
1

A Generalization of the Hyperspace Approach Using Meta-Models

Daniel Lohmann, Jürgen Ebert
University of Koblenz-Landau

Institute for Software Technology
Universitätsstraße 1, D-56070 Koblenz

{daniel, ebert}@uni-koblenz.de

Abstract
In this paper we describe a generalization of the Hyperspace
approach of TARR and OSSHER that is applicable to design de-
scription languages. We understand artifact languages de-
scribed by meta-models as the primary dimensions of a multi-
dimensional concern space. This space is filled by concrete
concerns and by concrete artifacts to build an integrated graph-
based multi-paradigm design description. Secondary dimen-
sions may be added to describe non-artifact-based concerns.
User-defined views to and extraction of concern subsets is fa-
cilitated by a transitive closure approach.

1. Introduction
During software development, a lot of different concerns have
to be taken into account. New concerns come in from very dif-
ferent sources and show up in every stage of the development
process [1]. Depending on persons and stages these concerns
are expressed in different ways. For example, one typical form
of concern in object-oriented design is expressed by classes;
during analysis we usually speak about concerns like features
or performance requirements, etc.
These different kinds of concerns can be understood as differ-
ent views to the system. TARR and OSSHER introduced the idea
to interpret these views as dimensions of a concern space and
to do multi-dimensional separation of concerns (MDSoC) on
this integrated model [2, 3]. They call this approach the Hyper-
space approach.
Concerns are usually described in some form of formalism. We
call these formalisms artifact languages. Like a dimension in
the Hyperspace, an artifact language describes a specific view
on the software system. For example, UML provides a set of
sublanguages that are used for different views (e.g. static view,
dynamic view …) at different stages.
We are convinced that there is a strong relationship between
views/dimensions on the one side and artifact languages on the
other side. For successful MDSoC over the whole software de-
velopment cycle, one therefore needs a model that supports on-
demand integration of artifacts and artifact languages. How-
ever, current attempts for MDSoC and aspect-oriented software
development (AOSD) mainly focus on single languages and
mainly on the implementation phase. Our goal was to find a
model that supports MDSoC by language integration already in
the earlier stages of software development, especially dealing
with the languages of software design.
In this paper we introduce an approach for MDSoC by lan-
guage integration using meta-models. Our approach is based on
the Hyperspaces idea of OSSHER and TARR, which also claims
to support MDSoC over all stages of the software development
cycle [3, 4]. However, the current instantiation in Hyper/J

again supports only one type of artifacts (namely Java .class
files) and thus it emphasizes the implementation phase. Our in-
vestigations showed that some constraints of the formal Hyper-
space model are too strict for less formal languages like the
ones typically used in software design. Hence we decided to
extend and generalize the Hyperspaces idea with a focus on
language integration of design languages.
This paper is organized as follows: First, we introduce the ter-
minology and basic concepts of the Extended Hyperspace
model in section 2. In section 3, the model is then put into
practice by an example. Section 4 discusses the main differ-
ences to the original Hyperspace model and gives an overview
of other related work. Finally, in section 5 we conclude our
work.

2. The Extended Hyperspace Model
In this section we introduce the Extended Hyperspace model.
As mentioned above, our model is based on the Hyperspace
idea by OSSHER and TARR. We use the same basic concepts and
terminology where appropriate.

2.1. Basic Concepts and Terminology
Software consists of artifacts, i.e documents describing the
concerns of a software system. Artifacts are written in artifact
languages, like the UML family of languages and its sublan-
guages (e.g. class diagrams, use-case diagrams …).
An ideal artifact language describes just one kind (dimension)
of concerns. While this is (mostly) true for the UML languages,
other real languages may be a combination of more than one
ideal language. In this paper we assume that we have to deal
with ideal languages only.
Each artifact language consists of a set of syntactical constructs
that can be used to build concrete artifacts. We call these syn-
tactical constructs unit types. Examples for unit types in UML
class diagrams are class, attribute and method.
Syntax and semantics of an artifact language itself has to be de-
fined in some formalism. For the visual languages used in
software design, meta-modeling is a suitable and common way
to do so1. Here we use meta-modeling for describing the ab-
stract syntax of artifact languages. Each syntactical concept
(unit type) of the language is represented by a meta-class in the
meta-model, and each relationship between them is represented
by a meta-association. However, the abstract syntax makes no
assumptions about shaping and layout of units and relation-
ships.

1 For text-oriented artifact languages, one would probably use formal gram-
mars for similar purposes.

2

For illustration purposes, we use very simple and minimal
meta-models here. These meta-models are intentionally kept
simple for comprehensibility reasons; the whole approach
should work for real-life meta-models as well. Our meta-
models contain only those unit and relationship types that are
actually used in the concrete artifacts of the example. We also
omit all additional properties of the unit and relationship types
like cardinalities, constraints etc. Figure 1 shows the meta-
model for class diagrams. It consists of only one unit type class
and two relationship types: isSuperclassOf for super-/subclass
relationships and hasRelationshipTo for associations. This is a
fairly simple meta-model, but powerful enough to instantiate
artifacts like the class diagram shown in Figure 2.
Similarly, a meta-model for use-case diagrams is defined in
Figure 3 with a concrete use case diagram being shown in
Figure 4.

2.2. Integrating Dimensions into a Concern Space
In the (Extended) Hyperspace model, units and concerns are
organized in a concern space. A concern space consists of a set
of dimensions, a set of concerns and a set of units. Each con-
cern is placed in exactly one dimension. Each unit is mapped to
zero or more concerns, namely the concerns it addresses.

The aim of a concern space is to integrate units and concerns
of a software system in such a way, that concerns can be easily
identified and separated, that relationships between different
concerns become clear and that a software system can be built
out of selected concerns [3].
As stated above, we understand artifact languages as dimen-
sions of a concern space. Thus, a concern space can be seen as
an integrated and multi-paradigm design description of a soft-
ware system. It is built by integrating all the dimensions of
concerns (artifact languages), and integrating the descriptions
of concrete concerns (artifacts) into it.
Integration of artifact languages corresponds to integration of
the underlying meta-models [5]. Figure 5 shows this integra-
tion for our meta-models of class and use-case diagrams. Here,
the integration is done by adding an additional relationship
that connects unit types from different languages. A new meta-
association isUsedIn has evolved. Its intention is to connect a
class to those use-cases that utilize services of the class e.g. by
working on its instances.2 This integration information is the
key benefit of integration; it provides extra knowledge about
inter-dimensional connections and dependencies that is not
available from the original artifacts. We will use it later on for
selecting and separating concerns.

2.3. Secondary Dimensions of Concerns
The dimensions we have taken into account so far are all based
on artifact languages. Each artifact language used to describe
concerns of our software system opens up one dimension of
concerns. For example, the concerns modeled by class dia-
grams are classes, so we place each class as a concern on a
<Classes> dimension and map all units to it that describe it:
Methods units, attribute units, and, of course, the class unit that
represents the concern itself. We call these artifact-based con-
cerns primary concerns and their dimensions primary dimen-
sions, respectively.
Note that we are distinguishing between class unit and class
concern. The first one is a syntactical construct provided by the
artifact language; the second one is an intentional construct of
our mind. However, often there is a one-to-one relationship be-
tween them: Each class concern usually coincides with exactly
one class unit, i.e. the unit is a syntactical representative of the

2 A formal background for meta-modeling of abstract syntax including the
meaning of meta-model integration is given in [5,11].

Figure 1 A meta-model of (UML) class diagrams

Figure 2 A class diagram artifact

Figure 3 A meta-model of use-case diagrams

Inventory agent

Restorer

«extends»

«uses»

Enter location
and area data

Enter an image

Include a find
into inventory Enter a foreign find

Restore a find

«uses»

«uses»

Figure 4 A use-case diagram artifact

Figure 5 An integrated meta-model for class

and use-case diagrams

3

modeled concern. Nevertheless, real world software models
generally also contain class units that do not represent concerns
but merely are (language dependent) technical helper con-
structs for implementation details.3
An ideal artifact language provides exactly one representative
unit type. Since they are representing primary concerns, these
units are also designated as primary units.
Analogously, the concerns modeled with use-case diagrams,
namely use-cases, can be placed on a <UseCases> dimension.
Here, we again have to distinguish between useCase units and
useCase concerns.
There will always be concerns and dimensions which are not
(yet) represented by their own artifacts and artifact languages.
Special concerns stemming from the application domain or
"on-demand" dimensions for additional user- or task-oriented
views are examples for such concerns without underlying arti-
facts. In our model we put such secondary concerns on their
own secondary dimensions.
Being not based on artifact languages, secondary dimensions
are not meta-modeled. Consequently, they are neither repre-
sented in the integrated meta-model, nor does there exist any
describing artifact that supplies (primary) units for them. How-
ever, we can always map the units already introduced via pri-
mary dimensions to the new secondary concerns they relate to.
Doing so, we get additional views to the concern space. Thus,
secondary dimensions provide on-demand and alternative
separation of concerns along arbitrary dimensions.

3. Example: An Inventory System
After introducing basic concepts and terminology, we now
show how to use the extended model by an example. We inte-
grate two different design artifacts, define secondary dimen-
sions for alternative views and use the integrated model to gen-
erate concern-specific slices of the whole system.
The scenario is an inventory system for the State Office of Cul-
tural Heritage. The mission of its archeological department is
to salvage, restore, and inventory remains of former human
cultures like potsherds, bones or tools. Such objects of archeo-
logical relevance, the finds, are often discovered during build-
ing and excavation works. The archeological department main-
tains a find archive, for which an inventory system shall be de-
veloped.

3.1. The Artifacts
The inventory system is described by two different artifacts: A
class diagram and a use-case diagram.
Figure 2 shows a small part of the class diagram. Find, Loca-
tion and Area are the main objects of interest that are stored in
the inventory system. Each of them can optionally be illus-
trated by Images (e.g. photos or drawings). As usual, common
properties like that are extracted into an abstract base class,
which is IllustratedObject here.
Figure 4 shows a part of the use-case diagram for the inventory
system. The main use-case is Include a find into inventory. It

3 Application of a design pattern like Observer is a good example. In Java
this is typically realized by inheritance, needing additional interfaces and
helper classes.

describes the process of taking a find (an object that has been
found somewhere), entering its properties (material, state, es-
timated age, etc.) into the system and finally storing it in the
find archive. During this process it may also be necessary to
restore or conserve a damaged or decaying object (Restore a
find). Additionally, if not already present in the system, the lo-
cation and area data where this object has been found (Enter
location and area data) and related images (Enter an image)
are entered.
Enter a foreign find describes a variant of Include a find into
inventory where the same data is recorded. However, it is not
stored in the archive, because the object itself is owned by
somebody else or even not present at all.

3.2. Artifact Integration
The artifacts describe two single dimensions of concerns,
namely <Use-cases> and <Classes>. We integrate them as pri-
mary dimensions into a concern space. We do so by determin-
ing the described concerns and then assigning each unit to the
concerns it addresses. The integrated concern space is shown in
Figure 6. It contains two primary dimensions <Use-cases> and
<Classes> that are depicted as clusters of concerns and their
related primary units. Additional units are assigned by solid ar-
rows. (For now, please ignore the different levels of grey and
the secondary dimensions <Features> and <Tasks>.)
Every use-case of our use-case diagram models a concern on
its own, but not every class from the class diagram. This is be-
cause the class IllustratedObject is not a concern of our appli-
cation. It is merely a technical construct to implement poly-
morphic behavior and generalization.
As mentioned above, the integration of primary dimensions
corresponds to the integration of the underlying artifact lan-
guage meta-models. The resulting integrated meta-model has
already been shown in Figure 5, it introduced a new meta-
association isUsedIn that connects class units to those use-case
units which utilize services of the class. Now, during artifact
integration, we have to instantiate this meta-association to re-
late concrete class units to concrete use-case units. In Figure 6
this is illustrated by dashed arrows between units.4

3.3. Defining Secondary Dimensions
Secondary dimensions provide additional concerns that are not
based on existing artifacts. We use them here for a more user-
centric view to our software system. The concerns of typical
end users are usually not expressed by class- and use-case dia-
grams; users do rather look at a software system in functional
terms like Features and Tasks. 5
A feature is a concern of a software system that stems from the
functional domain of the end user. System specifications often

4 Note that Figure 6 shows only those units that are assigned to concerns or
take part in new relationships like isUsedIn which are not already present in
the original artifacts. This is for legibility purposes. However, the omitted
units and relationships (e.g. the class IllustratedObject and its inheritance
relationships to Find, Area and Location) are considered to be still present
in the concern space.
5 Of course, organizing concerns on a secondary dimension is in general
only second best compared to describing them by real artifacts. However,
they are useful if you have not found an adequate formalism to express
these concerns yet. Therefore, secondary dimensions can be seen as an indi-
cator for missing artifacts or even missing artifact languages.

4

consist of feature lists; release cycles are driven by features to
implement. Features are used by salespersons to advertise the
product.
A task is an activity that is carried out by a user on an (abstract)
object, e.g. enter something or print something. Therefore we
understand tasks as generic processes that are instantiated on
different kind of objects. In the OO world tasks are crosscut-
ting concerns: While providing very good support for object
similarities, OO does not help very much in design of process
similarities on otherwise unrelated objects – and this leads to
crosscutting. However, from a users' point of view, it is impor-
tant that similar processes (e.g. entering or printing some kind
of data) are represented similarly in the application’s user inter-
face: They should offer a similar ‘look & feel’. As a result, we
understand tasks as a concern of usability assurance.

Figure 6 shows the secondary dimensions <Features> and
<Tasks> with some concerns. (Please do still ignore the differ-
ent levels of grey.) As secondary dimensions are not meta-
modeled, integrating them into the concern space is quite easy.
We just have to assign the already existing units also to each
secondary concern they address. Here we assigned to a feature
concern exactly those use-case units which model a part or a
refinement of the feature request. Analogously, we assigned all
class units which are affected by a specific generic process to
the corresponding task concern.Selection of a Concern-specific
Slice
The concern space is now an integrated, multi-paradigm design
description of our inventory system, built by integration of two
artifact-based primary dimensions and two additional secon-
dary dimensions. (Figure 7 explains the general integration
process by an activity diagram.)

Inventory agent

LocationFind

<Classes>

LocationFind Area

isUsedIn

isUsedIn

isUsedIn isUsedIn

Legend

Mapping units to a concern:
Element AConcern

Element B

Representative
unit

Additional relationships between units:

Element A Element BRelationship

Restorer

Inventory agent

<Use-cases>

Restore
a Find

Enter location
and
area data

Include a find
into inventory

Enter an
image

Enter a
foreign find

Enter location
and area data

Include a find
into inventory

Enter a
foreign find

Restore
a find

Enter an image

AreaFind Image

<Classes>

LocationFind AreaImage

isUsedIn

isUsedIn

isUsedIn isUsedIn

Legend

Mapping units to a concern:
Unit AConcern

Unit B

Primary
unit

Additional relationships between units:

Unit A Unit BRelationship

<Features>

Image

management
Find data

management

Search and

enquiry

<Tasks>

Enter

Repair

Figure 6 Concern space of the inventory system

5

3.4. Selection of a Concern-specific Slice
We now use this integrated design description to select a con-
cern-specific slice out of the whole system. By projecting this
slice to the language-based dimensions, we then create concern
specific artifact versions.
Consider we are using an iterative development process and
want to build a minimal version of the inventory system as a
first release. This minimal version should implement only the
most important features, which in our case is just the one fea-
ture Find data management. Which classes and use-cases have
to be taken into account to implement Find data management?
Because of the integrated design description of the system, we
can find all relevant units by creation of a closure: Given a set
C of concerns, we can compute the slice S implied by C (the
closure of C) by determining the subgraph induced by all verti-
ces (units and concerns) reachable from C via appropriate
edges (relationships and concern mappings). This algorithm
has to be instantiated appropriately according to the necessities
of the respective artifact languages.
In Figure 6, the result of this algorithm is depicted in black
color, while all units, concerns and relations that are omitted
are colored grey. Figure 8 shows the effect of projecting the re-
sulting slice on the <Use-cases> dimension and thus creating a
concern specific version of the original use-case diagram.
Analogously, a concern specific version of the original class
diagram can be built.

4. Related Work
4.1. Hyper/J and the Hyperspace Approach
Hyper/J and the original Hyperspaces approach [3, 4, 6] can be
seen as a specific instantiation of our model. Like our model,
Hyper/J uses (implicitly) a meta-model (the meta-model of the
Java language) and distinguishes two different types of dimen-
sions. However, the meta-model of Hyper/J is hard-coded and
not extendable. It is the base of the built-in <Classes> dimen-
sion, which is therefore the one and only primary dimension in
Hyper/J. All additional dimensions introduced by the definition
of hyperslices and hypermodules map to secondary dimensions
in our model.
In the original Hyperspaces model, the mapping from units to
concerns is realized by a concern-matrix that maps each unit to
exactly one concern in each dimension. However, the implica-
tion that a single unit never addresses more than one concern of
a dimension does not hold for the less formal languages as used
in software design6. For that reason, we gave up the idea of a
matrix-like n-dimensional concern space spanned by n axes, in
favor of n clusters of concerns. This metaphor allows assigning
units to zero or more concerns in each dimension by relations.
This structure (which is perfectly represented by a graph) al-
lows an easy definition of specialized systems which support
only some of the described concerns by a transitive closure ap-
proach.
Another difference between the original model and our work is
that we are not distinguishing between declaration units and
definition units. Most design languages do not utilize the con-
cepts of declaration and definition; units are typically intro-
duced into the model by just naming them. Furthermore, in our
model a unit can be mapped to more than one concern; thus
additional declaration units are even formally not necessary. Of
course, the abandonment of declarations leads to the danger
that the transitive closure approach works too greedy and in-
cludes too many units while extracting a concern specific slice.
However, using a graph-based representation, it is not difficult
to control the creation of the transitive closure with additional
constraints, e.g. based on regular path expressions [11].

4.2. Approaches based on UML design integration
In [7] the authors propose UMLAUT, a generic UML model
and schema transformation framework [8], as a methodological
base for aspect-oriented design with UML models. Like our

6 Actors in use-case diagrams, like in Figure 4, are a good example for this.
Typically, an actor relates to more than one use-case. Therefore, an actor
may map to more than one concern on the <Use-cases> dimension, as
shown in Figure 6.

Concern Integration

Input: A set of concerns
of one type

[Yes]

[No]

Are concerns des-
cribed in a formal
artifact language?

Select (or create new)
appropriate secondary

dimension

Add concerns to
selected dimension

Is artifact language
already integrated?

Select (or create new)
appropriate primary

dimension

Integrate language meta
model into the

Hyperspace meta model

Integrate artifact units
into the Hyperspace

Add concerns to
selected dimension

Map new units to all
concerns they affect

[No]

[Yes]

Map existing units to
new concerns they affect

Map existing units to
new concerns they affect

Figure 7 The process of concern integration

Inventory agent

«extends»

Enter location
and area data

Enter a foreign find

«uses»

Include a find
into inventory

Figure 8 Projection of the concern-specific slice on the

<Use-cases> dimension

6

model, their approach is based on an integrated meta-model of
artifact languages. Aspect weaving and extraction of task-
specific views are then driven by an extensible set of transfor-
mation rules and UML tagged attributes.
ConcernBASE [9] is an approach for a UML based framework
for describing software architectures. It supports MDSoC on
high-level software architectures by decomposing the system
into different architectural concern spaces and definition of ar-
chitectural views that represent single dimensions of these con-
cern spaces.
A more component-related approach for aspect-oriented design
and architecture is presented in [10]. The authors divide a
complex design not by dimensions, but by functional domains
into possibly non-orthogonal aspects, for which an optimal lo-
cal design may be developed first. Constraints for interactions
and connections between the local designs are formulated by
contracts that are later used for automatic composition and de-
tection of conflicts.

5. Conclusion
We introduced an approach to MDSoC which generalizes the
Hyperspace approach of TARR and OSSHER. We gave up the
idea of a matrix-like n-dimensional concern space spanned by
n axes in favor of n clusters of concerns. This metaphor allows
assigning units of artifact languages to more than one concern
in each dimension. This property is not given if the metaphor
of strict orthogonality is used.
We showed by an example how the Hyperspace approach is
generalized to an arbitrary number of (artifact-based) primary
dimensions using meta-model-based integration of artifact lan-
guages.
We believe that the strong connection between the dimensional
structure of the hyperspace and the artifact languages is a good
basis for an assessment of the appropriateness of design de-
scription languages. Ideally, each artifact language should de-
fine only one dimension, if a maximal separation of concerns is
to be achieved. A language defining two kinds of concerns may
not separate them well enough. Each secondary dimension may
be an indicator of the absence of an additional language that
might be useful.
The graph view of the Hyperspace allows an easy definition of
specialized systems which support only some of the described
concerns by a transitive closure approach. The graph-interpre-
tation of meta-models is furthermore a good foundation for de-
veloping graph-based tools which support this approach to
multidimensional separation of concerns in software develop-
ment environments.

6. References

[1] Rich Hilliard: Aspects, Concerns, Subjects, Views, … *. In Proceed-

ings of the 14th Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications
(OOPSLA ´99). Workshop: Advanced Separation of Concerns, 1999

[2] Peri Tarr, Harold Ossher, William Harrison, Stanley M. Sutton
Jr.: N Degrees of Separation: Multi-Dimensional Separation of Con-
cerns. In Proceedings of the 21st International Conference on Software
Engineering (ICSE ´99), pp. 107-119, May 1999

[3] Harold Ossher, Peri Tarr: Multi-Dimensional Separation of Con-
cerns in Hyperspace. Research Report RC21452(96717)16APR99,
IBM Research Division, Almaden, April 1999

[4] Harold Ossher, Peri Tarr: Multi-Dimensional Separation of Con-
cerns and The Hyperspace Approach. In Proceedings of the Sympo-
sium on Software Architectures and Component Technology: The
State of the Art in Software Development, Kluwer, 2000

[5] Jürgen Ebert, Andreas Winter, Peter Dahm, Angelika Franzke,
Roger Süttenbach: Graph Based Modeling and Implementation with
EER/GRAL. In Proceedings of the 15th International Conference on
Conceptual Modeling (ER ´96). Lecture Notes in Computer Science
1157, pp. 163-178, 1996 (extended version: Report 11/1996, Universi-
tät Koblenz-Landau, Fachberichte Informatik)

[6] Harold Ossher, Peri Tarr: Hyper/J: multi-dimensional separation of
concerns for Java. In Proceedings of the 22nd International Confer-
ence on Software Engineering (ICSE ´00), pp. 734-737, 2000

[7] Wai-Ming Ho, François Pennaneac’h, Noël Plouzeau: UMLAUT: A
Framework for Weaving UML-based Aspect-Oriented Designs. In
Technology of Object-Oriented Languages and Systems (TOOLS
Europe) 30, pp 324-334, IEEE, June 2000

[8] Wai Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, François
Pennaneac’h: UMLAUT: an extendible UML transformation frame-
work. In Proceedings of the 14th IEEE International Conference on
Automated Software Engeneering (ASE ´99), IEEE, 1999

[9] Mohamed Mancona Kandé, Alfred Strohmeier: On the Role of
Multi-Dimensional Separation of Concerns in Software Architecture.
Position Paper for the 15th Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA 2000). Workshop: Advanced Separation of Concerns, 2000

[10] Holger Giese, Alexander Vilbig: Towards Aspect-oriented Design
and Architecture. In Proceedings of the 15th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA ´00). Workshop: Advanced Separation of
Concerns, 2000

[11] Jürgen Ebert, Angelika Franzke: A Declarative Approach to Graph
Based Modeling. In Ernst W. Mayr, Gunther Schmidt, Gottfried Tin-
hofer (Eds.): Graphtheoretic Concepts in Computer Science, Lecture
Notes in Computer Science 903, pp. 38-50, 1995

	Abstract
	1. Introduction
	2. The Extended Hyperspace Model
	2.1. Basic Concepts and Terminology
	2.2. Integrating Dimensions into a Concern Space
	2.3. Secondary Dimensions of Concerns

	3. Example: An Inventory System
	3.1. The Artifacts
	3.2. Artifact Integration
	3.3. Defining Secondary Dimensions
	3.4. Selection of a Concern-specific Slice

	4. Related Work
	4.1. Hyper/J and the Hyperspace Approach
	4.2. Approaches based on UML design integration

	5. Conclusion
	5. References

