource Efficiency
Efficiency in terms of runtime and memory overhead is probably
the most important requirement for any paradigm to be adopted for
the development of OS kernels. In a domain where C and C++ for
good reasons are still the dominating languages, efficiency is not
a feature among others, it is a prerequisite. OOP, for instance, is
still rarely used as some of its fundamental concepts, such as late
binding, induce a significant (and in many cases inevitable) over-
head[11].
So far, only few studies analyze the costs of aspects. The exist-
ing studies[12, 3] were mainly conducted in the Java domain using
AspectJ and are somewhat disappointing, as they show that AOP
with AspectJ indeed induces some overhead[12]. It is, however,
questionable if these results are suitable for any generalization re-
garding the intrinsic overhead of aspects. In this paper we show
that most AOP concepts do not induce an inevitable overhead.

Applications
One often hears the question if there is “any real application be-
sides tracing” for using general-purpose aspect languages in kernel
development. Coady et al. retroactively evaluated the evolution
of four scattered OS concerns (prefetching, disk quotas, block-
ing, and page daemon activation) in the FreeBSD kernel using
the general-purpose AspectC language[7, 6]. It was shown that
an aspect-oriented implementation would have led to significantly
better evolvability. Due to missing tool support (namely an “aspect
weaver”), her study did cover only a relatively small part of the ker-
nel code base and no heavily cross-cutting concerns such as tracing
or kernel diagnostics. Our group conducted some experiments with
AspectC++ in the PURE embedded operating system family[5] by
implementing OS concerns like interrupt synchronization[25] and
the driver execution model[27] with aspects. Not a general-purpose
AOP language, but an AOP-inspired language of temporal logic
was used by Åberg et al. to integrate the Bossa scheduler frame-
work into the Linux kernel[2]. C4 uses AOP concepts to implement
a “semantic patch system” for the application of kernel patches[16].
Several other publication show that AOP provides benefits for the
development of configurable infrastructure software in the broad
sense, namely middleware [8, 31, 19] and databases[29] product
lines.
All these studies demonstrate that there are real cases for aspects
in system software. From the separation of concerns viewpoint,
which is the focus of the existing studies, the use of AOP is highly
beneficial. A broader application to the resource-thrifty domain of
OS kernels, however, requires an in-depth analysis of the costs of
aspects, which is still missing.

1.1 About this Paper
The main contribution of this paper is an in-depth cost analysis.
By refactoring and extending a widely-used OS kernel with aspects
written in AspectC++, we have developed a case study that can
be considered big enough for general conclusions. It thus helps
to demystify this novel programming paradigm and to bridge the
gap between the AOP community, which normally has a stronger
focus on “soft properties” such as reusability and configurability,
and the operating systems community, which is still skeptical and
more concerned about “hard properties” such as code size or clock

Figure 1: Syntactical Elements of an Aspect in AspectC++

cycles.
The outline of the paper is as follows: In section 2 we give a
brief introduction into the AOP terminology and the most impor-
tant language features of AspectC++. Section 3 then discusses the
costs of these features in terms of performance, code size, and dy-
namic memory consumption. We also discuss whether the costs
are only related to the AspectC++ weaver implementation or in-
evitable costs that would even be unavoidable with an ideal weaver
implementation. Section 4 presents our case study in the context of
the eCos operating system kernel, including a detailed cost analysis
in section 4.4. A general discussion of the results is presented in
section 5. The paper ends with a discussion of related work and a
summary in sections 6 and 7.

2. AOP AT A GLANCE
AOP is a programming paradigm that attempts to aid programmers
in the separation of concerns. With classical modularization tech-
niques programmers often have problems to achieve separation of
concerns if two concerns are “cross-cutting”. This typically leads
to the code tangling and code scattering phenomena. Code tangling
means that on the implementation level the code of two (or more)
concerns is intermixed rather than separated. Scattering means that
the code of one concern is not localized, but can be found in various
different modules. As an example consider a simple synchroniza-
tion policy: “Whenever a thread accesses a shared data structure, a
semaphore shall be used to guarantee mutual exclusion”. This is a
concern that cross-cuts many other concerns. Its code is typically
scattered over many implementation artifacts.
Although there is still a long road ahead, AOP research aims at
supporting modular high-level concern implementations. For ex-
ample, the code that implements the synchronization policy should
be a separate module that represents the human-readable policy de-
scription almost directly in a programming language. Hence, the
synchronization policy could be evolved independently from the
other modules, which also could be reused in other contexts with-
out or with different synchronization schemes.
Today, most AOP languages use the concepts and terminology that
was first introduced by AspectJ[21]. In the remaining parts of this
section, we will give a brief overview of the most common AOP
language elements in general and the AspectC++ notion in particu-
lar, as required for understanding the remaining parts of this paper.
Even though the introduction is based on AspectC++, it basically
holds for any statically woven AOP language.

2.1 Terminology
The most relevant AOP concepts are join-point and advice. An ad-
vice definition describes a transformation to be performed at spe-
cific positions either in the static program structure (static cross-
cutting) or in the runtime control flow (dynamic cross-cutting) of a
target program. A join-point denotes such a specific position in the
target program. Advice is given by aspects to sets of join-points
called pointcuts. Pointcuts are defined declaratively in a join-point
description language. The sentences of the join-point description
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language are called pointcut expressions. An aspect encapsulates a
cross-cutting concern and is otherwise very similar to a class. Be-
sides advice definitions, it may contain class-like elements such as
methods or state variables.
As an example, figure 1 illustrates the syntax of aspects written in
AspectC++. The aspect increments the member variable elements
after each call of the function Queue::enqueue(). In AspectC++,
pointcut expressions are built from match expressions and point-
cut functions. Match expressions are already primitive pointcut ex-
pressions and yield a set of name join-points. Name join-points
represent elements of the static program structure such as classes
or functions. Technically, match expressions are given as quoted
strings that are evaluated against the identifiers of a C++ program.
The expression “% Queue::enqueue(...)”, for instance, returns
a name pointcut containing every (member-) function of the class
Queue that is called enqueue. In the case of overloaded func-
tions with different argument types the expression would match all
of them. Code join-points on the other hand, represent events in
the dynamic control flow of a program, such as the execution of a
function. Code pointcuts are retrieved by feeding name pointcuts
into certain pointcut functions such as call() or execution().
The pointcut expression call(“% Queue::enqueue(...)”), for
instance, yields all events in the dynamic control flow where a func-
tion Queue::enqueue is about to be called.
As pointcuts are described declaratively, the target code itself has
not to be prepared or instrumented to be affected by aspects. Fur-
thermore, the same aspect can affect various and even unforeseen
parts of the target code. These principles of obliviousness and
quantification [14] are considered a major advantage of AOP.

2.2 Static Cross-cutting
An aspect that encapsulates static cross-cutting alters the static
structure of the program. In most AOP languages, such modifica-
tions of the static structure are restricted to the extension of classes
by new elements like methods, state variables or base classes.
In AspectC++, the encapsulation of static cross-cutting is supported
by a specific type of advice called introduction. Consider the fol-
lowing aspect, which adds support for thread local storage to a
thread control block class:

aspect ThreadLocalStorage {
advice "os::ToC" : int tlsentry;

public:
advice "os::ToC" : int getTLS() {
return tlsentry;

};
advice "os::ToC" : void setTLS(int v) {

tlsentry = v;
};
...

};

The above aspect introduces a (private) state variable and some
(public) accessor methods into the thread control block class, or,
more precisely, into all classes that are matched by the expression
“os::ToC”.

2.3 Dynamic Cross-cutting
An aspect that encapsulates dynamic cross-cutting intercepts cer-
tain events in the control flow of a running program. Aspects ba-
sically provide means to execute some advice code before, after,
or instead of (around) the current statement if the event occurs. In
the following, this is demonstrated by three different variants of an
aspect which intercepts entries into and exits from the kernel to im-
plement some kernel locking strategy. The advice body is identical
for all three variants of the KernelLock_x aspect: it acquires the
lock (which is a member of the aspect), proceeds to the intercepted

function (tjp->proceed()) and finally releases the kernel lock.
aspect KernelLock_1 {

pointcut kernel() = "% kernel ::%(...)";
os::Lock lock; // aspect member variable

advice execution(kernel()) : around() {
lock.enter();
tjp->proceed(); // execute the intercepted method
lock.leave();

}};

In variant 1, the advice is triggered, whenever any function or
method from the class or namespace kernel is about to be exe-
cuted. This, however, works only if kernel functions do not invoke
each other, as calls to lock.enter()/lock.leave() must not be
nested. Variant 2 provides a less restrictive solution by intercepting
the kernel invocation on the caller side:

aspect KernelLock_2 {
...
advice call(kernel())
&& !within(kernel()) : around() {

...
}};

The call() pointcut function yields all events in the control flow,
where a given function is about to be called. The within() point-
cut function simply returns all join-points in the given classes, func-
tions or namespaces. By intersecting (&&) all calls to kernel()
with the negation (!) of all join-points inside kernel(), the point-
cut expression finally evaluates to those calls to a kernel() func-
tion that are not made from a kernel() function itself. This, how-
ever, has another potential drawback: as the interception now takes
place on the caller side, not only the OS code, but also the appli-
cation code has to be woven with the aspect. In many cases, this
is not feasible. In variant 3 kernel invocation is therefore again in-
tercepted on the callee side, but further filtered to certain control
flows:

aspect KernelLock_3 {
...
advice execution(kernel())
&& !cflow(within(kernel())) : around() {

...
}};

The cflow() pointcut function yields all code join-points that oc-
cur while being in a given control flow. The execution() pointcut
function yields all code join-points, where a given function is about
to be executed. The above pointcut expression therefore evaluates
to any non-nested execution of a kernel() function. Compared
to variant 2, this solution does not require to weave the application
code and furthermore reliably detects indirectly nested kernel calls.

2.4 Join-Point Context
In many cases, advice for dynamic cross-cutting needs to read
and/or modify the join-point-specific invocation context such as the
actual argument values passed to the intercepted function. To ful-
fill the goal of quantification, join-point specific context informa-
tion has to be provided through a generic interface, as the same
advice implementation should be applicable to many different join-
points, such as functions with different signatures. Most AOP lan-
guages provide a join-point API for this purpose. In AspectC++,
the join-point API is implicitly available in advice bodies through
the JoinPoint *tjp type and instance pointer:

aspect Tracing {
...
advice execution("% ...::%(...)"
&& !"void ...::%(...)") : after() {
JoinPoint::Result res = *tjp->result();
cout << "leaving " << tjp->signature()

<< " returning" << res;
}};
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The after-advice implementation of the above Tracing aspect is
generic. It can be applied to any function with a non-void return
type, as the join-point API provides the required abstractions from
the actual return type.

2.5 Weaving
Aspect weaving is the term used to describe the process of trans-
forming the structure or behavior of a program in order to let as-
pects “affect” other modules. The AspectC++ compiler weaves
by transforming AspectC++ code into ordinary C++ code. It is a
preprocessor that mainly generates transparent wrapper functions.
This kind of weaving is called “static weaving” as it is performed at
compile-time. “Dynamic weaving” is a different weaving approach
that supports to weave aspect code into a running program. In this
paper we focus on the costs of static weaving only. Note that a
static aspect weaver can support aspects that affect static as well as
dynamic join points.

3. THE COSTS OF ASPECTS
In the previous section, we introduced the most typical AOP lan-
guage concepts to achieve a better separation of statically and dy-
namically cross-cutting concerns. This gives rise to the question,
what are the actual runtime costs in terms of CPU and memory
overhead if using these concepts. Which AOP language elements
do lead to significant costs and which do not? Are there funda-
mental reasons for these costs or are they basically a result of non-
optimal weaving? Fundamental reasons would limit the applicabil-
ity of AOP to efficient system software in general, while otherwise
it would be a question of better aspect weavers.
In the following, we first take the perspective of an ideal aspect
weaver to figure out for which AOP features in the general case an
overhead is inevitable, probable, or not necessary at all. The dis-
cussion is based on the assumption of using static weaving with a
statically typed and compiled language, such as C or C++.
After the discussion from the ideal weaver perspective, we present
some results from an cost analysis of a real weaver, namely the
static AspectC++ weaver ac++.

3.1 The Ideal Weaver Perspective
Considering an ideal static weaver for a statically typed and com-
piled language, most AOP concepts do not lead to an inevitable
runtime overhead in the target program, as they are completely re-
solvable at weave-time:

Static Cross-cutting
Introductions, the AOP concept to encapsulate static cross-cutting,
generally do not lead to any overhead. In a statically typed and
compiled language, the thereby specified transformations of the
static program structure have to be performed at build-time anyway.
Usually, it does not matter if transformations of the static structure,
such as adding a field to some class, are performed manually by a
programmer or automatically by an aspect weaver.
There might be one exception from this rule, though. For some
very low-level data structure inside an OS, the actual order of mem-
bers inside the class might be important, e.g. to exploit hardware-
dependent caching effects. This is, if using aspects, typically not
under the control of the programmer. It remains, however, ques-
tionable if such a situation is anyway a case for separation of con-
cerns by aspects.

Dynamic Cross-cutting
For code advice, the AOP concept to encapsulate dynamic cross-
cutting, it depends on the actual pointcuts the advice is given for.

Conceptually, code pointcuts are always evaluated at runtime, as
they describe events in the running control flow. However, many
code pointcuts can actually be evaluated at weave-time, as the event
occurrences are unambiguously connected to specific positions in
the code. This is obviously the case for execution() pointcuts,
where interception always takes place before the first and/or after
the last statement of a function. Many aspect languages also eval-
uate call() pointcuts at weave-time.1 For such statically evalu-
able pointcuts, an ideal aspect weaver is able to completely inline
the advice functionality into the target program. Hence, advice for
statically evaluable pointcuts (as in variant 1 and variant 2 of the
KernelLock_x aspect) is implementable without any AOP-related
runtime overhead.
The cflow() pointcut function on the opposite is not always stat-
ically evaluable. On the implementation side, it requires in most
cases to maintain some cflow-counter in the running program that
has to be incremented, decremented, and tested at certain positions.
Hence, advice for such dynamic pointcuts (as in variant 3 of the
KernelLock_x aspect) induces, by principle, some runtime over-
head.2

Join-Point Context
Access to join-point-specific context in code advice might lead to
some additional overhead. This is obvious, if the advice imple-
mentation uses context information that is specifically generated by
the aspect weaver, such as the string representation of the affected
function’s name and signature. It is less obvious if the advice code
accesses information that should be available in the current context
anyway, such as the arguments passed to the affected function. As
already pointed out, this information has to be provided through a
generic interface—an additional level of abstraction that might in-
duce some overhead. An ideal aspect weaver, however, should be
able to optimize this in the woven code by substituting calls to the
generic interface with direct context access. Furthermore, by ana-
lyzing the advice code, the aspect weaver can tailor the amount of
provided context information to what is actually requested.

3.2 AspectC++
AspectC++ is an AOP-extension for the C++ language, specifically
aimed for the application of AOP in resource-constrained environ-
ments such as embedded systems. A major goal of AspectC++
is cost efficiency in the generated code without compromising on
the expressiveness of AOP concepts. On the language level, this is
achieved by integrating AOP with the C++ philosophy of static typ-
ing and compile-time genericity[28]. On the tool level, AspectC++
follows a source-to-source weaving approach with generation of
code patterns that (1) do not use “expensive” C++ language ele-
ments (such as RTTI or exceptions), and (2) can well be optimized
by current C++ compilers. Another benefit of the source-to-source
weaving approach is platform-independence.

Code Transformation
The static AspectC++ weaver ac++ is a source-to-source weaver
that transforms AspectC++ code (C/C++ code with AspectC++ lan-
guage elements) into C++ code. Advice is transformed into mem-
ber functions of the corresponding aspect, which in turn are trans-
formed into C++ classes (Figure 2). The generated C++ code can

1This has the implication that indirect calls through function point-
ers are not matched by call() advice.
2Strictly speaking, this overhead can be considered as “AOP-
related” but not “AOP-faulted”. A “hand-written” (tangled) imple-
mentation of the same functionality would induce similar overhead.
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advice pointcut
abs abs abs tjp-> abs abs abs function

tangled 4 0 4128 abs abs abs plain, n=0 5 16 3968
before 6 2 0 0 4128 0 1 6 0 4080 that() 7 2 20 4 3968 0 cflow() 4
after 6 2 0 0 4128 0 2 5 -1 0 0 4080 0 target() 8 3 20 4 3968 0   enter/leave 6 16 8
around 6 2 0 0 4128 0 3 6 1 0 0 4096 16 result() 11 6 16 0 3968 0   test 12 52 56
before 6 2 0 0 4128 0 1 6 0 4096 plain, n=1 13 24 3968
after 6 2 0 0 4128 0 2 5 -1 0 0 4096 0 arg<0>() 13 0 24 0 3968 0 that() 10 24 128 50
around 6 2 0 0 4128 0 3 6 1 0 0 4096 0 plain, n=2 13 32 3984 target() 10 24 144 50

arg<1>() 13 0 32 0 3984 0

a) incrementer b) multiaspect c) parameters, jp-api d) dynamic pointcuts
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Overhead of AspectC++ features in terms of CPU time (cycles), dynamic memory consumption (stack, bytes), and static memory consump-
tion (code/data, bytes of whole test application) . a) costs of incrementing a global counter either in the body of a function void f()
(tangled) or by giving advice (before/after/around for call/execution join-points) to the same function. ∆ denotes the difference to tangled.
b) scaling of costs if 1–3 aspects give around advice to the same call/execution join-point. ∆ denotes the difference to the previous line. c)
costs of a member function call to int B::bar( n ) (n = 0–2 int parameters) for which some advice is given that either does not use the
join-point API (plain) or calls a join-point API function (that(), ...). ∆ denotes the difference to the corresponding plain line. d) costs of
the dynamic pointcut functions cflow(), that() and target(). ∆ denotes the difference to a plain execution() pointcut.
[Linux, Pentium 3, ac++ 1.0pre1, g++ 3.3.5 (-O3 -mpreferred-stack-boundary=2 -fno-align-functions -fno-align-jumps -fno-align-loops -fno-align-labels

-fno-reorder-blocks -fno-prefetch-loop-arrays), cycles averaged from 100 series of 1000 iterations (σ < 0.1% for all cases)]

Table 1: AspectC++ µ-benchmark results

be compiled using any standard-compliant C++ compiler as back-
end.
On the first sight, the output of ac++ seems to be huge and some-
what over-complicated (Figure 2-c). The generated code is, how-
ever, not intended to be read by a human developer, but tweaked
for flexibility and for an optimizing C++ back-end compiler. An
advice method, for example, is not called directly, but routed over
an forward-declared extra invoke_xxx() function (line 58). Only
because of this detour it is possible to place the aspect definition
behind all class definitions in the translation unit. Thereby, the as-
pect itself can utilize the affected classes, e.g. use them as types for
state variables or method parameters.

Efficiency of the Generated Code
To evaluate the overhead induced by the ac++ generated code for
various AspectC++ language features, we conducted a series of µ-
benchmarks. The condensed results are depicted in Table 1:
The ground overhead of applying advice to a parameterless func-
tion is very low (Table 1-a). On a Pentium 3, advice invocation
takes only 2 cycles, independent from the type of advice (be-
fore/after/around), the join-point type (call/execution), and even
the number of aspects giving advice to the join-point (Table 1-b).
This is noteworthy, as in AspectJ, for instance, around advice in-
duces significantly higher costs than before/after advice[12]. The
size of the text segment (code) remains also stable, the increase by
16 bytes in one case was mainly caused by linker alignment of the
affected section.
While advice for parameterless functions does not lead to addi-
tional stack costs, the stack space allocated by the compiler to pass
call-by-value parameters is actually doubled. This becomes evi-
dent from the plain lines in Table 1-c, which represent the costs
of a member function call with 0–2 int parameters for that some
advice was given. (1-c numbers are not directly comparable with
those from 1-a and 1-b, as they include the costs of the method call
itself.) Each additional 4-byte int parameter increases the absolute
stack costs by 8 bytes. The reason turned out to be a limitation of
the g++ inliner/optimizer: Whenever a function is inlined, the com-
piler ensures call-by-value semantics by pushing an extra copy of
all function parameters on the stack. In most cases, the parameter
passing code is later replaced by the optimizer with direct register
access, but the (now completely useless) stack reservation remains
in the code. As ac++ surrounds the original call with an additional

wrapper (Figure 2, lines 32–42) this effect takes place here.
The overhead to retrieve join-point specific context is quite low.
Compared to plain advice, only 0-6 extra cycles are consumed
to provide access to context. Accessing context which is implic-
itly available at the join-point (such as argument and result val-
ues) does furthermore not induce any additional stack costs. The
join-point context data generated by the waver for this purpose,
such as the array of argument references (Figure 2, line 36), is
later replaced by the optimizer with direct access to the referenced
parameters. Only “extra” context, such as the pointer to the af-
fected instance (tjp->that()) or the pointer to the target of the
call (tjp->target()), requires additional stack space (4 bytes).
The results show furthermore the benefits of the context tailoring
performed by ac++. The additional 4 stack bytes to store the pointer
returned by tjp->that(), for instance, are only consumed if the
advice code actually uses tjp->that().
Compared to these numbers, the overhead of dynamic pointcut
functions is relatively high (Table 1-d). As pointed out in Section
3.1, dynamic pointcuts induce by principle an overhead, because
they can not be resolved completely at weave-time.
For the cflow() pointcut function, a runtime counter has to be
maintained, which takes 4 additional bytes of data. For every pass
through the observed control flow (enter/leave), this counter has to
be incremented/decremented, which takes 6 CPU cycles altogether.
The pointcut evaluation itself, which basically is a null-test against
the counter, (test) takes 12 CPU cycles at runtime. For both cases,
the stack overhead is with 16 respectively 56 bytes higher than nec-
essary. This seems to be again a problem with the g++ inliner/opti-
mizer, as useless stack reservations can be found in the object code.
The that() and target() pointcut functions (not to be mixed up
with the equally named join-point API methods) yield all join-
points in the dynamic control flow, where the runtime type of
an object instance affected by advice (that()) / receiving a call
(target()) matches a given type. They require a dynamic type test
for evaluation, for which ac++ inserts a virtual function into all rele-
vant classes. The additional 10 cycles of CPU and 24 bytes of stack
are basically the costs of calling this virtual function. The more
than 120 extra bytes of code and 50 additional bytes of data can
be considered as a “worst-case-scenario”, as that() and target()
were applied to classes that did neither contain a virtual function
table nor a constructor. If applied to a class hierarchy that already
uses virtual functions, the costs would be lower, as the compiler has
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a) translation unit Test.cpp
volatile int global;
struct B {
int bar(int a, int b) {...}

};
struct A {
int foo(B &b) {
return b.bar(47, 11);

} };

b) aspect header jpapi.ah
extern volatile int global;

aspect jpapi {
advice call("int B::bar(int, int)") : before () {

global = *tjp->arg <1>();
} };

c) woven translation unit Test.acc
1 class jpapi;
2 template <class JoinPoint >
3 inline void invoke_jpapi_a0_before (JoinPoint *tjp);
4

5 volatile int global;
6 struct B {
7 int bar(int a, int b) {...};
8 };
9

10 struct A {
11 int foo (B &b) {
12 return __call_foo_0_0 (this, &b, 47, 11);
13 }
14

15 struct TJP_foo_0_0 {
16 typedef int Result;
17 typedef ::A That;
18 typedef ::B Target;
19 ...
20 template <int I, int DUMMY = 0> struct Arg {...};

21 template <int DUMMY > struct Arg <0, DUMMY > {
22 typedef int Type;
23 typedef int ReferredType;
24 };
25 template <int DUMMY > struct Arg <1, DUMMY > {...}
26

27 void **_args;
28 template <int I> typename Arg<I>::ReferredType *arg () {
29 return (typename Arg <I>::ReferredType*) _args[I];
30 } };
31

32 static inline int __call_foo_0_0 (
33 ::A *srcthis , ::B *dstthis , int arg0 , int arg1)
34 {
35 AC::ResultBuffer < int > result;
36 void *args_foo_0[] = { (void*)&arg0 , (void*)&arg1 };
37 TJP_foo_0_0 tjp;
38 tjp._args = args_foo_0;
39 invoke_jpapi_a0_before <TJP_foo_0_0 > (&tjp);
40 ::new (&result) int (dstthis ->bar(arg0 , arg1));
41 return (int &)result;
42 }
43 }; // struct A
44

45 class jpapi {
46 public:
47 static jpapi *aspectof () {
48 static jpapi __instance;
49 return &__instance;
50 }
51 template<class JoinPoint >
52 void __a0_before (JoinPoint *tjp) {
53 global = (int) tjp->template arg <1>();
54 } };
55

56 template <class JoinPoint >
57 inline void invoke_jpapi_a0_before (JoinPoint *tjp) {
58 ::jpapi::aspectof()->__a0_before (tjp);
59 }

Example for ac++ code generation. a) Translation unit Test.cpp with classes A and B, A::foo() calls B::bar(). b) Aspect header jpapi.ah.
The aspect jpapi gives before advice for all calls to B::bar() and uses the join-point API to retrieve the value of the second parameter
passed to B::bar(). c) Woven translation unit Test.acc. The aspect jpapi has been transformed into a C++ class jpapi (lines 45–54), the
advice into a member function jpapi::_a0_before() (line 52). The original call to B::bar() has been replaced by a call to the generated
wrapper function A::_call_foo_0_0 (line 12). Furthermore, a corresponding join-point class TJP_foo_0_0 has been generated which
encapsulates the join-point-specific static and dynamic context. In the wrapper function (lines 32–42), an instance tjp of TJP_foo_0_0 is
created, initialized (lines 36–37), and passed as template argument to the before-advice invocation function invoke_jpapi_a0_before()
(line 39), which retrieves the aspect instance and calls the generated advice method (line 58). Finally, the call to the original B::bar() is
performed (line 40).

Figure 2: Code Transformations by ac++

not to generate support for a completely new virtual function table,
but only extend an existing table.

3.3 Summary
Overall, AOP does not lead to an extra overhead that makes it per
se unacceptable for system software development. Considering an
ideal static aspect weaver for a statically typed language, only dy-
namic pointcut functions and the access of additional context infor-
mation induce inevitable costs. Any other runtime costs in the code
generated by a real weaver has therefore be considered as evitable,
that is, caused by the actual weaver, but not by AOP in general. For
the development of system software with AOP, one would inten-
tionally avoid using “expensive” features, such as dynamic pointcut
functions.
In combination with an optimizing C++ compiler, the static As-
pectC++ weaver ac++ generates efficient code. In µ-benchmarks,
the overhead of simple before/after/around-advice for call() and
execution() join-points is practically null, the overhead for ac-
cessing advice context is very low, even though in some cases the
stack overhead turned out to be higher than necessary. As expected,

the overhead induced by the not statically evaluable pointcut func-
tions cflow(), that() and target() is significantly higher, espe-
cially regarding code and data size.
To get such results the compiler needs to provide some basic op-
timization capabilites. The most important are (1) embedding of
functions explicitly marked as inline and (2) performing a local
alias analysis to detect and remove unnecessary parameter copies.
Without any optimization (especially function embedding), the re-
sulting code would be much worse. This is, however, a quite unre-
alistic scenario, as such basic optimizations are provided by almost
every C++ compiler. Additional measurements performed with the
Intel and Microsoft C++ compilers (icc, Visual C++) support this.
Due to space limitations we are not able to show and discuss any
details here, however, the results turned out to be very similar to
the g++ results3. Hence, a low overhead of aspects can be expected
with other back-end compilers as well.
The AspectC++ language and weaver provide high-level AOP with

3Unfortunately even with respect to some of the unnecessary stack
reservations discussed above.
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1 Cyg_Mutex::Cyg_Mutex() {
2 CYG_REPORT_FUNCTION();
3 locked = false;
4 owner = NULL;
5 #if defined(CYGSEM_... _PRI_INVERSION_PROTO_DEFAULT) && \
6 defined(CYGSEM_... _PRI_INVERSION_PROTO_DYNAMIC)
7 #ifdef CYGSEM_... _PRI_INVERSION_PROTO_DEFAULT_INHERIT
8 protocol = INHERIT;
9 #endif

10 #ifdef CYGSEM_... _PRI_INVERSION_PROTO_DEFAULT_CEILING
11 protocol = CEILING;
12 ceiling = CYGSEM_... _PRI_INVERSION_PROTO_DEFAULT_PRI;
13 #endif
14 #ifdef CYGSEM_... _PRI_INVERSION_PROTO_DEFAULT_NONE
15 protocol = NONE;
16 #endif
17 #else // not (DYNAMIC and DEFAULT defined)
18 #ifdef CYGSEM_... _PRI_INVERSION_PROTO_CEILING
19 #ifdef CYGSEM_... _PRI_INVERSION_PROTO_DEFAULT_PRI
20 ceiling = CYGSEM_... _PRI_INVERSION_PROTO_DEFAULT_PRI;
21 #else
22 ceiling = 0; // Otherwise set it to zero.
23 #endif
24 #endif
25 #endif // DYNAMIC and DEFAULT defined
26 CYG_REPORT_RETURN ();
27 }

Figure 3: Code Example from eCos

close-to-ideal efficiency in the generated code—at least on the level
of µ-benchmarks. The µ-benchmark results are promising. They
provide, however, only limited meaningfulness regarding the ef-
fects of a broader application of aspects. To judge this global ef-
fects, additional investigations in real system software are required.

4. USING ASPECTS IN THE ECOS
OPERATING SYSTEM FAMILY

eCos [1] is a small and highly configurable operating system de-
veloped by Cygnus Solutions and now maintained and distributed
by eCosCentric Limited, targeted for the market of embedded
systems. It is available for a broad variety of 16 and 32 bit
microprocessor architectures (PPC, x86, H8/300, ARM7, ARM9,
. . . ) and used in many different embedded application domains.
The eCos system itself is provided as a repository of various
components, which are configured statically with a configuration
tool called eCosConfig. Components are implemented in a mixture
of C++, C, C-preprocessor and assembly code, the eCos kernel
itself is implemented in C++. After the user selects an appropriate
eCos configuration within eCosConfig, a configuration-specific
system of headers and makefiles is generated, which is used to
build the eCos-library. The final applications will be linked against
this library.
To support a broad scale of applications in the strictly resource-
constrained domain of embedded systems, configurability and
tailorability are major goals of the eCos OS family. In the source
code this becomes apparent in an extensive use of the preprocessor.
Cross-cutting concerns manifest themselves in eCos as macro or
function invocations. Configuration options manifest themselves
as #ifdef blocks. Especially the latter are quite dominant in
the component code. The Cyg_Mutex constructor (Figure 3) is
a typical example. Only 4 of the 27 code lines are dedicated to
the plain mutex implementation (lines 1, 3–4, 27). The remaining
parts are occupied by one cross-cutting concern (namely tracing of
function entries and exits, lines 2 and 26) and four configuration
options (namely the different versions of the priority inversion
protocol to use, lines 5–25).

4.1 Case Study Overview
The goal of this case study is to gain insights regarding the still
open question if AOP is suitable for separation of concerns in sys-
tem software with respect to costs. For this purpose, we analyzed
the effects of using aspects by refactoring and extending the eCos
kernel. The case study is therefore divided into two parts:
For the refactoring part, we extracted cross-cutting concerns and
configuration options from the eCos kernel sources and merged
their implementation snippets into aspects. This part specifically
targets the costs question by comparing the original scattered solu-
tion of configuration options with an functionally identical aspect-
based solution. The refactoring of cross-cutting concerns targets
furthermore at the scalability question, as the resulting aspects af-
fect a high number of join-points. Overall, we refactored three
cross-cutting concerns and twelve configuration options from the
eCos thread package (Table 2).
For the extension part, we used aspects to implement a new config-
uration option that has not been available before in the eCos kernel.
This part targets at the relationship between system design and it’s
influence on the costs of aspect-based implementations for unantic-
ipated extensions.

4.2 Refactoring Cross-cutting Concerns
The following three concerns were identified as highly cross-
cutting the eCos kernel code base:

tracing: To observe the control flow through the system, entrances
to and exits from system functions are recorded. Further-
more, it is possible to track values of function arguments,
local variables and function results.

interrupt synchronization: In order to guarantee the consistency
of operating system data structures, most kernel functions
must run mutual exclusive to interrupt handlers. This is
achieved by explicitly enabling/disabling the propagation of
interrupts in all relevant functions.

kernel instrumentation: Inside the eCos kernel, special macros
are employed to count the occurrences of various events,
such as thread creation or mutex locking.

In the original code base, these three cross-cutting concerns ac-
count for more than 680 lines (>13%) of the kernel sources, spread
over 23 source files (Table 2-a, column original). As tracing is
a typical development aspect,4 we focus in the following on the
refactored implementation of the more OS-specific and cost-critical
kernel instrumentation and interrupt synchronization concerns.

4.2.1 Interrupt Synchronization
eCos uses a typical two-level interrupt handling scheme. Hardware
IRQs are handled by interrupt service routines (ISRs), which usu-
ally just register a deferred service routine (DSR) to perform the
actual IRQ handling. DSR execution is delayed, while the active
thread is in a synchronized kernel function. Delayed DSRs are
propagated before thread dispatching and when the active thread
leaves the kernel. DSR propagation has to be disabled explicitly by
calling Cyg_Scheduler::lock() at the begin every kernel func-
tion that requires synchronization. It has to be re-enabled by ex-
plicitly calling Cyg_Scheduler::unlock() at each exit point of
such function. Overall, this sums up to 187 lock()/unlock() calls
(Table 2-a, column original), spread over 80 kernel functions.
The refactored version of the interrupt synchronization concern is
quite simple:
4It is moreover already the most cited (not to say over-featured)
example of a cross-cutting concern.
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configuration option original configuration option original
#ifdef #ifdef CYGSEM_KERNEL_ #ifdef #ifdef

concern #  % #  % #  % CYGVAR_KERNEL_THREADS... blocks blocks code intro SYNC_MUTEX... blocks blocks code intro
total 5205 100 4527 100 931 100 total 39 3 21 29 total 34 6 22 26
total functional 4520 86.8 4423 97.7 ..._NAME 3 1 2 2 ..._PROTOCOL 14 4 9 11
tracing 336 6.5 4 0.1 632 67.9 ..._LIST 4 0 2 6 ..._PROTOCOL_INHERIT 5 1 4 3
instrumentation 162 3.1 0 0.0 139 14.9 ..._STACK_LIMIT 7 0 3 4 ..._PROTOCOL_CEILING 10 1 4 6
irq syncchronization 187 3.6 0 0.0 160 17.2 ..._STACK_CHECKING 6 1 8 1 ..._PROTOCOL_DYNAMIC 5 0 5 6
total crosscutting 685 13.2 4 0.1 ..._STACK_MEASUREMENT 2 0 2 2

..._DATA 3 0 1 8

..._DESTRUCTORS 3 0 1 3

..._DESTRUCTORS_PER_THREAD 11 1 2 3

a) cross-cutting concerns b) thread configuration options c) mutex configuration options 
original refactored refactored refactored

join-pointsloc loc join-points join-points

Table 2: Refactored Concerns in the eCos Kernel

aspect int_sync {
pointcut sync() = execution(...) // kernel calls

|| construction(...) // to sync
|| destruction(...);

// advice kernel code to call lock() / unlock()
advice sync() : before() {

Cyg_Scheduler::lock();
}
advice sync() : after() {

Cyg_Scheduler::unlock();
}
// A new thread starts with a lock value of 0
advice execution(
"%Cyg_HardwareThread::thread_entry (...)") : before() {

Cyg_Scheduler::zero_sched_lock();
}
...

};

Before/after advice is used to superimpose the invocation of
Cyg_Scheduler::lock()/unlock() into the execution5 of all
kernel functions that require synchronization. Overall, 160 code
join-points are affected (Table 2-a, column refactored). The num-
ber of join-points is below the number of original function calls, as
in the original some functions contained more than one exit point,
each with a call to Cyg_Scheduler::unlock(), while after advice
implicitly affects all exit points of a function.
Additionally (not shown above), all functions that implement lock-
ing itself have been refactored from the scheduler class into a set
of introductions, so that the int_sync aspect provides a complete
encapsulation of the interrupt synchronization concern.

4.2.2 Kernel Instrumentation
The eCos kernel optionally maintains a set of counters for the oc-
currence of various events, such as thread suspension, mutex lock-
ing or interrupt processing. For each counter and event type, a
specific preprocessor-macro is provided. 162 invocations (Table 2-
a, column original) of these macros are distributed over the whole
kernel source base.
In the refactored version, the invocation of the particular macro is
given as advice to the affected kernel functions such as follows:

aspect kernel_instrument_mutex {
...
advice execution("% Cyg_Mutex::lock(...)") : after() {
if(*tjp->result()) {

CYG_INSTRUMENT_MUTEX(LOCKED ,tjp->that(),0);
} }
advice call("% Cyg_Thread::wake(...)")

&& within("% Cyg_Mutex::unlock(...)") : after() {
CYG_INSTRUMENT_MUTEX(WAKE ,tjp->that(),tjp->target());

}
...

5Some kernel functions are actually class con-/destructors, for
which the con-/destruction() pointcut function is used instead
of execution().

};

In the advice bodies, the join-point API is used to retrieve the object
instances involved in a particular event. Overall, 13 aspects with
85 code advice definitions such as above affect a total of 139 join-
points (Table 2-a). Again, the number of affected join-points is
below the number of original macro invocations due to multiple
exit points in some functions.

4.3 Refactoring Configuration Options
For the sake of configurability and tailorability, eCos offers a
high number of configuration options that may or may not be
selected in eCosConfig if generating a concrete eCos system.
The kernel optionally provides support for thread-local storage
(CYGVAR_KERNEL_THREADS_DATA), the execution of destructors of
global object instances (CYGVAR_KERNEL_THREADS_DESTRUCTORS)
and much more. Table 2-b/c lists some of the available options.
As already shown by the Cyg_Mutex constructor example (Fig-
ure 3), the implementation of configuration options is embedded
into the base code and activated by means of conditional compi-
lation, which leads to well-known phenomenon of “#ifdef-hell”.
For the 12 analyzed thread and mutex configuration options overall
73 #ifdef-blocks are spread over the source code (39 for thread
configuration options / 34 for mutex configuration options, Table
2-b/c).
In the refactored version, each configuration option has been en-
capsulated into a single aspect that superimposes the functionality
into the base component. Additional member functions and state
variables specific for a certain configuration option are applied by
introductions, option-specific behavior is applied by code advice.
Overall, 98 join-points are affected (21/22 code join-points and
29/26 introductions). The number of join-points is above the num-
ber of #ifdef-blocks in the original (73), as some #ifdef-blocks
embrace the definition of multiple identifiers (state variables, mem-
ber functions), while in the refactored version each identifier is
given by a separate introduction. Some few #ifdef blocks (3
for thread configuration options / 6 for mutex configuration op-
tions), all caused by inter-feature dependencies, have not been re-
solved completely, but were simply moved into the corresponding
aspect implementation. While it had been possible to remove these
#ifdef blocks as well, we went on without further refactorings, as
this had had some impact on the comparability of the AOP version
with the original eCos regarding resource utilization.

4.4 Cost Analysis
We have analyzed memory and performance effects of using AOP
in eCos by comparing the refactored and extended versions of
eCos with the original eCos for various configurations.
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1 ..._create() 215 ..._init() 52 ..._init() 62
2 ..._resume() 327 ..._lock() 47 ..._post() 50
3 ..._resume() 127 ..._unlock() 22 ..._wait() 723
4 ..._yield() 274 ..._try_lock() 46 ..._trywait() 416
5 ..._exit() 354 ..._try_lock() 49 ..._trywait() 44
6 ..._yield() 77 ..._lock() 381 ..._wait 46
7 ..._resume() 91 ..._unlock() 429 ..._post() 22
8 ..._kill() 102 ..._destroy() 17 ..._destroy() 19
9 ..._suspend() 336

10 ..._suspend() 96
11 ..._suspend() 53
12 ..._resume() 63
13 ..._resume() 115
14 ..._delete() 38

[cycles] 2268 [cycles] 1043 [cycles] 1382

cyg_mutex_...cyg_thread_... cyg_semaphore_...
a) thread b) mutex c) semaphore

Sequence of system calls performed by the thread, mutex, and
semaphore test applications. Numbers denote CPU cycles taken by
the particular system call. CPU cycles differ among several invoca-
tions of the same call due to different context-switch operations the
kernel has to perform internally. a) thread: three threads activate
each other in turns using operations from the kernel thread API. b)
mutex / c) semaphore: two threads synchronize each other using
kernel mutex/semaphore objects.
[eCos original, base configuration, Pentium 3, Cycles averaged from 10 series of 1000
iterations (σ < 0.1% for all cases)]

Table 3: Test applications

4.4.1 Setup
13 different eCos configurations, each in an AOP and an original
version, were generated and built, among them:

• the eCos basic configuration (_base, no additional features),
to compare the effects regarding interrupt synchronization

• a configuration with additional support for instrumentation
(_instrumentation), to compare the effects regarding kernel
instrumentation

• several other configurations, each with one selected extra fea-
ture, to compare the effects regarding the refactored config-
urable options

Each of the resulting 26 variants of the eCos-library was linked
with the same set of 3 multi-threaded test applications, which
specifically use the affected parts of the eCos kernel. The test ap-
plications themselves are quite simple, their threads just invoke a
sequence of system calls and do not perform further calculations.
Table 3 depicts the sequence of system calls performed by each test
in conjunction with the number of CPU cycles taken by each sys-
tem call on a basic eCos system.
The AOP versions were woven with ac++ 1.0pre1, all versions
were compiled and linked with gcc 3.3.5, using a set of opti-
mization flags that favors code size over performance6.

4.4.2 Runtime Costs
Runtime costs (cycles) were measured in the running test appli-
cations and averaged from 10 series of 1000 iterations to reduce
caching effects. With a relative standard derivation σ < 0.1% for
all series, the results can be considered as stable. Besides the P3

6-O3 -mpreferred-stack-boundary=2 -fno-align-functions
-fno-align-jumps -fno-align-loops -fno-align-labels
-fno-reorder-blocks -fno-prefetch-loop-arrays
(A simple -Os actually causes higher code size, as it prevents
embedding of the ac++ generated wrapper functions which are
join-point specific and therefore used only once.)
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Relative performance loss/gain of the refactored (aop) version of
eCos compared to the original. Each of the 3 test applications (mu-
tex, sem[aphore], thread) has been analyzed with respect to 13 dif-
ferent eCos configurations, which results in 39 test cases, measured
on 4 different CPU types. Mean denotes the average over all CPU
types.

Figure 4: Per-test-case relative CPU

CPU, which was the target platform for this study, additional mea-
surements with the same binary images were performed on Pen-
tium, Athlon and P4 CPUs. The results are depicted in Figure 4
by the relative AOP runtime cost factor ( aop

original ) for each test case,
configuration, and CPU type7:

• Over all test cases, the AOP cost factor does vary. The high-
est variation is in the numbers of the P4 CPU ([0.90, 1.07],
σ=0.04), the distribution of all other CPU types is in between
(Pentium: [0.96, 1.07], σ=0.03, P3: [0.91, 1.03], σ=0.03,
Athlon: [0.96, 1.06], σ=0.02). For an averaged CPU (mean),
the cost factor is distributed with [0.96, 1.02], σ=0.02.

7Depicted results were measured with enabled CPU caches. Ad-
ditional measurements with caching disabled resulted in a much
higher standard derivation (probably caused by DRAM-Timing and
bus load effects), but basically the same average cost factors.
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• Even for each single test case, the AOP cost factor varies
noticeable among the different CPU types. The maxi-
mum variation is [0.91, 1.04], σ=0.06 (test case 06: mu-
tex_instrumentation). The minimum is [0.99, 1.01], σ = 0.01,
(test case 39: thread_thread_stackusage). At average, the
CPU-dependent cost factors are distributed with a standard
derivation of σ = 0.03.

• For no single test case, AOP can be considered as clearly
beneficial (factor < 0.98) or disadvantageous (factor > 1.02)
for all CPU types.

• Over all test cases, a slight tendency towards a beneficial in-
fluence of AOP can be observed for the P3 and P4 CPUs,
for which the average AOP cost factor is 0.97. For the Pen-
tium and Athlon CPUs, however, no such effect can be found
(factor 1.00)—as well as for the averaged CPU (mean), for
which the factor is 0.99.

We conclude from these numbers that a general effect of AOP on
the runtime costs of eCos can not be ascertained. The observed
variation has to be attributed to CPU-internal “performance noise”,
probably caused by mechanism such as branch prediction, instruc-
tion reordering and memory alignments. The distribution of the
per-CPU cost factors, which is stable and reproducible for each
single test case, but highly differs between different test cases, is
a clear indicator for such effects. It has furthermore to be con-
sidered that the actual amount of cycles consumed by most eCos
kernel functions is quite low (Figure 3), which increases the rela-
tive effects of such CPU-internal variability. On the other hand, a
potential AOP-related overhead should have become evident in the
results, as it would affect every CPU type.
To gain additional evidence, we analyzed and compared the gen-
erated machine code of the aspect-based and original eCos in the
_base configuration (test cases 01, 13, 27). From the 28 ana-
lyzed kernel functions that are called directly or indirectly from
the test applications and that are affected by interrupt synchro-
nization, 19 functions turned out to be actually identically in the
machine code8. Eight functions turned out to be minimal dif-
ferent with respect to the order of instructions and differences in
sub-sequences of up to 4 instructions. While we had the im-
pression that in these cases the code generated for the AOP ver-
sions is slightly better (especially regarding instruction ordering),
we were not able to find any general patterns that would sup-
port this impression. We found major differences between the
AOP and the original version in a single functions only, namely
Cyg_Scheduler_Implementation::add_thread(). The differ-
ences are caused by the back-end compiler, which embeds some
member functions that are not explicitly marked as to inline only
in the AOP version. With the synchronization code removed into
aspects, the size of these (relatively small) functions has probably
fallen under a compiler-internal threshold causing the extra inlin-
ing. This effect seems to be even higher in the other configurations.
It can, however, not be considered as a typical effect of using AOP
and had no significant influence on the measured runtimes. Overall,
AOP does neither lead to better nor to worse runtime.

4.4.3 Memory Costs
The additional inlining performed by the compiler in the AOP ver-
sion can also be observed in the memory overhead. Table 4 shows
the differences between the AOP and the original eCos.
In almost all cases, the AOP versions induce some ROM overhead.

8if ignoring differences regarding symbol addresses and function-
wide register allocation (such as always using ecx instead of edx
and vice versa)

[bytes]
ΔΔΔΔ %%%% ΔΔΔΔ %%%% ΔΔΔΔ %%%%

01 mutex_base 101 0.6 0 0.0 24 2.0
02 mutex_excpt_hand 55 0.3 0 0.0 24 2.0
03 mutex_excpt_hand_dec -35 -0.2 0 0.0 24 2.0
04 mutex_excpt_hand_global 92 0.5 0 0.0 24 2.0
05 mutex_excpt_hand_global_dec 85 0.5 0 0.0 24 2.0
06 mutex_instrumenation 543 3.0 0 0.0 4 0.3
07 mutex_thread_data 74 0.4 0 0.0 28 2.3
08 mutex_thread_destrct 74 0.4 0 0.0 28 2.3
09 mutex_thread_destrct_perthread 224 1.3 0 0.0 24 2.0
10 mutex_thread_linked_list 88 0.5 0 0.0 8 0.6
11 mutex_thread_name 146 0.9 0 0.0 16 1.3
12 mutex_thread_stack_limit 311 1.8 0 0.0 24 2.0
13 mutex_thread_stackusage 341 2.0 0 0.0 24 2.0
14 sem_base 91 0.5 0 0.0 24 2.0
15 sem_excpt_hand 51 0.3 0 0.0 24 2.0
16 sem_excpt_hand_dec -54 -0.3 0 0.0 24 2.0
17 sem_excpt_hand_global 88 0.5 0 0.0 24 2.0
18 sem_excpt_hand_global_dec 81 0.5 0 0.0 24 2.0
19 sem_instrumenation 588 3.1 0 0.0 0 0.0
20 sem_thread_data 70 0.4 0 0.0 28 2.3
21 sem_thread_destrct 70 0.4 0 0.0 28 2.3
22 sem_thread_destrct_perthread 220 1.3 0 0.0 24 2.0
23 sem_thread_linked_list 84 0.5 0 0.0 8 0.6
24 sem_thread_name 142 0.8 0 0.0 16 1.3
25 sem_thread_stack_limit 307 1.8 0 0.0 24 2.0
26 sem_thread_stackusage 337 2.0 0 0.0 24 2.0
27 thread_base 104 0.6 0 0.0 12 0.7
28 thread_excpt_hand 58 0.3 0 0.0 12 0.7
29 thread_excpt_hand_dec -32 -0.2 0 0.0 12 0.7
30 thread_excpt_hand_global 95 0.6 0 0.0 12 0.7
31 thread_excpt_hand_global_dec 88 0.5 0 0.0 12 0.7
32 thread_instrumenation 563 3.1 0 0.0 -4 -0.2
33 thread_thread_data 77 0.4 0 0.0 12 0.7
34 thread_thread_destrct 77 0.4 0 0.0 12 0.7
35 thread_thread_destrct_perthread 227 1.3 0 0.0 12 0.7
36 thread_thread_linked_list 91 0.5 0 0.0 -12 -0.6
37 thread_thread_name 149 0.9 0 0.0 0 0.0
38 thread_thread_stack_limit 333 1.9 0 0.0 12 0.7
39 thread_thread_stackusage 344 2.0 0 0.0 12 0.7

ROM RAM stack

Relative overhead of the AOP version compared to the original
eCos (∆ = aop− original) regarding dynamic memory utilization
(stack, accumulated from all threads) and static memory utilization
(ROM = code + data + rodata, RAM = data + bss). Dynamic mem-
ory utilization was measured in the running test applications. Static
memory utilization was retrieved off-line and byte-exact from the
linker map files.

Table 4: AOP Memory Overhead

This overhead, 0.9% at average, is caused by larger code sections.
The instrumentation test cases (06, 19, 32) show with more than
500 extra code bytes (an overhead of 3%) the maximum differ-
ence. Most of this overhead can again be attributed to inlining
effects. In the original eCos, the compiler does not embed the fi-
nal call to Cyg_Scheduler::unlock() if a function is affected by
instrumentation. Instead of, a jmp statement to a shared copy of
Cyg_Scheduler::unlock() is generated. In the AOP version, the
call is always embedded and no code sharing takes place, regard-
less of instrumentation being enabled or not.
Generally, the AOP versions show also some stack overhead, at
average 1.3% more stack bytes are used. This is mainly caused
by (unnecessary) reservations for call-by-value parameters, as ex-
plained in Section 3.2. The generally higher overhead of the mutex
and semaphore test cases (compared to thread) can be explained by
this effect as well, as the Cyg_Mutex and Cyg_Semaphore opera-
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1 aspect kernel_stack {
2 // case a) dynamic join-points
3 pointcut stack_switch() =
4 execution(kernel()) && !cflow(within(kernel()));
5

6 // case b) static join-points
7 pointcut stack_switch() =
8 call(kernel()) && within(user_api());
9

10 advice stack_switch() : around(){
11 HAL_TO_KERNEL_STACK(Cyg_Thread::self());
12 tjp->proceed();
13 HAL_FROM_KERNEL_STACK ();
14 } };

Figure 5: The kernel_stack Aspect

tions lead to higher call-depths inside the kernel.
According to the µ-benchmark results in Section 3.2, some addi-
tional stack usage can also be expected if the advice code accesses
context information via the join-point API. Surprisingly, the instru-
mentation test cases (06, 19, 32) which make extensive use of the
join-point API, show a very low stack overhead. The reduced call-
depth (due to inlining) seems to compensate the AOP-induced over-
head in these cases.
No differences can be observed regarding RAM utilization. As our
aspects are stateless, the linker seems to be able to omit even the
aspect instances from the final image.

4.5 Applying Unanticipated Extensions
AOP is frequently considered suitable for unanticipated
changes[13]. As aspects can superimpose additional behav-
ior without having to touch the existing software structure, it
should in principle be possible to use aspects to bring in unantici-
pated change. For the domain of system software, however, it is
not (only) the question if it is possible to implement unanticipated
extensions by means of aspects, but if it is possible to implement
them efficiently.
As pointed out in Section 3, aspects do not lead to an intrinsic
overhead, if their pointcuts are resolvable statically. On the other
hand, an overhead is inevitable if advice has to be given for
dynamic join-points. Hence, an overhead of using aspects for
unanticipated extensions depends on the availability of “the right
static join-points”. To analyze the effect of having to use dynamic
join-points instead, we extended eCos by a new kernel stack
feature. It is implemented by an aspect without any modifications
in the existing sources.

4.5.1 The Kernel Stack Aspect
The general idea is to reserve a dedicated part of a thread’s stack
exclusively for the kernel, which guarantees that no stack overflow
error can occur while executing kernel code. For this purpose, the
stack pointer is switched to the part reserved for the kernel, when-
ever a thread enters the kernel. It is switched back to the application
stack immediately before the kernel is left, as sketched by the fol-
lowing advice definition:

advice ... : around() {
HAL_TO_KERNEL_STACK( Cyg_Thread::self() );
tjp->proceed();
HAL_FROM_KERNEL_STACK ();

};

The platform-specific HAL_TO_KERNEL_STACK macro performs the
actual stack switch. Afterwards, the join-point API method
proceed() is used, which calls the original function and thereby
copies all parameters from the join-point context to the now active
kernel stack.9

9This is, of course, platform-dependent. The proceed() method is

kernel-stack dynamic static
cost factor [cycles] join-points join-points
mutex_base 2.24 1.05
sem_base 1.95 1.07
thread_base 1.88 1.09

Relative overhead of the kernel-stack feature if using dynamic join-
points or static join-points.

Table 5: Kernel Stack CPU Overhead

In eCos, most kernel functions are not only invoked from ap-
plication level, but also used internally, that is, called by other
kernel functions. As a consequence, it is not possible to give
a statically resolvable pointcut expression that yields all join-
points where a thread enters the kernel. We have to distinguish
at runtime, if a kernel function is executed in the control flow
of an application or of another kernel function. This basically
leads to a pointcut expression such as execution(kernel()) &&
!cflow(within(kernel())) (Figure 5, case a).10.

4.5.2 Costs of Dynamic Join-Points
The kernel stack feature is a highly cross-cutting concern, as it
affects the execution of every kernel function. Not surprisingly,
this leads to a noticeable overhead. Table 5 (column dynamic join-
points) lists the cost factor of the kernel_stack aspect, compared
to the original eCos for the three _base test-cases. The cost factor
is between 1.88 and 2.24 (average 2.02).
To evaluate, which part of these costs are induced by the concern
implementation itself (the actual stack switch) and which part is
induced by the need to use dynamic join-points, we compared the
effects with a kernel stack implementation for an alternative eCos.
This alternative eCos offers a thin user access layer on top of the
kernel, which is exclusively used by application code to invoke ker-
nel functionality. The user access layer consists of a set of inline
wrapper functions and classes and does not lead to any extra over-
head. However, it makes it possible to distinguish statically be-
tween application #→ kernel and kernel #→ kernel calls (Figure 5,
case b). As shown in Table 5 (column static join-points), the over-
head of the kernel_stack aspect is significantly lower in this case,
with cost factors between 1.05 and 1.09 (average 1.07). Thus, most
of the overhead of the first kernel_stack implementation was ac-
tually caused by the fact that advice had to be given for dynamic
join-points.

5. DISCUSSION
In our eCos study, the AOP version showed at average a 0.9%
higher code size and a 1% better performance. These very small
effects can both be explained by additional inlining the compiler
performed in the AOP version: Due to the extraction of synchro-
nization and instrumentation code from almost each function, the
remaining code size of some functions seems to have fallen under
an internal threshold which caused the compiler to consider them
for inlining in the AOP version, but not in the original version. This,
however, has to be considered as a local phenomenon which can
not be generalized. The machine code similarity for most of the af-
fected functions rather confirms the µ-benchmark results from Sec-
tion 3.2, which show that for simple before/after/around advice no
considerable overhead has to be expected.
inlined and accesses (on x86) the join-point context via the frame
pointer, which is not modified by HAL_TO_KERNEL_STACK.

10AspectC++ currently does not support a per-thread cflow(),
which can, however, easily be simulated by other language mech-
anisms. For the actual kernel_stack implementation a counter
was introduced into the thread control block and internally used as
cflow variable.
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All this leads to the conclusion that the AOP-based application of
cross-cutting concerns and configuration options does not induce
noticeably different costs than a scattered and tangled implementa-
tion. This even holds, if the resulting aspects affect a high number
of join-points and exploit join-point specific context information.
In the following we discuss potential methodical issues of our study
and under what circumstances the obtained results can be general-
ized to the domain of operating systems and system software in
general.

5.1 Methodical Issues

Evaluation Approach
Results were obtained by combining µ-benchmarks with a larger
case-study based on refactoring. The refactoring approach makes
sure that (1) the results apply to real-world software, and that (2) the
implementation of the concerns is identical in the AOP and original
version. Both versions differ only regarding the mechanism used
to apply the concern implementations. Thus, the measured results
actually depict the net overhead of using aspects instead of tangled
code and are not caused by a “smarter implementation”. As the re-
sults from the case study are confirmed by the µ-benchmark results
and vice versa, both can be considered as plausible.

Evaluation Targets
Results were conducted by refactoring concerns from the eCos op-
erating system using AspectC++ and measuring the effects with a
specific set of test applications. This, however, should not limit
their general significance:
eCos can be considered as a most demanding test subject regarding

the costs of aspects. Designed for and widely accepted in the
very resource-thrifty domain of embedded systems, eCos has
certainly been optimized for runtime and memory efficiency.
Most system calls take only a few cycles (see Table 3), the
typical kernel image size is a only few KB. An AOP-induced
overhead, if any, should become more evident in this system
than in “big” operating systems such as Windows or Linux.

AspectC++ was basically a natural choice. Developed as a
general-purpose AOP language for the C/C++ domain, it of-
fers all concepts that are typical for this paradigm. In princi-
ple, similar results should be reachable with other AOP ap-
proaches as well. As pointed out in Section 3.1, most AOP
concepts do not induce an inevitable overhead.

Test applications chosen for cost measurements can not be con-
sidered as “typical applications”. They have been designed
specifically for the measurements and spend most of their
time executing the affected kernel code. Regarding the costs
of aspects, this has to be considered as more demanding than
using “real” applications that only occasionally call kernel
functions. Thus, an AOP-induced overhead, if any, should
become evident with this setup.

Significance of the Refactored Concerns
Results are naturally based on a selection of concerns, namely two
cross-cutting concerns and twelve configuration options. The se-
lected concerns offer, however, a high coverage, as they (1) rep-
resent a cross-section of real-world and cost-critical concerns from
the domain that (2) affect a high number of join-points, and (3) rep-
resent the typical classes of concerns that are generally addressable
by AOP:
Interrupt synchronization is a typical example of a symmetri-

cally cross-cutting concern. The same advice functionality

is given to a high number of join-points. With 160 affected
code join-points (Table 2-a), the int_synch aspect qualifies
well for evaluation of the costs AOP may induce for symmet-
rically cross-cutting and performance-critical concerns.

Kernel instrumentation is a typical example of an asymmetri-
cally cross-cutting concern. This means that not only one
or two advice definitions are applied to a high number of
join-points (as in the int_synch aspect), but many different
advice definitions affect only a relatively small number of
join-points each. With 139 affected code join-points (Table
2-a) given by 13 aspects with 85 code advice definitions, the
aspect-based implementation qualifies well for evaluation of
the costs AOP may induce for asymmetrically cross-cutting
concerns.
Kernel instrumentation is, moreover, an example of a highly
context-dependent concern, as not only events (such as un-
locking a mutex), but also the involved kernel objects (such
as the mutex and thread instances) are reported, which leads
to an intensive use of the join-point API. Hence, kernel in-
strumentation also qualifies well for evaluation of the costs
AOP may induce for context-dependent concerns.

Configuration options are a typical example of scattered con-
cerns. Such concerns do not cross-cut the whole source base,
but some few components only. Intended to be configurable
in eCos, they were conceptually already well separated. Nev-
ertheless, their implementation is spread out over multiple
methods and classes. The only reason to scatter the imple-
mentation of an otherwise clearly identified concern is that a
separated implementation is either not possible (which is an
indicator for a cross-cutting concern) or not efficiently pos-
sible. Hence, an aspect-based implementation of configura-
tion options qualifies well to evaluate the efficiency of AOP-
generated code.

Hence, similar results should be achievable with other concerns
from the domain of system software as well.

5.2 General Issues

Applicability to Existing System Software
Refactoring cross-cutting concerns and configuration options into
aspects was relatively easy in eCos, as (1) most concerns were al-
ready separated on the conceptual level, intermingled in the imple-
mentation only for technical reasons, and (2) the remaining parts of
the implementation already offered a reasonable separation of con-
cerns with a fine-grained design and implementation. This results
in a high number of potential join-points with strong semantics.
In monolithic systems with a high coupling among concern imple-
mentations, such as Linux[30], the number of potential join-points
is probably much lower and join-points are semantically ambigu-
ous. In this case it might be more difficult or even impossible to
implement concerns such as interrupt synchronization or kernel in-
strumentation by aspects without performing additional refactoring
in the primary structure of the target systems. For such scenarios,
special-purpose AOP approaches as suggested by Fiuczynski[16]
and Åberg[2] might be more appropriate.
The number of potential join-points could also be increased by a
join-point model that supports join-points on the statement and ex-
pression level, such as loops and local variable access[17]. This
clearly remains a topic for further research, even though we doubt
that most of these join-points would offer enough semantics for ro-
bust aspect implementations.
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The Role of Design
Ambiguous join-points can also lead to a situation where it is pos-
sible, but not efficient to use aspects. The ambiguity of the avail-
able static join-points can often be resolved by exploiting runtime
context information and dynamic pointcut functions. However, as
demonstrated by the kernel_stack aspect, dynamic pointcut func-
tions induce additional costs, especially if the concern is highly
cross-cutting. Generally, the use of dynamic pointcut functions
should be avoided in system software.
On the other hand, the costs of even unanticipated extensions can be
very low, if the semantically important control-flow transitions are
available as statically evaluable pointcuts. The transition between
application-level and kernel-level, for instance, can be considered
semantically important, as it is of particular interest not only for
the kernel stack feature, but for many other system concerns such
as protection, validation, or scheduling. If the primary system de-
sign offers enough structure to retrieve such neuralgic transitions
as static join-points, many fundamental OS concerns can be imple-
mented well-separated and cost-neutral by aspects.

The Role of Language
The amount of available join-points depends moreover on the pri-
mary implementation language. The eCos kernel is written in C++.
Compared to C, which is still the dominant language in the do-
main of system software, C++ offers with class, namespace and
template additional syntactical constructs to make the module
structure and component composition explicit in the code. Thereby,
C++ programs usually offer a better separation of concerns and re-
flect more design decisions in the code. This generally leads to
more available static join-points with strong semantics and, thus,
a potentially broader applicability of aspects. From the costs per-
spective, however, there is no fundamental difference between C
and C++. As both are statically compiled languages, AOP can in
principle be implemented cost-neutral for C as well.

Conclusions For the Development of New Software
The usefulness of AOP rises and falls with the availability of join-
points that offer strong semantics. The cost-efficiency depends
on the availability of static join-points. This gives the chance to
develop “aspect-aware” software by making concern boundaries
and design decisions explicit in the code. Besides language sup-
port and following the principle of separation of concerns, anno-
tations might be used to explicitly “mark” potentially interesting
join-points that offer specific semantics. Newer versions of As-
pectJ, for instance, already provide support for annotations.

6. RELATED WORK
Related work basically exists two domains, namely AOP in system
software and costs of aspects. This furthermore can be subdivided
into work based on static weaving, and work based on dynamic
weaving.
An overview of related work regarding AOP in system software
with static weaving was already presented in the introduction [7,
6, 25, 27, 2, 16, 8, 31, 29]. The main contribution of this paper
over existing work is the in-depth cost-analysis, performed with
system-specific and cost-critical concerns.
Some related work regarding costs of AOP with static weaving
has been conducted in the AspectJ domain. Dufour presented a
benchmark suite to measure the dynamic behavior of AspectJ pro-
grams[12]. His work focuses on a novel measuring approach, how-
ever, it also shows that several AspectJ features induce significant
overhead. Based on this work, Avgustinov suggested some im-

provements for the AspectJ code generation[3] that would specifi-
cally reduce the overhead caused by cflow and around in AspectJ
programs.
Several papers also suggest to use dynamic weaving in system soft-
ware. Engel presented an approach to dynamically weave C code
in the BSD kernel[15]. Arachne [9, 10], a dynamic weaver for C
(newer version support C++ as well), has been used to weave as-
pects into the squid web-proxy. While dynamic weaving clearly
has its merits, we consider it as too expensive for small systems
and cost-critical concerns such as interrupt synchronization. In the
C/C++ domain, the platform-dependence of most dynamic weaving
approaches is another issue. A combination of static and dynamic
weaving[26], would be promising here, as it combines the best of
both worlds.
The costs of dynamically woven aspects was analyzed by Haupt for
several Java-based dynamic weaving approaches[18]. According
to the numbers presented in this study, most Java-based approaches
cause tremendous costs. The overhead of the existing C-based ap-
proaches for dynamic weaving is, however, much lower[9, 15].

7. SUMMARY AND CONCLUSIONS
By comparing a refactored version that uses aspects with the orig-
inal version of eCos, we could show that separating and applying
concerns by aspects instead of tangled and scattered code does not
lead to an extra overhead. Software developers can have better sep-
aration of concerns for free.
At a first glance, this result might be no surprise, as it should not
matter if code is inserted manually or by an aspect weaver. How-
ever, aspects obtain context information through a generic inter-
face. Furthermore, some aspect weavers require a runtime system
and, in fact, earlier quantitative studies indicate that there is an
overhead related to AOP [12, 19]. Our work shows that these earlier
results do not mean that AOP imposes an overhead in general. Es-
pecially, aspect weaving in C and C++, which are the dominant lan-
guages in the domain of system software, implies neither a runtime
system nor expensive late binding. The aspect-oriented implemen-
tation of a concern performs as good (or as bad) as a hand-written
tangled version.
The second important contribution of this paper is the insight that
“ambiguous” join-points are dangerous. Although aspects are able
to deal with ambiguous join-points by dynamic language features
(e.g. cflow), the programmer might unintentionally spoil the sys-
tem’s performance with only a few lines of aspect code. To reduce
this risk, the resource consumption of the different AOP language
features has to be much better documented than it is today. In con-
trast to OOP, it is fortunately relatively easy to identify and avoid
the expensive AOP features. As a rule of thumb, dynamic pointcut
functions should only be used with extra care.
Ambiguous join-points are the result of a system design that was
done without aspects in mind. For example, the eCos designers
did not distinguish between user#→kernel and kernel #→kernel calls
on the interface level. If they had known about aspects, it would
have been easy and overhead free to integrated an additional layer
for kernel function invocations from the user level. This would
have been useful for an overhead-free implementation of the kernel
stack feature by an aspect and also various other aspects.
The discussion of an aspect-aware design raises the question, how
an ideal operating system kernel from the AOP perspective would
look like and how far we could go with separation of concerns. To
answer this question is the goal of our ongoing and future work
on the CiAO operating system family [23, 24]. The results of this
paper are an important first step towards a truly aspect-oriented op-
erating system. We are now convinced that the resource consump-
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tion of the CiAO system will eventually be competitive with other
embedded operating systems for small devices.
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